
Objects Python InterpretersObjects Python Interpreters

#2

One-Slide Summary
• Object-Oriented Programming encapsulates state

and methods together into objects. This hides
implementation details (cf. inheritance) while
allowing methods to operate on many types of input.

• Python is a universal, imperative, object-oriented
language. Scheme is a universal, functional language
with imperative features.

• Building an interpreter is a fundamental idea in
computing. Eval and Apply are mutually recursive.

• We can write a Python program that is an interpreter
for Scheme programs.

#3

Outline

• Object Lessons
• Ali G
• Interpreters
• Eval
• Apply

#4

Exam 2 Extra Credit
• 3 points on Exam 2: attend talk Thursday

(tomorrow) in CHM 402 (Auditorium) at 2pm
• Barbara Liskov from MIT:

– Today more and more information is being stored on the Internet.
Internet storage is desirable for a number of reasons. For example, it
can enable sharing of information such as medical records among
different medical facilities. Also it can benefit individuals by allowing
them to offload various housekeeping operations such as managing
backups and archives. However, Internet storage also introduces a
number of security issues. Among these issues is concern for reliable
storage so that users can access information 24/7 and need not fear
that information will be lost. Reliability can be achieved through
replication, in which information is stored at more than one
computer. This talk will discuss the problems that arise in replicating
data and describe techniques that can be used to solve these
problems.

#5

Where is the
Chemistry Auditorium?

• Is (10)
– upper

left

• We are in
(27) now

#6

Who was the Who was the
first object-first object-

oriented oriented
programmer?programmer?

#7

By the word operation, we mean any process which alters
the mutual relation of two or more things, be this relation
of what kind it may. This is the most general definition,
and would include all subjects in the universe. Again, it
might act upon other things besides number, were objects
found whose mutual fundamental relations could be
expressed by those of the abstract science of operations,
and which should be also susceptible of adaptations to the
action of the operating notation and mechanism of the
engine... Supposing, for instance, that the fundamental
relations of pitched sounds in the science of harmony and
of musical composition were susceptible of such expression
and adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or
extent.

Ada, Countess of Lovelace, around
1843

Implementing Implementing
InterpretersInterpreters

#9

Learn Languages:
Expand Minds

Languages change the way we think.

The more languages you know, the
more different ways you have of
thinking about (and solving) problems.

#10

“Jamais Jamais Jamais” from Harmonice Musices
Odhecaton A. Printed by Ottaviano Dei Petrucci in

1501 (first music with movable type)

#11

Music with Movable Type?
• Odhecaton: secular songs published in 1501 Venice

– First book of music ever printed using movable type,
– Hugely influential both in publishing in general, and in

dissemination of the Franco-Flemish musical style.
– Seeing business potential, in 1498 Petrucci had obtained

an exclusive 20-year license for all printing activities
related to music anywhere in the Venetian Republic.

– He printed two parts on the right-hand side of a page, and
two parts on the left: four singers or instrumentalists
could read from the same sheet.

– Petrucci's publication not only revolutionized music
distribution, it contributed to making the Franco-Flemish
style the international musical language of Europe for the
next century.

#12

J S Bach, “Coffee Cantata”,
BWV 211 (1732)
www.npj.com/homepage/teritowe/jsbhand.html

“Jamais Jamais Jamais” from
Harmonice Musices Odhecaton A.
(1501)

#13

Computability in Theory and
Practice

(Intellectual Computability
Discussion on TV Video)

(I hope this works!)

#14

Ali G Problem
• Input: a list of 2 numbers with up to d

digits each
• Output: the product of the 2 numbers

Is it computable?
Yes – a straightforward algorithm
solves it. Using elementary
multiplication techniques it is O(d2)

Can real computers solve it?

#17

Ali G was Right!
• Theory assumes ideal computers:

– Unlimited, perfect memory
– Unlimited (finite) time

• Real computers have:
– Limited memory, time, power outages, flaky

programming languages, etc.
– There are many computable problems we cannot

solve with real computer: the actual inputs do
matter (in practice, but not in theory!)

#18

Liberal Arts Trivia: Biology

• This family of non-venomous serpents contains
the longest snake in the world. They have
teeth, heat-sensing organs, and ambush prey.
They kill by a process of constriction:
sufficient pressure is applied to the prey to
prevent it from inhaling, and the prey
succumbs to asphyxiation and is swallowed
whole.

#19

Liberal Arts Trivia: Chemistry

• This element is a ductile metal with very high
thermal and electrical conductivity. When pure
and fresh it has a pinkish or peachy color, but
it turns green with age (oxidation). It has
played a significant role in the history of
humanity. In the Roman era it was usually
mined on Cyprus; hence the provenance of its
modern name (Cyprium to Cuprum).

#20

Implementing
Interpreters

#21

Inventing a Language
• Design the grammar

– What strings are in the language?
– Use BNF to describe all the strings in the

language

• Make up the evaluation rules
– Describe what everything the grammar can

produce means

• Build an evaluator
– A procedure that evaluates expressions in the

language

#22

Is this an exaggeration?
It is no exaggeration to regard this as the most
fundamental idea in programming:

The evaluator, which determines the
meaning of expressions in the programming
language, is just another program.
To appreciate this point is to change our images of
ourselves as programmers. We come to see
ourselves as designers of languages, rather than
only users of languages designed by others.

(SICP, p. 360)

#23

Environmental Model of Evaluation
• To evaluate a combination, evaluate all the

subexpressions and apply the value of the first
subexpression to the values of the other
subexpressions.

• To apply a compound procedure to a set of
arguments, evaluate the body of the procedure
in a new environment. To construct this
environment, make a new frame with an
environment pointer that is the environment of
the procedure that contains places with the
formal parameters bound to the arguments.

#24

EvalEval

ApplyApply

Eval and Apply
are defined in
terms of each
other.

#25

The Plan – Front End
• We are given a string like “(- (+ 5 6) 10)”
• First, we remove whitespace and parse it

according to our Scheme grammar.
• We will represent Scheme expressions

internally as either
– Primitive elements, like '5' or '+'
– Or lists of functions and their arguments
– ['-', ['+', '5', '6'], '10']
– (Plus some other details in PS7.)

#26

The Plan – Back End

• So now we have Python representations of
Scheme expression, such as:
– '123' # 123
– ['-', ['+', '5', '6'], '10'] # (- (+ 5 6) 10)

• We want to evaluate such expressions. We will
write a procedure, meval(), that does this.
– meval('123') = 123

• We'll also write mapply() to handle functions.
– meval(['+','5','6']) = 11

#27

Evaluation and Environments

• Recall the Environment Model for Scheme
– Go back to Class 13 or Book Chapter 9 if not!

• Let's think about some meval inputs and
outputs together:
– meval('12') = 12
– meval('x') = ??

• So meval will need an environment:
– meval('12',env) = 12
– meval('x',env) = value-of-x-in-env

#28

meval basics

• So we might try to write meval by cases:
def meval(exp,env):
 if isPrimitive(exp): # 3, x, etc.
 return evalPrimitive(exp,env)
 if isApplication(exp): # (+ 3 4)
 return evalApplication(exp,env)
 # What other kinds of expressions are there?
 # Brainstorm now!

#29

def meval(expr, env):
 if isPrimitive(expr):
 return evalPrimitive(expr)
 elif isConditional(expr):
 return evalConditional(expr, env)
 elif isLambda(expr):
 return evalLambda(expr, env)
 elif isDefinition(expr):
 evalDefinition(expr, env)
 elif isName(expr):
 return evalName(expr, env)
 elif isApplication(expr):
 return evalApplication(expr, env)
 else:
 evalError ("Unknown expression type: " + str(expr))

Implementing
meval

#30

Liberal Arts Trivia: Philosophy

• In the philosophy of mind, this is used to
describe views in which the mind and matter
are two ontologically separate categories. In
this, neither mind nor matter can be reduced
to each other in any way. This is typically
opposed to reductive materialism. A well-
known example of this is attributed to
Descartes, holding that the mind is a
nonphysical substance.

#31

Liberal Arts Trivia: Chemistry

• This exothermic chemical process
involves the rapid oxidation of a fuel
material, releasing light, heat and
various reaction products. Fuels of
interest often include organic
compounds and hydrocarbons. Slower
oxidation processes, like rusting, are not
part of this process.

#32

Liberal Arts Trivia: Statistics

• A t-test is a statistical hypothesis test in which
the test statistic has a This distribution if the
null hypothesis is true. The This distribution
arises when estimating the mean of a normally
distributed population when the sample size is
small. It was first published by William Gosset
in 1908 while he worked at a Guinness Brewery
in Dublin. The brewery forbade the publication
of research by its staff members (!), so he
published the paper under a pseudonym.

#33

mapply basics

• Let's think about mapply input and output
together:
– meval(['+', '1', '2']) = 3
– meval(parse(“(lambda (x) (+ x 2)) 5”)) = 7
– Meval(['sqrt', '4']) = 2

• So we'll have separate handling for
– Primitive procedures
– Procedures made with lambda

• Have parameters (“x”) and bodies (“+ x 2”)
• May live in the environment (“sqrt”)

#34

def mapply(proc, operands):
 if (isPrimitiveProcedure(proc)):
 return proc(operands)
 elif isinstance(proc, Procedure):
 params = proc.getParams()
 newenv = Environment(proc.getEnvironment())

 # sanity check: no (sqrt 5 6)
 if len(params) != len(operands):
 evalError ("Parameter length mismatch: ...")

 # evaluate arguments first -- e.g., (sqrt (+ 3 1))
 for i in range(0, len(params)):
 newenv.addVariable(params[i], operands[i])
 return meval(proc.getBody(), newenv)
 else:
 evalError("Application of non-procedure: %s" % (proc))

Implementing
mapply

#35

Simple Calculations

>>> parse(“ 55 “)
'55' # or very close
>>> parse(“ (- (+ 5 6) 10) ”)
['-', ['+', '5', '6'], '10'] # or very close

... # recall from meval() ...

elif isApplication(expr):

 return evalApplication(expr, env)
...

• So how do we define isApplication() ?

#36

Detecting Applications

>>> parse(“ (- (+ 5 6) 10) ”)
['-', ['+', '5', '6'], '10'] # or very close

def isApplication(expr):
 # Applications are lists [proc, oper, oper, ...]
 return isinstance(expr, list)

• So how do we do evalApplication()?

#37

Evaluating Applications

>>> parse(“ (- (+ 5 6) 10) ”)
['-', ['+', '5', '6'], '10'] # or very close
• So how do we do evalApplication()?
def evalApplication(expr, env):

 # To evaluate an application, evaluate all the subexpressions

 subexps = expr

 subexpvals = map (lambda sub: meval(sub, env), subexps)

 # then, apply the value of the first subexpression to the rest

 return mapply(subexpvals[0], subexpvals[1:])

#38

Applying Primitives

• >>> parse(“ (- (+ 5 6) 10) ”)
• ['-', ['+', '5', '6'], '10'] # or very close

...

def mapply(proc, operands):
 if (...): # look up in environment, etc.
 return PrimitivePlus(operands)

...

• So how do we define PrimitivePlus() ?

#39

Recall Scheme Addition

> (+)
0
> (+ 5)
5
> (+ 6 7)
13
> (+ 6 7 8)
21
• Now write Python code to do it!

Hint:
what are the basic
problem solving

strategies in this class?

#40

PrimitivePlus

def primitivePlus (operands):
 if (len(operands) == 0):
 return 0 # base case
 else:
 return operands[0] +
 primitivePlus (operands[1:])

• PrimitiveMinus is similar

#41

Tracing
>>> parse(“ (- (+ 5 6) 10) ”)
['-', ['+', '5', '6'], '10'] # or very close
• meval([-, [+, 5, 6], 10]

– evalApplication([-, [+,5,6], 10])
– meval(-) meval([+,5,6]) meval(10)
– ... evalApplication([+,5,6]) ...
– ... meval(+), meval(5), meval(6) ...
– ... primitivePlus(5,6) ...
– ... 11 10
– PrimitiveMinus(11,10)
– 1

#42

Homework

• Attend Barbara Liskov talk on April 1st
• Work on Problem Set #7

– If we give you a long time before a problem set is
due, what does that imply?

