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One-Slide Summary
• A proof of X in a formal system is a sequence of 

steps starting with axioms. Each step must use a 
valid rule of inference and the final step must be X.

• All interesting logical systems are incomplete: there 
are true statements that cannot be proven within 
the system. 

• An algorithm is a (mechanizable) procedure that 
always terminates.

• A problem is decidable if there exists an algorithm 
to solve it. A problem is undecidable if it is not 
possible for an algorithm to exists that solves it.

• The halting problem is undecidable. 
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Outline
• Gödel's Proof
• Unprovability
• Algorithms
• Computability
• The Halting Problem
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Epimenides Paradox

Epimenides (a Cretan): 
“All Cretans are liars.”

Equivalently:
“This statement is false.”

Russell’s types can help with the 
set paradox, but not with these.
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Gödel’s Solution

All consistent axiomatic formulations of 
number theory include undecidable 
propositions.

(GEB, p. 17)

undecidable – cannot be proven either 
true or false inside the system.
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Kurt Gödel
• Born 1906 in Brno (now 

Czech Republic, then 
Austria-Hungary)

• 1931: publishes Über 
formal unentscheidbare 
Sätze der Principia 
Mathematica und 
verwandter Systeme (On 
Formally Undecidable Propositions of 
Principia Mathematica and Related 
Systems)
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• 1939: flees Vienna

• Institute for 
Advanced Study, 
Princeton

• Died in 1978 – 
convinced 
everything was 
poisoned and 
refused to eat
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Gödel’s Theorem

In the Principia Mathematica 
system, there are statements that 
cannot be proven either true or 
false.
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Gödel’s Theorem

In any interesting rigid system, 
there are statements that cannot 
be proven either true or false.
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Gödel’s Theorem

All logical systems of any 
complexity are incomplete: 
there are statements that are 
true that cannot be proven 
within the system.
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Proof – General Idea

•Theorem: In the Principia 
Mathematica system, there 
are statements that cannot be 
proven either true or false.

•Proof: Find such a statement!
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Gödel’s Statement

G: This statement does not
have any proof in the
system of Principia
Mathematica.

G is unprovable, but true!
Why?
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Gödel’s Statement

G: This statement does not have 
any proof in the system.

Possibilities:
1. G is true ⇒ G has no proof 

System is incomplete
2. G is false ⇒ G has a proof 

System is inconsistent
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Gödel’s Proof Idea
G: This statement does not have any 
proof in the system of PM.

If G is provable, PM would be inconsistent.
If G is unprovable, PM would be incomplete.

Thus, PM cannot be complete and consistent!
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Finishing The Proof

• Turn G into a statement in the 
Principia Mathematica system

• Is PM powerful enough to express 
“This statement does not have 
any proof in the PM system.”?
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How to express “does not have 
any proof in the system of PM”

• What does “have a proof of S in PM” mean?
– There is a sequence of steps that follow the 

inference rules that starts with the initial 
axioms and ends with S

• What does it mean to “not have any proof 
of S in PM”?
– There is no sequence of steps that follow the 

inference rules that starts with the initial 
axioms and ends with S
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Can PM express unprovability?
• There is no sequence of steps that 

follows the inference rules that starts 
with the initial axioms and ends with S

• Sequence of steps: 
T0, T1, T2, ..., TN

T0 must be the axioms
TN must include S
Every step must follow from the previous 

using an inference rule

#18

Can we express 
“This statement”?

• Yes!
– Optional Reading: the TNT Chapter in GEB

• We can write turn every statement 
into a number, so we can turn “This 
statement does not have any proof 
in the system” into a number
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Gödel’s Proof
G: This statement does not have any 
proof in the system of PM.

If G is provable, PM would be inconsistent.
If G is unprovable, PM would be incomplete.
PM can express G.
Thus, PM cannot be complete and 
consistent!

#20

Generalization

All logical systems of any 
complexity are incomplete: 
there are statements that are 
true that cannot be proven 
within the system.
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Practical Implications

• Mathematicians will never be completely 
replaced by computers
– There are mathematical truths that cannot 

be determined mechanically
– We can build a computer that will prove only 

true theorems about number theory, but if it 
cannot prove something we do not know that 
that is not a true theorem.
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What does it mean for an axiomatic 
system to be complete and consistent?

Derives all true 
statements, and no false 
statements starting from a 

finite number of axioms 
and following mechanical 

inference rules.
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What does it mean for an axiomatic 
system to be complete and consistent?

It means the axiomatic system is weak.

Indeed, it is so weak, it cannot express:   
    “This statement has no proof.”
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Incomplete 
Axiomatic System

Derives 
some, but not all true 

statements, and no false 
statements starting from a 

finite number of axioms 
and following mechanical 

inference rules.

incomplete

Inconsistent 
Axiomatic System

Derives 
all true 

statements, and some false 
statements starting from a 

finite number of axioms 
and following mechanical 

inference rules.

some false
statements 

Pick one:
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Inconsistent Axiomatic System

Derives 
all true 

statements, and some false 
statements starting from a 

finite number of axioms 
and following mechanical 

inference rules.
some false 

statements Once you can prove one false statement,
everything can be proven!  false ⇒ anything
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Algorithms
• What’s an algorithm?

A procedure that always terminates.
• What’s a procedure?

A precise (mechanizable) description of 
a process.
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Computability
• Is there an algorithm that solves a problem?
• Computable (decidable) problems:

– There is an algorithm that solves the problem.
– Make a photomosaic, sorting, drug discovery, 

winning chess (it doesn’t mean we know the 
algorithm, but there is one)

• Uncomputable (undecidable) problems:
– There is no algorithm that solves the problem.
– There might be a procedure, but it doesn’t 

always terminate.
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Are there any uncomputable 
problems?
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The Halting Problem

Input: a specification of a 
procedure P

Output: If evaluating an 
application of P halts, output 
true.  Otherwise, output false.
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Alan Turing (1912-1954)
• Codebreaker at Bletchley Park

– Broke Enigma Cipher
– Perhaps more important than Lorenz

• Published On Computable Numbers … (1936)

– Introduced the Halting Problem 
– Formal model of computation 

 (now known as “Turing Machine”)
• After the war: convicted of homosexuality 

(then a crime in Britain), committed 
suicide eating cyanide apple 5 years after 

Gödel’s proof!
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Halting Problem

Define a procedure halts? that takes a 
procedure specification and evaluates to 
#t if evaluating an application of the 
procedure would terminate, and to #f if 
evaluating an application of the would 
not terminate.

    (define (halts? proc) … )
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Examples

> (halts? ‘(lambda () (+ 3 3)))
#t
> (halts? ‘(lambda ()
                 (define (f) (f)) 
                  (f)))
#f
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Halting Examples
> (halts? `(lambda () 
                   (define (fact n)
                        (if (= n 1) 1 (* n (fact (- n 1)))))
                   (fact 7)))
#t
> (halts? `(lambda () (fact 0)))
#f
> (halts? `(lambda () 
                   (define (fibo n)
                        (if (or (= n 1) (- n 2))) 1
                            (+ (fibo (- n 1)) (fibo (- n 2))))))

         (fibo 100))
#t
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Halting Examples
> (halts? `(lambda () 
                   (define (sum-of-two-primes? n)
                       ;;; try all possibilities... ) 
                   (define (test-goldbach n)
                        (if (not (sum-of-two-primes? n))
                            #f ; Goldbach Conjecture wrong
                            (test-goldbach (+ n 2))))
                    (test-goldbach 2)) 
?

Goldbach Conjecture (see GEB, p. 394):
Every even integer can be written as the sum of two primes. 

#35

Can we define halts? ?

• We could try for a really long time, get 
something to work for simple examples, 
but could we solve the problem – make it 
work for all possible inputs?

#36

Informal Proof

  (define (paradox)
    (if (halts? paradox)
        (loop-forever)
        #t))

If paradox halts, the if test is true and
  it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test if false,
  and it evaluates to #t.  It halts!
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Proof by Contradiction

Goal: Show that A is false. 
1. Show X is nonsensical.
2. Show that if you have A you can make X.
3. Therefore, A must not exist.

X = paradox
A = halts? algorithm
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How convincing is our 
Halting Problem proof?

  (define (paradox)
    (if (halts? ‘paradox)
        (loop-forever)
        #t))

If contradict-halts halts, the if test is true and it evaluates to 
      (loop-forever) - it doesn’t halt!
If contradict-halts doesn’t halt, the if test if false, and it 
      evaluates to #t.  It halts!

This “proof” assumes Scheme exists and is consistent!
Scheme is too complex to believe this...we need a 
simpler model of computation (in two weeks).
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Homework
• Read Chapter 12
• Read Obituary
• PS6 Due Monday


