Godel and Computability

Al cdls have four legs.
[have four legs.
| Thehoe, [am @ cal

Halting Problems Hockey Team

One-Slide Summary

A proof of X in a formal system is a sequence of
steps starting with axioms. Each step must use a
valid rule of inference and the final step must be X.

All interesting logical systems are incomplete: there
are true statements that cannot be proven within
the system.

An algorithm is a (mechanizable) procedure that
always terminates.

A problem is decidable if there exists an algorithm
to solve it. A problem is undecidable if it is not
possible for an algorithm to exists that solves it.

The halting problem is undecidable.

#2

Outline

« Godel's Proof

» Unprovability

e Algorithms

o Computability

» The Halting Problem

Godel’s Solution

All consistent axiomatic formulations of
number theory include undecidable
propositions.

(GEB, p. 17)

undecidable - cannot be proven either
true or false inside the system.

#5

Epimenides Paradox

Epimenides (a Cretan):
“All Cretans are liars.”

Equivalently:
“This statement is false.”

Russell’s types can help with the
set paradox, but not with these.

#4

Kurt Godel

e Born 1906 in Brno (now
Czech Republic, then
Austria-Hungary)

« 1931: publishes Uber
formal unentscheidbare
Sdtze der Principia
Mathematica und

verwandter Systeme (on
Formally Undecidable Propositions of
Principia Mathematica and Related
Systems)

#6

e 1939: flees Vienna y_

¢ |nstitute for
Advanced Study,
Princeton

e Died in 1978 —
convinced
everything was
poisoned and
refused to eat

#7

Godel’s Theorem

In the Principia Mathematica
system, there are statements that
cannot be proven either true or
false.

Godel’s Theorem

In any interesting rigid system,
there are statements that cannot
be proven either true or false.

¢‘»

Comed] We're

| GLOSED |

Proof - General Idea

e Theorem: In the Principia
Mathematica system, there
are statements that cannot be
proven either true or false.

e Proof: Find such a statement!

#11

Godel’s Theorem

All logical systems of any
complexity are incomplete:
there are statements that are
true that cannot be proven
within the system.

#10

Godel’s Statement

G: This statement does not
have any proof in the
system of Principia
Mathematica.

G is unprovable, but true!
Why?

#12

Godel’s Statement

G: This statement does not have
any proof in the system.
Possibilities:

1. G is true OO G has no proof
System is incomplete

2. Gis false O G has a proof
System is inconsistent

#13

Godel’s Proof Idea

G: This statement does not have any
proof in the system of PM.

If G is provable, PM would be inconsistent.
If G is unprovable, PM would be incomplete.

Thus, PM cannot be complete and consistent!

#14

Finishing The Proof

e Turn G into a statement in the
Principia Mathematica system

« Is PM powerful enough to express
“This statement does not have
any proof in the PM system.”?

| | Don't ask me again

QK l Yes | Jills] | Cancel |_

#15

How to express “does not have
any proof in the system of PM”

« What does “have a proof of S in PM” mean?

- There is a sequence of steps that follow the
inference rules that starts with the initial
axioms and ends with §

« What does it mean to “not have any proof
of Sin PM”?

- There is no sequence of steps that follow the
inference rules that starts with the initial
axioms and ends with S

#16

Can PM express unprovability?

» There is no sequence of steps that
follows the inference rules that starts
with the initial axioms and ends with S

» Sequence of steps:
T,T, T, .. Ty
T, must be the axioms

T, must include S

Every step must follow from the previous
using an inference rule

#17

Can we express

“This statement”?

e Yes!
- Optional Reading: the TNT Chapter in GEB

» We can write turn every statement
into a number, so we can turn “This
statement does not have any proof
in the system” into a number

#18

Godel’s Proof

G: This statement does not have any
proof in the system of PM.

If G is provable, PM would be inconsistent.
If G is unprovable, PM would be incomplete.
PM can express G.

Thus, PM cannot be complete and
consistent!

#19

Generalization

All logical systems of any
complexity are incomplete:

there are statements that are
true that cannot be proven
within the system.

#20

Practical Implications

» Mathematicians will never be completely
replaced by computers

- There are mathematical truths that cannot
be determined mechanically

- We can build a computer that will prove only
true theorems about number theory, but if it
cannot prove something we do not know that
that is not a true theorem.

#21

What does it mean for an axiomatic
system to be complete and consistent?

Derives all true
statements, and no false
statements starting from a
finite number of axioms
and following mechanical
inference rules.

What does it mean for an axiomatic
system to be complete and consistent?

It means the axiomatic system is weak.

Indeed, it is so weak, it cannot express:
“This statement has no proof.”

#23

Pick one:

incomplete

#22
statements
Derives
all true
statements, and some false
statements starting from a
finite number of axioms
and following mechanical
inference rules.

Derives
some, but not all true
statements, and no false
statements starting from a
finite number of axioms
and following mechanical
' inference rules.

Inconsistent
Axiomatic System

Incomplete
Axiomatic System

#24

Inconsistent Axiomatic System

Derives
all true
statements, and some false

and following mechanical
inference rules.

Once you can prove one false statement,
everything can be proven! false O anything

statements starting from a
some false
statements

finite number of axioms
#25

Algorithms

« What’s an algorithm?
A procedure that always terminates.
« What’s a procedure?

A precise (mechanizable) description of
a process.

Computability
« Is there an algorithm that solves a problem?
» Computable (decidable) problems:

- There is an algorithm that solves the problem.
- Make a photomosaic, sorting, drug discovery,
winning chess (it doesn’t mean we know the
algorithm, but there is one)
» Uncomputable (undecidable) problems:
- There is no algorithm that solves the problem.

- There might be a procedure, but it doesn’t
always terminate.

#27

Are there any uncomputable
problems?

Word cannot edit the Unknown.

LA

#28

The Halting Problem

Input: a specification of a
procedure P

Output: If evaluating an
application of P halts, output
true. Otherwise, output false.

#29

Alan Turing (1912-1954)

» Codebreaker at Bletchley Park
- Broke Enigma Cipher

- Perhaps more important than Lorenz
o Published On Computable Numbers ... (1936)

- Introduced the Halting Problem
- Formal model of computation
(now known as “Turing Machine”)

» After the war: convicted of homosexuality
(then a crime in Britain), committed
suicide eating cyanide apple

5 years after
Goddel’s proof!

#30

Halting Problem

Define a procedure halts? that takes a
procedure specification and evaluates to
#t if evaluating an application of the
procedure would terminate, and to #f if
evaluating an application of the would
not terminate.

(define (halts? proc) ...)

#31

Examples

> (halts? ‘(lambda () (+ 3 3)))
#t
> (halts? ‘(lambda ()

(define (f) (f))

(f))) p—
#f

Halting Examples

> (halts? “(lambda ()
(define (fact n)
(if =n 1)1 (* n(fact (- n 1)))))

(fact 7)))
#t
> (halts? “(lambda () (fact 0)))
#f

> (halts? “(lambda ()
(define (fibo n)
(if(or(=n1)(-n2)) 1
(+ (fibo (- n 1)) (fibo (- n 2))))))
(fibo 100))
#t

#33

Halting Examples

> (halts? “(lambda ()
(define (sum-of-two-primes? n)
;;; try all possibilities...)
(define (test-goldbach n)
(if (not (sum-of-two-primes? n))
#f ; Goldbach Conjecture wrong
(test-goldbach (+ n 2))))

(test-goldbach 2))
?

Goldbach Conjecture (see GEB, p. 394):
Every even integer can be written as the sum of two primes.

#34

Can we define halts? ?

» We could try for a really long time, get
something to work for simple examples,
but could we solve the problem - make it
work for all possible inputs?

Informal Proof

(define (paradox)
(if (halts? paradox)
(loop-forever)

#t))

If paradox halts, the if test is true and
it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test if false,
and it evaluates to #t. It halts!

#36

Proof by Contradiction

Goal: Show that A is false.

1. Show X is nonsensical.

2. Show that if you have A you can make X.
3. Therefore, A must not exist.

X = paradox
A = halts? algorithm

#37

How convincing is our
Halting Problem proof?

(define (paradox)
(if (halts? ‘paradox)
(loop-forever)
#t))

If contradict-halts halts, the if test is true and it evaluates to
(loop-forever) - it doesn’t halt!

If contradict-halts doesn’t halt, the if test if false, and it
evaluates to #t. It halts!

This “proof’ assumes Scheme exists and is consistent!
Scheme is too complex to believe this...we need a
simpler model of computation (in two weeks).

#38

Homework

» Read Chapter 12
» Read Obituary
e PS6 Due Monday

#39

