Godel and ComputabilityAll cats have four legs. Therefore, I am a cat.Therefore, I am a cat.<	 One-Slide Summary A proof of X in a formal system is a sequence of steps starting with axioms. Each step must use a valid rule of inference and the final step must be X. All interesting logical systems are incomplete: there are true statements that cannot be proven within the system. An algorithm is a (mechanizable) procedure that always terminates. A problem is decidable if there exists an algorithm to solve it. A problem is undecidable if it is not possible for an algorithm to exists that solves it. The halting problem is undecidable.
<section-header><section-header><list-item><list-item><list-item></list-item></list-item></list-item></section-header></section-header>	Epimenides (a Cretan): "All Cretans are liars." Equivalently: "This statement is false."
<text><text><text><text><text><text></text></text></text></text></text></text>	<section-header><list-item><list-item><list-item></list-item></list-item></list-item></section-header>

#6

- 1939: flees Vienna
- Institute for Advanced Study, Princeton
- Died in 1978 convinced everything was poisoned and refused to eat

Gödel's Theorem

In the Principia Mathematica system, there are statements that cannot be proven either true or false.

Gödel's Theorem

In any interesting rigid system, there are statements that cannot be proven either true or false.

Gödel's Theorem

All logical systems of any complexity are **incomplete**: there are statements that are *true* that cannot be proven within the system.

#10

Proof - General Idea

- Theorem: In the Principia Mathematica system, there are statements that cannot be proven either true or false.
- Proof: Find such a statement!

Gödel's Statement

G: This statement does not have any proof in the system of Principia Mathematica.

G is unprovable, but true! Why?

 Gödel's Statement G: This statement does not have any proof in the system. Possibilities: 1. G is true ⇒ G has no proof System is <i>incomplete</i> 2. G is false ⇒ G has a proof System is <i>inconsistent</i> 	Gödel's Proof Idea G: This statement does not have any proof in the system of <i>PM</i> . If <i>G</i> is provable, PM would be inconsistent. If <i>G</i> is unprovable, PM would be incomplete. Thus, PM cannot be complete and consistent!
 Finishing The Proof Turn G into a statement in the <i>Principia Mathematica</i> system Is <i>PM</i> powerful enough to express "This statement does not have any proof in the <i>PM</i> system."? 	 How to express "does not have any proof in the system of PM" What does "have a proof of S in PM" mean? There is a sequence of steps that follow the inference rules that starts with the initial axioms and ends with S What does it mean to "not have any proof of S in PM"? There is no sequence of steps that follow the inference rules that starts with the initial axioms and ends with S
 Can PM express unprovability? There is no sequence of steps that follows the inference rules that starts with the initial axioms and ends with S Sequence of steps:	 Can we express "This statement"? Yes! Optional Reading: the TNT Chapter in GEB We can write turn every statement into a number, so we can turn "This statement does not have any proof in the system" into a number

Halting Problem	Examples
Define a procedure halts? that takes a procedure specification and evaluates to #t if evaluating an application of the procedure would terminate, and to #f if evaluating an application of the would not terminate. (define (halts? proc))	<pre>> (halts? '(lambda () (+ 3 3))) #t > (halts? '(lambda ()</pre>
<pre>Halting Examples > (halts? `(lambda ()</pre>	<pre>Halting Examples > (halts? `(lambda ()</pre>
<section-header></section-header>	<pre>but contended on the second seco</pre>

