
Godel and Computability

Halting Problems Hockey Team
#2

One-Slide Summary
• A proof of X in a formal system is a sequence of

steps starting with axioms. Each step must use a
valid rule of inference and the final step must be X.

• All interesting logical systems are incomplete: there
are true statements that cannot be proven within
the system.

• An algorithm is a (mechanizable) procedure that
always terminates.

• A problem is decidable if there exists an algorithm
to solve it. A problem is undecidable if it is not
possible for an algorithm to exists that solves it.

• The halting problem is undecidable.

#3

Outline
• Gödel's Proof
• Unprovability
• Algorithms
• Computability
• The Halting Problem

#4

Epimenides Paradox

Epimenides (a Cretan):
“All Cretans are liars.”

Equivalently:
“This statement is false.”

Russell’s types can help with the
set paradox, but not with these.

#5

Gödel’s Solution

All consistent axiomatic formulations of
number theory include undecidable
propositions.

(GEB, p. 17)

undecidable – cannot be proven either
true or false inside the system.

#6

Kurt Gödel
• Born 1906 in Brno (now

Czech Republic, then
Austria-Hungary)

• 1931: publishes Über
formal unentscheidbare
Sätze der Principia
Mathematica und
verwandter Systeme (On
Formally Undecidable Propositions of
Principia Mathematica and Related
Systems)

#7

• 1939: flees Vienna

• Institute for
Advanced Study,
Princeton

• Died in 1978 –
convinced
everything was
poisoned and
refused to eat

#8

Gödel’s Theorem

In the Principia Mathematica
system, there are statements that
cannot be proven either true or
false.

#9

Gödel’s Theorem

In any interesting rigid system,
there are statements that cannot
be proven either true or false.

#10

Gödel’s Theorem

All logical systems of any
complexity are incomplete:
there are statements that are
true that cannot be proven
within the system.

#11

Proof – General Idea

•Theorem: In the Principia
Mathematica system, there
are statements that cannot be
proven either true or false.

•Proof: Find such a statement!

#12

Gödel’s Statement

G: This statement does not
have any proof in the
system of Principia
Mathematica.

G is unprovable, but true!
Why?

#13

Gödel’s Statement

G: This statement does not have
any proof in the system.

Possibilities:
1. G is true ⇒ G has no proof

System is incomplete
2. G is false ⇒ G has a proof

System is inconsistent

#14

Gödel’s Proof Idea
G: This statement does not have any
proof in the system of PM.

If G is provable, PM would be inconsistent.
If G is unprovable, PM would be incomplete.

Thus, PM cannot be complete and consistent!

#15

Finishing The Proof

• Turn G into a statement in the
Principia Mathematica system

• Is PM powerful enough to express
“This statement does not have
any proof in the PM system.”?

#16

How to express “does not have
any proof in the system of PM”

• What does “have a proof of S in PM” mean?
– There is a sequence of steps that follow the

inference rules that starts with the initial
axioms and ends with S

• What does it mean to “not have any proof
of S in PM”?
– There is no sequence of steps that follow the

inference rules that starts with the initial
axioms and ends with S

#17

Can PM express unprovability?
• There is no sequence of steps that

follows the inference rules that starts
with the initial axioms and ends with S

• Sequence of steps:
T0, T1, T2, ..., TN

T0 must be the axioms
TN must include S
Every step must follow from the previous

using an inference rule

#18

Can we express
“This statement”?

• Yes!
– Optional Reading: the TNT Chapter in GEB

• We can write turn every statement
into a number, so we can turn “This
statement does not have any proof
in the system” into a number

#19

Gödel’s Proof
G: This statement does not have any
proof in the system of PM.

If G is provable, PM would be inconsistent.
If G is unprovable, PM would be incomplete.
PM can express G.
Thus, PM cannot be complete and
consistent!

#20

Generalization

All logical systems of any
complexity are incomplete:
there are statements that are
true that cannot be proven
within the system.

#21

Practical Implications

• Mathematicians will never be completely
replaced by computers
– There are mathematical truths that cannot

be determined mechanically
– We can build a computer that will prove only

true theorems about number theory, but if it
cannot prove something we do not know that
that is not a true theorem.

#22

What does it mean for an axiomatic
system to be complete and consistent?

Derives all true
statements, and no false
statements starting from a

finite number of axioms
and following mechanical

inference rules.

#23

What does it mean for an axiomatic
system to be complete and consistent?

It means the axiomatic system is weak.

Indeed, it is so weak, it cannot express:
 “This statement has no proof.”

#24

Incomplete
Axiomatic System

Derives
some, but not all true

statements, and no false
statements starting from a

finite number of axioms
and following mechanical

inference rules.

incomplete

Inconsistent
Axiomatic System

Derives
all true

statements, and some false
statements starting from a

finite number of axioms
and following mechanical

inference rules.

some false
statements

Pick one:

#25

Inconsistent Axiomatic System

Derives
all true

statements, and some false
statements starting from a

finite number of axioms
and following mechanical

inference rules.
some false

statements Once you can prove one false statement,
everything can be proven! false ⇒ anything

#26

Algorithms
• What’s an algorithm?

A procedure that always terminates.
• What’s a procedure?

A precise (mechanizable) description of
a process.

#27

Computability
• Is there an algorithm that solves a problem?
• Computable (decidable) problems:

– There is an algorithm that solves the problem.
– Make a photomosaic, sorting, drug discovery,

winning chess (it doesn’t mean we know the
algorithm, but there is one)

• Uncomputable (undecidable) problems:
– There is no algorithm that solves the problem.
– There might be a procedure, but it doesn’t

always terminate.

#28

Are there any uncomputable
problems?

#29

The Halting Problem

Input: a specification of a
procedure P

Output: If evaluating an
application of P halts, output
true. Otherwise, output false.

#30

Alan Turing (1912-1954)
• Codebreaker at Bletchley Park

– Broke Enigma Cipher
– Perhaps more important than Lorenz

• Published On Computable Numbers … (1936)

– Introduced the Halting Problem
– Formal model of computation

 (now known as “Turing Machine”)
• After the war: convicted of homosexuality

(then a crime in Britain), committed
suicide eating cyanide apple 5 years after

Gödel’s proof!

#31

Halting Problem

Define a procedure halts? that takes a
procedure specification and evaluates to
#t if evaluating an application of the
procedure would terminate, and to #f if
evaluating an application of the would
not terminate.

 (define (halts? proc) …)

#32

Examples

> (halts? ‘(lambda () (+ 3 3)))
#t
> (halts? ‘(lambda ()
 (define (f) (f))
 (f)))
#f

#33

Halting Examples
> (halts? `(lambda ()
 (define (fact n)
 (if (= n 1) 1 (* n (fact (- n 1)))))
 (fact 7)))
#t
> (halts? `(lambda () (fact 0)))
#f
> (halts? `(lambda ()
 (define (fibo n)
 (if (or (= n 1) (- n 2))) 1
 (+ (fibo (- n 1)) (fibo (- n 2))))))

 (fibo 100))
#t

#34

Halting Examples
> (halts? `(lambda ()
 (define (sum-of-two-primes? n)
 ;;; try all possibilities...)
 (define (test-goldbach n)
 (if (not (sum-of-two-primes? n))
 #f ; Goldbach Conjecture wrong
 (test-goldbach (+ n 2))))
 (test-goldbach 2))
?

Goldbach Conjecture (see GEB, p. 394):
Every even integer can be written as the sum of two primes.

#35

Can we define halts? ?

• We could try for a really long time, get
something to work for simple examples,
but could we solve the problem – make it
work for all possible inputs?

#36

Informal Proof

 (define (paradox)
 (if (halts? paradox)
 (loop-forever)
 #t))

If paradox halts, the if test is true and
 it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test if false,
 and it evaluates to #t. It halts!

#37

Proof by Contradiction

Goal: Show that A is false.
1. Show X is nonsensical.
2. Show that if you have A you can make X.
3. Therefore, A must not exist.

X = paradox
A = halts? algorithm

#38

How convincing is our
Halting Problem proof?

 (define (paradox)
 (if (halts? ‘paradox)
 (loop-forever)
 #t))

If contradict-halts halts, the if test is true and it evaluates to
 (loop-forever) - it doesn’t halt!
If contradict-halts doesn’t halt, the if test if false, and it
 evaluates to #t. It halts!

This “proof” assumes Scheme exists and is consistent!
Scheme is too complex to believe this...we need a
simpler model of computation (in two weeks).

#39

Homework
• Read Chapter 12
• Read Obituary
• PS6 Due Monday

