
Types & Types &
NetworkingNetworking

#2

One-Slide Summary
• A type is a (possibly infinite) set of values. Each type

supports a set of valid operations. Types can be latent or
manifest, static or dynamic, strong or weak.

• We can change the Charme interpreter to support manifest
(program visible) types.

• A network is a group of three or more communicating
entities.

• Bandwidth is the throughput of a communication resource,
measured in bits per second. Latency is the time delay
between the moment when communication is initiated and
the moment the first bit arrives, measured in seconds.

• In circuit switching, a path through a network is reserved
(high quality-of-service, used in telephones). In packet
switching, each packet is routed individually (internet, postal
service).

#3

Outline

• Administration
• StaticCharme Typechecking
• Networking History
• Latency, Bandwidth, Switching
• The Internet
• Dynamic Web Sites

#4

Administrivia
• Start PS8 and PS9 Now

– PS9 Team Requests due Friday April 16
– PS9 Project Descriptions due Wednesday April 21
– PS9 Design Review Signup Wednesday April 21

(Class)
– PS9 Presentation Requests Due Monday May 3

• PS9 Final Project Presentation Due Wednesday May 6
– or

• PS9 Final Project Report Due Wednesday May 12

#5

Displeased
11 - “takes a lot of time”

7 – nothing

6 – course is too difficult (100-level)

5 – learning Scheme

3 – learning Python (all that effort in Scheme)
2 – tests are hard

2 – problem set clarity (what is being asked? Ps5-7)

2 – many people in class have programming experience

2 – I'm in over my head / not getting all of it

2 – classroom is windowless / 3:30-5:00 timeslot obnoxious

2 – cannot complete problem set without TA help
11 - other

#6

Pleased
13 – quality of lectures / engaging professor

9 – Python

7 – learning languages

7 – learned many things

5 – TAs (esp. Zak+Patrick) and Wes are helpful / prompt

5 – random trivia

5 – problem sets are applicable/interesting

4 – the challenge

3 – grading is fair (knowledge >> details)
2 – PS take a long time (appreciate my work more)

2 – learn important concepts/theories, not just one language

2 – candy
8 - other

#7

Student Comments

• I'm super upset that we have to learn Python!!!
It took me forever to actually start
understanding Scheme and now I have to scrap
that way of thinking for a new way that is
actually more confusing for me. I don't
understand why people prefer Python. Not
only does it look super ugly, but I got really
used to Scheme grammar. :(

#8

Student Comments #2

• Though the problem sets take a long time they
are interesting. I was impressed that the first
problem set had us producing a collage. Most
of the time instructors go with boring the
'Hello World' approach. We built something
interesting every time. Since the majority of
the difficult bits were provided for us it
allowed us to see what the language was
capable of.

#9

Student Comments #3 and #4
• I didn't like the actual classroom. It's

windowless and rather sad. No doubt designed
by a bitter and hateful little man, fighting
delirium tremens to keep his hand steady just
long enough to spite generations of students.

• There are a ton more girls in the class than I
was led to expect from my experience in other
CS courses.
– CS involves math, science, art, and design under

constraint. It is an inherently creative discipline
that benefits from multiple viewpoints. We always
seek to recruit and retain the best people into CS. #10

Types of Types

Latent

Dynamically Checked

Manifest

Statically Checked

Charme StaticCharme

change grammar, represent types

typecheck expressions before eval

#11

Recall the Goal
• Given a Charme program somewhat like this:

(define square : number -> number
 (lambda (x : number) (* x x)))
(square 3)
(square “hello”)

• The static type annotations are in red.
• The second application (square “hello”) has a

type error.
– You can't multiply hello by hello, unless you're the

Beatles.

#12

Adding Type Checking
def evalLoop():
 initializeGlobalEnvironment()
 while True:
 ...
 for expr in exprs:
 typ = typecheck(expr, globalEnvironment)
 if typ and typ.isError():
 print "Type error:" + typ.getMessage()
 else:
 res = meval(expr, globalEnvironment)
 if res != None:
 print str(res)

#13

Static Type Checking
def typecheck(expr, env):
 if isPrimitive(expr):
 return typePrimitive(expr)
 elif isConditional(expr):
 return typeConditional(expr, env)
 elif isLambda(expr):
 return typeLambda(expr, env)
 elif isDefinition(expr):
 typeDefinition(expr, env)
 elif isName(expr):
 return typeName(expr, env)
 elif isApplication(expr):
 return typeApplication(expr, env)
 else: evalError ("Unknown expression: " + str(expr))

#14

class Environment:
 # Store a [type, value] pair for each variable.
 ...
 def addVariable(self, name, typ, value):
 self._frame[name] = (typ, value)
 def lookupPlace(self, name):
 if self._frame.has_key(name): return self._frame[name]
 elif (self._parent): return self._parent.lookupPlace(name)
 else: return None
 def lookupVariableType(self, name):
 place = self.lookupPlace(name)
 if place: return place[0]
 else: return CErrorType("Name not found")
 def lookupVariable(self, name):
 return self.lookupPlace(name)[1]
 ...

#15

Typechecking Names

def typeName(expr, env):
 return env.lookupVariableType(expr)

def evalDefinition(expr, env):
 name = expr[1]
 value = meval(expr[4], env)
 typ = CType.fromParsed(expr[3])
 env.addVariable(name, typ, value)

#16

Static Type Checking
def typecheck(expr, env):
 if isPrimitive(expr):
 return typePrimitive(expr)
 elif isConditional(expr):
 return typeConditional(expr, env)
 elif isLambda(expr):
 return typeLambda(expr, env)
 elif isDefinition(expr):
 typeDefinition(expr, env)
 elif isName(expr):
 return typeName(expr, env)
 elif isApplication(expr):
 return typeApplication(expr, env)
 else: evalError ("Unknown expression: " + str(expr))

#17

def typeDefinition(expr, env):
 assert isDefinition(expr)
 if len(expr) != 5:
 evalError ("Bad definition: %s" % str(expr))
 name = expr[1]
 if isinstance(name, str):
 if expr[2] != ':':
 evalError ("Definition missing type: %s" % str(expr))
 typ = CType.fromParsed(expr[3])
 etyp = typecheck(expr[4], env)
 if not typ.matches(etyp):
 evalError("Mistyped definition: ..." % (name, typ, etyp))
 elif isinstance(name, list):
 evalError ("Procedure definition syntax not implemented")
 else: evalError ("Bad definition: %s" % str(expr))

Example: (define x : Number “hello”)
Example: (define y : Number (+ 2 3))

#18

Static Type Checking
def typecheck(expr, env):
 if isPrimitive(expr):
 return typePrimitive(expr)
 elif isConditional(expr):
 return typeConditional(expr, env)
 elif isLambda(expr):
 return typeLambda(expr, env)
 elif isDefinition(expr):
 typeDefinition(expr, env)
 elif isName(expr):
 return typeName(expr, env)
 elif isApplication(expr):
 return typeApplication(expr, env)
 else: evalError ("Unknown expression: " + str(expr))

(define square : (Number -> Number)
 (lambda (x : Number) (* x x)))

#19

class Procedure:
 def __init__(self, params, typ, body, env):
 self._params = params
 self._body = body
 self._typ = typ
 self._env = env
 def getParams(self):
 return self._params
 def getParamTypes(self):
 return self._typ
 def getBody(self): return self._body
 def getEnvironment(self): return self._env
 def __str__(self):
 return "<Procedure %s / %s>" \
 % (str(self._params), str(self._body))

Add type to
Procedure

#20

def evalLambda(expr, env):
 assert isLambda(expr)
 if len(expr) != 3:
 evalError ("Bad lambda expression: %s" % (str(expr)))
 params = expr[1]
 paramtypes = []
 paramnames = []
 assert len(params) % 3 == 0
 for i in range(0, len(params) / 3):
 name = params[i*3]
 assert params[(i*3)+1] == ':'
 paramnames.append(name)
 typ = CType.fromParsed(params[(i*3)+2])
 paramtypes.append(typ)
 return Procedure(paramnames, paramtypes, expr[2], env)

(lambda (x : Number
y : Number)
(* x y))

#21

def typeLambda(expr, env):
 assert isLambda(expr)
 if len(expr) != 3: evalError ("Bad lambda expression: %s" % str(expr))
 # this is a bit tricky - we need to "partially" apply it
 # to find the type of the body
 newenv = Environment(env)
 params = expr[1]
 paramnames = []
 paramtypes = []
 assert len(params) % 3 == 0
 for i in range(0, len(params) / 3):
 name = params[i*3]
 assert params[(i*3)+1] == ':'
 typ = CType.fromParsed(params[(i*3)+2])
 paramnames.append(name)
 paramtypes.append(typ)
 newenv.addVariable(name, typ, None)
 resulttype = typecheck(expr[2], newenv)
 return CProcedureType(CProductType(paramtypes), resulttype)

Study me
for Exam 2!

#22

Liberal Arts Trivia: Dance

• This closed position, ¾ time standard ballroom
dance featuring gliding steps and rotations. It
became fashionable in Vienna in the 1780s and
shocked many when it was first introduced:
unlike the popular folk dances of the time, it
was a couples dance that involved the leader
clasping the follower about the waist. This
gave it a dubious moral status in the eyes of
the gentry.

• Bonus: My uncle Walter goes ...

#23

Liberal Arts Trivia: Linguistics
• This Chinese language dialect (Yuet Yu or Yue

Yu) is popular in Hong Kong, Macau and
southern mainland China. It retains more tones
and consonant endings from older varieties of
Chinese that have been lost to other modern
Chinese dialects. Its rarely-used written form
contains many characters not used in standard
written Chinese. See 2nd here:

#24

Static Type Checking
def typecheck(expr, env):
 if isPrimitive(expr):
 return typePrimitive(expr)
 elif isConditional(expr):
 return typeConditional(expr, env)
 elif isLambda(expr):
 return typeLambda(expr, env)
 elif isDefinition(expr):
 typeDefinition(expr, env)
 elif isName(expr):
 return typeName(expr, env)
 elif isApplication(expr):
 return typeApplication(expr, env)
 else: evalError ("Unknown expression: " + str(expr))

#25

Typechecking an Application

def typeApplication(expr, env):
 proctype = typecheck(expr[0], env)
 if not proctype.isProcedureType():
 evalError("Application of non-procedure: " + str(expr[0]))
 optypes = map (lambda op: typecheck(op, env), expr[1:])
 optype = CProductType(optypes)
 if not optype.matches(proctype.getParameters()):
 evalError("Parameter type mismatch: ..." \
 % (proctype.getParameters(), optype))
 return proctype.getReturnType()

square : Number -> Number
Example: (+ 1 (square 5))
Example: (+ 2 (square “hello”))

#26

Static Type Checking
def typecheck(expr, env):
 if isPrimitive(expr):
 return typePrimitive(expr)
 elif isConditional(expr):
 return typeConditional(expr, env)
 elif isLambda(expr):
 return typeLambda(expr, env)
 elif isDefinition(expr):
 typeDefinition(expr, env)
 elif isName(expr):
 return typeName(expr, env)
 elif isApplication(expr):
 return typeApplication(expr, env)
 else: evalError ("Unknown expression: " + str(expr))

#27

Typechecking Primitives

def typePrimitive(expr):
 if isNumber(expr):
 return CPrimitiveType('Number')
 elif isinstance(expr, bool):
 return CPrimitiveType('Boolean')
 elif callable(expr):
 return findPrimitiveProcedureType(expr)
 else:
 assert False This is a kludgey procedure

that looks through the global
environment to find the matching
procedure, and returns its type

#28

Static Type Checking
def typecheck(expr, env):
 if isPrimitive(expr):
 return typePrimitive(expr)
 elif isConditional(expr):
 return typeConditional(expr, env)
 elif isLambda(expr):
 return typeLambda(expr, env)
 elif isDefinition(expr):
 typeDefinition(expr, env)
 elif isName(expr):
 return typeName(expr, env)
 elif isApplication(expr):
 return typeApplication(expr, env)
 else: evalError ("Unknown expression: " + str(expr))

Left as possible
Exam 2 question!

#29

StaticCharme
StaticCharme> (+ 1 #t)
Error: Parameter type mismatch:
expected (Number Number), given (Number Boolean)
StaticCharme> (define square:((Number) -> Number)
 (lambda (x:Number) (* x x)))
StaticCharme> (square #t)
Type error: Parameter type mismatch:
expected (Number), given (Boolean)
StaticCharme> (define badret:((Number) -> Number)
 (lambda (x: Number) (> x 3)))
Error: Mistyped definition:
badret declared type ((Number) -> Number),
actual type ((Number) -> Boolean)

#30

Who Invented the Internet?

#31

Who Invented Networking?

#32

What is a Network?

A network is a group of three or more
connected communicating entities.

#33

Beacon Chain Networking
Thus, from some far-away beleaguered
island, where all day long the men have
fought a desperate battle from their city
walls, the smoke goes up to heaven; but no
sooner has the sun gone down than the light
from the line of beacons blazes up and
shoots into the sky to warn the neighboring
islanders and bring them to the rescue in
their ships.

Iliad, Homer, 700 BC

Chain of beacon’s signaled Agammemnon’s return (~1200BC),
spread on Greek peaks over 600km.

#34

Pony Express

• April 1860 – October 1861
• Missouri to California

– 10 days
– 10-15 miles per horse, ~100 miles per rider

• Ask me about the “human endurance runner”
theory (cf. Dennis Proffitt)

• 400 horses total

#35

Chappe’s Semaphore Network

Mobile Semaphore Telegraph
Used in the Crimean War 1853-1856

First Line (Paris to Lille), 1794

#36

Government and Networking
Chappe wanted a commercial network

Anyone performing unauthorized transmissions of signals from
one place to another, with the aid of telegraphic machines or
by any other means, will be punished with an imprisonment of
one month to one year, and a fine of 1,000 to 10,000 Francs.

The use of novel methods that modify established habits, often hurts
the interests of those who profit the most from the older methods. Few
people, with the exception of the inventors, are truly interested in
helping projects succeed while their ultimate impact is still
uncertain. . . . Those in power will normally make no effort to
support a new invention, unless it can help them to augment
their power; and even when they do support it, their efforts are
usually insufficient to allow the new ideas to be fully exploited.
(Claude Chappe, 1824)

French Law passed in 1837 made private networking illegal

#37

Liberal Arts Trivia: Mathematics

• The this of a function at a chosen input value
describes the best linear approximation of the
function near that input point. If this can be
applied to a function infinitely many times, the
function is called smooth. The this is also given
by the limit, as the difference in input
approaches zero, of the ratio of the difference
between the function values of two nearby
inputs to the difference between those two
nearby inputs.

#38

Liberal Arts Trivia: Astronomy

• This is a small, dense type of star composed of
electron-degenerate matter. Such a star's mass
is comparable to that of the Sun but with a
volume comparable to that of the Earth. These
starts are only faintly luminous and were
strongly studied from 1910-1922. They are
produced from red giants when the hydrogen-
fusing lifetime of a main sequence start ends.
– Not to be confused with the British comedy show.

#39

Liberal Arts Trivia:
Religious Studies

• Among the truths said to have been realized by
Siddhartha Gautama Buddha during his
experience of enlightenment are these:
1) The Nature of Suffering (hint: almost everything)
2) Suffering's Origin (hint: desire)
3) Suffering's Cessation (hint: freedom from craving)
4) The Way Leading to the Cessation of Suffering

(hint: Noble Eightfold Path)

 What are these things collectively know as?

#40

Measuring Networks
• Latency

Time from sending a bit until it arrives
seconds (or seconds per geographic distance)

• Bandwidth
How much information can you transmit per
time unit
bits per second

#41

Latency and Bandwidth
• Napoleon’s Network: Paris to Toulon, 475 mi
• Latency: 13 minutes (1.6s per mile)

– What is the delay at each signaling station, how
many stations to reach destination

– At this rate, it would take ~1 hour to get a bit from
California

• Bandwidth: 2 symbols per minute (98 possible
symbols, so that is ~13 bits per minute)
– How fast can signalers make symbols
– At this rate, it would take you about 9 days to get

ps8.zip

#42

Improving Latency
• Fewer transfer points

– Longer distances between transfer points
– Semaphores: how far can you see clearly

• Curvature of Earth is hard to overcome

– Use wires (electrical telegraphs, 1837)

• Faster transfers
– Replace humans with machines

• Faster travel between transfers
– Hard to beat speed of light (semaphore network)
– Electrons in copper: about 1/3rd speed of light

#43

How many transfer points
between here and California?

#44

#45

K:\>tracert www.cs.berkeley.edu

Tracing route to hyperion.cs.berkeley.edu [169.229.60.105]
over a maximum of 30 hops:

 1 3 ms 3 ms 4 ms 128.143.69.1
 2 <1 ms <1 ms <1 ms carruthers-6509a-x.misc.Virginia.EDU [....]
 3 <1 ms <1 ms <1 ms new-internet-x.misc.Virginia.EDU [128.....]
 4 4 ms 4 ms 4 ms nwv-nlrl3.misc.Virginia.EDU [192.35.48.30]
 5 5 ms 5 ms 5 ms nlrl3-router.networkvirginia.net [192.7...]
 6 18 ms 18 ms 18 ms atla-wash-64.layer3.nlr.net [216.24.186.20]
 7 43 ms 43 ms 42 ms hous-atla-70.layer3.nlr.net [216.24.186.8]
 8 73 ms 73 ms 73 ms losa-hous-87.layer3.nlr.net [216.24.186.30]
 9 72 ms 72 ms 72 ms hpr-lax-hpr--nlr-packenet.cenic.net [137..]
 10 80 ms 81 ms 81 ms svl-hpr--lax-hpr-10ge.cenic.net [137.16...]
 11 145 ms 81 ms 81 ms hpr-ucb-ge--svl-hpr.cenic.net [137.164....]
 12 81 ms 81 ms 81 ms g3-12.inr-201-eva.Berkeley.EDU [128.32....]
 13 81 ms 82 ms 83 ms evans-soda-br-5-4.EECS.Berkeley.EDU [...]
 14 83 ms 84 ms 83 ms sbd2a.EECS.Berkeley.EDU [169.229.59.226]
 15 83 ms 84 ms 83 ms hyperion.CS.Berkeley.EDU [169.229.60.105]

Trace complete.

tracert
U

V
a

U
C

B

Atlanta → Houston → LA?

#46

>>> cvilleberkeley = 3813 # kilometers
>>> seconds = 84.0/1000
>>> speed = cvilleberkeley / seconds
>>> speed
45392.857142857138
>>> light = 299792.458 # km/s
>>> speed / light
0.15141427321316114

Packets are traveling average at 15% of the speed of light
(includes transfer time through 15 routers)

#47

Bandwidth

How much data
can you
transfer in a
given amount of
time?

#48

Improving Bandwidth
• Faster transmission

– Train signalers to move semaphore flags faster
– Use something less physically demanding to transmit

• Bigger pipes
– Have multiple signalers transmit every other letter

at the same time

• Better encoding
– Figure out how to code more than 98 symbols with

semaphore signal
– Morse code (1840s)

#49

Morse Code
Represent letters with series of
short and long electrical pulses

#50

Circuit Switching

• Reserve a whole path through the network
for the whole message transmission

Paris Toulon

Nantes

LyonBourges

Once you start a transmission,
know you will have use of the
network until it is finished. But,
wastes network resources.

#51

Packet Switching

• Use one link at a time

Paris Toulon

Nantes

LyonBourges

Interleave messages – send
whenever the next link is free.

#52

Circuit and Packet Switching
• (Land) Telephone Network (back in the old

days)
– Circuit: when you dial a number, you have a

reservation on a path through the network
until you hang up

• The Internet
– Packet: messages are broken into small

packets, that find their way through the
network link by link

#53

internetwork

An internetwork is a collection of multiple
networks connected together, so messages
can be transmitted between nodes on
different networks.

#54

The First internet
• 1800: Sweden and Denmark worried about

Britain invading
• Edelcrantz proposes link across strait

separating Sweden and Denmark to connect
their (signaling) telegraph networks

• 1801: British attack Copenhagen, network
transmit message to Sweden, but they don’t
help.

• Denmark signs treaty with Britain, and stops
communications with Sweden

#55

First Use of Internet

• October 1969: First packets on the
ARPANet from UCLA to Stanford. Starts to
send "LOGIN", but it crashes on the G.

• 20 July 1969:
Live video (b/w) and
audio transmitted from
moon to Earth, and to
millions of televisions
worldwide.

#56

Okay, so who invented
the Internet?

#57

The Modern Internet
• Packet Switching: Leonard Kleinrock (UCLA)

thinks he did, Donald Davies and Paul Baran,
Edelcrantz’s signalling network (1809)

• Internet Protocol: Vint Cerf, Bob Kahn
• Vision, Funding: J.C.R. Licklider, Bob Taylor
• Government: Al Gore (first politician to

promote Internet, 1986; act to connect
government networks to form “Interagency
Network”)

#58

The World Wide Web

#59

Available within the network will be functions and services to
which you subscribe on a regular basis and others that you
call for when you need them. In the former group will be
investment guidance, tax counseling, selective dissemination
of information in your field of specialization, announcement of
cultural, sport, and entertainment events that fit your interests,
etc. In the latter group will be dictionaries, encyclopedias,
indexes, catalogues, editing programs, teaching programs,
testing programs, programming systems, data bases, and –
most important – communication, display, and modeling
programs. All these will be – at some late date in the
history of networking - systematized and coherent; you
will be able to get along in one basic language up to the
point at which you choose a specialized language for its
power or terseness.

J. C. R. Licklider and Robert W. Taylor, The
Computer as a Communication Device, April 1968

#60

The World Wide Web

• Tim Berners-Lee, CERN (Switzerland)
• First web server and client, 1990

• Established a common language for sharing
information on computers

• Lots of previous attempts (Gopher, WAIS,
Archie, Xanadu, etc.)

#61

World Wide Web Success

• World Wide Web succeeded because it was
simple!
– Didn’t attempt to maintain links, just a

common way to name things
– Uniform Resource Locators (URL)

http://www.cs.virginia.edu/cs1120/index.html

Service Hostname File Path

HyperText Transfer Protocol

#62

HyperText Transfer Protocol

Client (Browser)

GET /cs1120/index.html HTTP/1.0

<html>
<head>
…

Contents
of file

Server

HTML
 HyperText Markup Language

#63

HTML: HyperText Markup Language

• Language for controlling presentation of
web pages

• Uses formatting tags
– Enclosed between < and >

• Not a universal programming language

Proof: no way to make an infinite loop

#64

HTML Grammar Excerpt
Document ::= <html> Header Body </html>
Header ::= <head> HeadElements </head>
HeadElements ::= HeadElement HeadElements
HeadElements ::=
HeadElement ::= <title> Element </title>

Body ::= <body> Elements </body>
Elements ::= Element Elements
Elements ::=
Element ::= <p> Element </p>
 Make Element a paragraph.
Element ::= <center> Element </center>
 Center Element horizontally on the page.
Element ::= Element
 Display Element in bold.
Element ::= Text

What is a HTML interpreter?

#65

Popular Web Site: Strategy 1
Static, Authored Web Site

Web Programmer,
Content Producer

http://www.twinkiesproject.com/

Drawbacks:
•Have to do all the
work yourself
•The world may
already have enough
Twinkie-experiment
websites

#66

Popular Web Site: Strategy 2
Dynamic Web Applications

Seed content
and function

Web Programmer,
Content Producer

eBay in 1997
http://web.archive.org/web/19970614001443/http://www.ebay.com/

Produce more
content

Attracts users

#67

Popular Web Site: Strategy 2
Dynamic Web Applications

Seed content
and function

eBay in 1997

Produce more
content

Attracts users

eBay in 2007

Advantages:
• Users do most of the work
• If you’re lucky, they might even pay you
 for the privilege! (not using UVa’s servers)

Disadvantages:
• Lose control over the content (you might
 get sued for things your users do)
• Have to know how to program a web
 application

#68

Dynamic Web Sites
• Programs that run on the client’s machine

– Java, JavaScript, Flash, etc.: language must be
supported by the client’s browser (so they are usually
flaky and don’t work for most visitors)

– Used mostly to make annoying animations to make
advertisements more noticeable

– Occasionally good reasons for this: need a fancy
interface on client side (like Google Maps)

• Programs that run on the web server
– Can be written in any language, just need a way to

connect the web server to the program
– Program generates regular HTML – works for everyone
– (Almost) Every useful web site does this

#69

Dynamic Web Site

Client (Web Browser)
“HTML Interpreter”

GET http://www.cs.virginia.edu/cs1120/hooshungry

<html>
<head>
…

Server

#70

Dynamic Web Site
Client

File Server
GET .../show-restaurants.cgi

Read ../public_html/cs1120/hooshungry/show-restaurants.cgi

#!/uva/bin/python

...

Request
Processor

show-restaurants.cgi

#71

Processing a GET Request

#!/usr/bin/python

import cgi
import headers
import restaurants
import restaurant
import reviews

headers.printHeader ("Restaurants")
headers.endHeader ()

print "<h1>Restaurants</h1>“
...

Python Code: Evaluate using
Python interpreter, send output
to client

Python
Interpreter

to
Client

#72

Using a Database

• HTTP is stateless
– No history of information from previous

requests

• We probably need some state that changes
as people visit the site

• That’s what databases are for – store,
manipulate, and retrieve data

#73

Python Code:
Evaluate using Python
interpreter, send output

Python
Interpreter

to
Client

Database

SQL Command
Values

#!/usr/bin/python

...

#74

SQL
• Structured Query Language (SQL)

– (Almost) all databases use it

• Database is tables of fields containing
values

• All fields have a type (and may have other
attributes like UNIQUE)

• Similar to procedures from PS5

#75

Homework

• Problem Set 9 Team Requests
• Problem Set 8

#76

Student Comments 2009

• I am displeased with the course in general. I
was expecting a course that showed how
computing concepts relate to the liberal arts.
While that is true to some extend, this class
feels more like a straight programming class.
DrScheme is not intuitive, and makes this
course much harder than 101 and 201 without
really giving more information.
– Managing expectations is the key to happiness!

#77

More Student Comments 2009

• I am displeased that the answer to question
eight in this problem set require a lot of
thinking and writing code for only one point of
the assignment.
– Irony! The goal was to make it reasonable to not

do all of the problem set.

• I am displeased that I have to make a dynamic
website, which will take a lot of time and
likely be our hardest assignment.
– Yes, the final project will be hard.

#78

Even More Student Comments,
2009

• I am displeased that some people are opting
not to do the problem sets. I am not a
computer science major and this is the first cs
class I have ever taken, but I still think it is
important for everyone to branch out and learn
new things. Although some people may say
that they will never use this stuff again, you
never know.
– Currently zero students have opted out of the

problem sets.

#79

Displeased, 2009

• 21 Course and problem sets are hard/long/frustrating

• 6 Reading quizzes

• 5 Two exams + final = too much work at end

• 5 Switch languages (learning on our own)

• 4 Book remains dry, confusing, and without answers

• 3 Don't know what to do for PS9

• 2 It still takes too long to get help in office hours

• 2 Cannot drop lowest PS grade

• 2 IDLE sucks

• 8 Other

