
#1

ProgrammingProgramming
withwith
StateState

&&

GoldenGolden
AgesAges

#2

One-Slide Summary
• The substitution model for evaluating Scheme does

not allow us to reason about mutation. In the
environment model:

• A name is a place for storing a value. define, cons
and function application create places. set! changes
the value in a place.

• Places live in frames. An environment is a frame and
a pointer to a parent frame. The global environment
has no parent.

• To evaluate a name, walk up the frames until you
find a definition.

• A golden age is a period when knowledge or quality
increases rapidly.

#3

Outline
• Names and Places
• set! and friends
• Environment Model
• Golden Ages
• There will not be normally scheduled lab hours or

office hours over spring break.
• If you are interested in tutoring, email

cs1120-staff@cs.virginia.edu for more information!

#4

Reading Quiz

• Write your UVA ID on a piece of paper.
• In the Neil deGrass Tyson essay The Invisible

Future (assigned reading before today's class),
the author focuses primarily on one law. Name
it. (Note that multiple laws are mentioned, but
one is at the heart of the matter.)

#5

Evaluation Rule 2: Names

If the expression is a name, it
evaluates to the value associated with
that name.

> (define two 2)
> two
2

From Lecture 3:

This is called the substitution model. You can
reason about Scheme expressions by substituting

the definition in whenever it is used.
#6

Names and Places

• A name is not just a value, it is a
place for storing a value.

• define creates a new place,
associates a name with that place,
and stores a value in that place

x: 3
(define x 3)

#7

Bang!
set! (“set bang”) changes the value
associated with a place

> (define x 3)
> x
3
> (set! x 7)
> x
7 x: 37

#8

set! should make you nervous

> (define x 2)
> (nextx)
3
> (nextx)
4
> x
4

Before set! all procedures
were pure functions (except
for some with side-effects).
The value of (f) was the
same every time you
evaluated it. Now it might
be different!

#9

Defining nextx

(define (nextx)
 (set! x (+ x 1))
 x)

(define nextx
 (lambda ()
 (begin
 (set! x (+ x 1))
 x))))

syntactic sugar for

#10

Evaluation Rules

> (define x 3)
> (+ (nextx) x)
7
or 8
> (+ x (nextx))
9
or 10

#11

Evaluation Rules

> (define x 3)
> (+ (nextx) x)
7
or 8
> (+ x (nextx))
9
or 10

DrScheme evaluates
application subexpressions
left to right, but Scheme
evaluation rules allow any
order.

#12

set-car! and set-cdr!

(set-car! p v)
Replaces the car of the cons p with
v.

(set-cdr! p v)
Replaces the cdr of the cons p with
v. These should scare you even more then set! !

#13

> (define pair (cons 1 2))
> pair
(1 . 2) pair:

1 2

#14

> (define pair (cons 1 2))
> pair
(1 . 2)
> (set-car! pair 0)
> (car pair)
0
> (cdr pair)
2

pair:

1 20 2

#15

> (define pair (cons 1 2))
> pair
(1 . 2)
> (set-car! pair 0)
> (car pair)
0
> (cdr pair)
2
> (set-cdr! pair 1)
> pair
(0 . 1)

pair:

1 20 1

#16

Functional vs. Imperative
Functional Solution: A procedure that
takes a procedure of one argument and a
list, and returns a list of the results
produced by applying the procedure to
each element in the list.

(define (map proc lst)
 (if (null? lst) null
 (cons (proc (car lst))
 (map proc (cdr lst)))))

#17

Imperative
Solution

A procedure that takes a procedure and list as
arguments, and replaces each element in the list
with the value of the procedure applied to that
element.

(define (map! f lst)
 (if (null? lst) (void)
 (begin
 (set-car! lst (f (car lst)))
 (map! f (cdr lst)))))

(define (map proc lst)
 (if (null? lst) null
 (cons (proc (car lst))
 (map proc (cdr lst)))))

#18

Programming with Mutation
> (map! square (intsto 4))
> (define i4 (intsto 4))
> (map! square i4)
> i4
(1 4 9 16)

> (define i4 (intsto 4))
> (map square i4)
(1 4 9 16)
> i4
(1 2 3 4)

F
unctio

nal
Im

p
e

ra
tive

#19

Mutation Changes Everything!

• We can no longer talk about the “value of
an expression”
– The value of a give expression can change!
– We need to talk about “the value of an

expression in an execution environment”
• “execution environment” = “context so far”

• The order in which expressions are
evaluated now matters

#20

Why Substitution Fails

> (define (nextx) (set! x (+ x 1)) x)
> (define x 0)
> ((lambda (x) (+ x x)) (nextx))
2

Substitution model for evaluation would predict:
(+ (nextx) (nextx))
(+ (begin (set! x (+ x 1)) x) (begin (set! x (+ x 1)) x))
(+ (begin (set! 0 (+ 0 1)) 0) (begin (set! 0 (+ 0 1)) 0))
(+ 0 0)
0

#21

Liberal Arts Trivia: Astrophysics

• According to this 1915 theory (be specific), the
observed gravitational attraction between
masses results from the warping of space and
time by those masses. This theory helps to
explain observed phenomena, such as
anomalies in the orbit of Mercury, that are not
predicted by Newton's Laws, and can deal with
accelerated reference frames. It is part of the
framework of the standard Big Bang model of
Cosmology.

#22

Liberal Arts Trivia: Rhetoric

• This type of “values” debate traditionally
places a heavy emphasis on logic, ethical
values and philosophy. It is a one-on-one
debate practiced in National Forensic
League competitions. The format was
named for the series of seven debates in
1858 for the Illinois seat in the United
State Senate.

#23

Very Scary!

• The old
substitution
model does not
explain Scheme
programs that
contain
mutation.

• We need a new
environment
model.

#24

Names and Places

• A name is a place for storing a value.
• define creates a new place
• cons creates two new places, the car and

the cdr
• (set! name expr) changes the value in the

place name to the value of expr
• (set-car! pair expr) changes the value in the

car place of pair to the value of expr

#25

Lambda and Places

• (lambda (x) …) also creates a new place
named x

• The passed argument is put in that place

> (define x 3)
> ((lambda (x) x) 4)
4
> x
3

How are these
places different?

x : 3

x : 4

#26

Location, Location, Location

• Places live in frames
• An environment is a frame and

a pointer to a parent
environment

• All environments except the
global environment have exactly
one parent environment, global
environment has no parent

• Application creates a new
environment

#27

Environments

global
environment

+ : #<primitive:+>

null? : #<primitive:null?>

The global environment points to the outermost
frame. It starts with all Scheme primitives.

#28

Environments

global
environment

> (define x 3)
>

+ : #<primitive:+>

null? : #<primitive:null?>

The global environment points to the outermost
frame. It starts with all Scheme primitives.

x : 3

#29

Evaluation Rule 2: Names
A name expression evaluates to the value
associated with that name.
To find the value associated with a name, look for the
name in the frame associated with the evaluation
environment. If it contains a place with that name, the
value of the name expression is the value in that place.
If it doesn’t, the value of the name expression is the
value of the name expression evaluated in the parent
environment if the current environment has a parent.
Otherwise, the name expression evaluates to an error
(the name is not defined).

#30

Procedures

global
environment

> (define x 3)

> (define double (lambda (x) (+ x x)))
>

+ : #<primitive:+>
null? : #<primitive:null?>

double: ???

x : 3

#31

How to Draw a Procedure

• A procedure needs both code and an
environment
– We’ll see why soon

• We draw procedures like this:
Environment
pointer

environment:
parameters: x
body: (+ x x)

#32

How to Draw a Procedure
(for artists only)

Environment
pointer

x (+ x x)
Input parameters
(in mouth) Procedure Body

#33

Procedures

global
environment

> (define double
 (lambda (x) (+ x x)))

+ : #<primitive:+>
null? : #<primitive:null?>

double:

x : 3

environment:
parameters: x
body: (+ x x)

#34

Application

• Old rule: (Substitution model)

Apply Rule 2: Constructed Procedures.
To apply a constructed procedure,
evaluate the body of the procedure with
each formal parameter replaced by the
corresponding actual argument expression
value.

#35

New Application Rule 2:
1. Construct a new environment, whose

parent is the environment to which the
environment pointer of the applied
procedure points.

2. Create places in that frame for each
parameter containing the value of the
corresponding operand expression.

3. Evaluate the body in the new
environment. Result is the value of the
application.

#36

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

global
environment

> (double 4)
8

+ : #<primitive:+>

x : 3

x : 4

(+ x x)

double:

environment:
parameters: x
body: (+ x x)

(+ x x)

#37

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

global
environment

> (define x 999)

+ : #<primitive:+> x : 999

#38

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

global
environment

> (define x 999)
> (define (adder x)
 (lambda (y) (+ x y))))

+ : #<primitive:+> x : 999

adder:

environment:
parameters: x
body: (lambda (y)
 (+ x y))

#39

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

global
environment

> (define x 999)
> (define (adder x)
 (lambda (y) (+ x y))))
> (define addtwo (adder 2))

+ : #<primitive:+> x : 999

adder:

environment:
parameters: x
body: (lambda (y)
 (+ x y))

x : 2

#40

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

global
environment

> (define x 999)
> (define (adder x)
 (lambda (y) (+ x y))))
> (define addtwo (adder 2))

+ : #<primitive:+> x : 999

adder:

environment:
parameters: x
body: (lambda (y)
 (+ x y))

x : 2

environment:
parameters: y
body: (+ x y)

#41

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

global
environment

> (define x 999)
> (define (adder x)
 (lambda (y) (+ x y))))
> (define addtwo (adder 2))

+ : #<primitive:+> x : 999

adder:

environment:
parameters: x
body: (lambda (y)
 (+ x y))

 :addtwo

x : 2

environment:
parameters: y
body: (+ x y)

#42

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

global
environment

> (define x 999)
> (define (adder x)
 (lambda (y) (+ x y))))
> (define addtwo (adder 2))
> (addtwo 6)

+ : #<primitive:+> x : 999

adder:

environment:
parameters: x
body: (lambda (y)
 (+ x y))

 :addtwo

x : 2

environment:
parameters: y
body: (+ x y) y : 6

#43

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

global
environment

> (define x 999)
> (define (adder x)
 (lambda (y) (+ x y))))
> (define addtwo (adder 2))
> (addtwo 6)
8

+ : #<primitive:+> x : 999

adder:

environment:
parameters: x
body: (lambda (y)
 (+ x y))

 :addtwo

x : 2

environment:
parameters: y
body: (+ x y) y : 6

#44

Liberal Arts Trivia: Statistics

• In probability theory and statistics, this
indicates the strength and direction of a
linear relationship between two random
variables. A number of different
coefficients are in different situations,
the best known of which is the Pearson
product-moment coefficient. Notably,
this concept does not imply causation.

#45

Liberal Arts Trivia: Art History

• This was a popular international
art design movement from 1925
until the 1940s, affecting the
decorative arts such as
architecture, interior design and
industrial design, as well as the
visual arts such as fashion,
painting, the graphic arts and
film. At the time, this style was
seen as elegant, glamorous,
functional and modern.

#46

Liberal Arts Trivia: Music
• This baroque keyboard

instrument is the spiritual
predecessor of the
pianoforte. It produces a
sound by plucking a string
when each key is pressed,
but unlike the piano it
lacks responsiveness to
keyboard touch and thus
fails to produce notes at
different dynamic levels.

Jan Vermeer, 1670

47

http://www.pbs.org/wgbh/nova/sciencenow/3313/nn-video-toda-w-220.html

Science's Endless Golden Age

#48

Astrophysics
• “If you’re going to use

your computer to simulate
some phenomenon in the
universe, then it only
becomes interesting if you
change the scale of that
phenomenon by at least a
factor of 10. … For a 3D
simulation, an increase by
a factor of 10 in each of
the three dimensions
increases your volume by
a factor of 1000.”

• How much work is
astrophysics simulation (in
Θ notation)?

#49

Astrophysics
• “If you’re going to use your computer to simulate

some phenomenon in the universe, then it only
becomes interesting if you change the scale of
that phenomenon by at least a factor of 10. … For
a 3D simulation, an increase by a factor of 10 in
each of the three dimensions increases your
volume by a factor of 1000.”

• How much work is astrophysics simulation (in Θ
notation)?

Θ(n3)
When we double the size of the
simulation, the work octuples!
(Just like oceanography octopi
simulations)

#50

Orders of Growth

0

20

40

60

80

100

120

140

1 2 3 4 5

n 3

n 2

n

insert-sort

simulating
universe

find-best

#51

Orders of Growth

0

200000

400000

600000

800000

1000000

1200000

1400000

1 11 21 31 41 51 61 71 81 91 101

insert-sort

simulating
universe

find-best

#52

Astrophysics and Moore’s Law

• Simulating universe is Θ(n3)
• Moore’s law: computing power

doubles every 18 months
• Dr. Tyson: to understand

something new about the
universe, need to scale by 10x

• How long does it take to know
twice as much about the universe?

#53

;;; doubling every 18 months = ~1.587 * every 12 months
(define (computing-power nyears)
 (if (= nyears 0) 1
 (* 1.587 (computing-power (- nyears 1)))))

;;; Simulation is Θ(n3) work
(define (simulation-work scale)
 (* scale scale scale))

(define (log10 x) (/ (log x) (log 10))) ;;; log is base e
;;; knowledge of the universe is log10 the scale of universe
;;; we can simulate
(define (knowledge-of-universe scale) (log10 scale))

Knowledge of the Universe

#54

(define (computing-power nyears)
 (if (= nyears 0) 1 (* 1.587 (computing-power (- nyears 1)))))
 ;;; doubling every 18 months = ~1.587 * every 12 months
(define (simulation-work scale) (* scale scale scale))
 ;;; Simulation is O(n^3) work
(define (log10 x) (/ (log x) (log 10)))
 ;;; primitive log is natural (base e)
(define (knowledge-of-universe scale) (log10 scale))
 ;;; knowledge of the universe is log 10 the scale of universe we can simulate

(define (find-knowledge-of-universe nyears)
 (define (find-biggest-scale scale)
 ;;; today, can simulate size 10 universe = 1000 work
 (if (> (/ (simulation-work scale) 1000)
 (computing-power nyears))
 (- scale 1)
 (find-biggest-scale (+ scale 1))))
 (knowledge-of-universe (find-biggest-scale 1)))

Knowledge of the Universe

#55

> (find-knowledge-of-universe 0)
1.0
> (find-knowledge-of-universe 1)
1.041392685158225
> (find-knowledge-of-universe 2)
1.1139433523068367
> (find-knowledge-of-universe 5)
1.322219294733919
> (find-knowledge-of-universe 10)
1.6627578316815739
> (find-knowledge-of-universe 15)
2.0
> (find-knowledge-of-universe 30)
3.00560944536028
> (find-knowledge-of-universe 60)
5.0115366121349325
> (find-knowledge-of-universe 80)
6.348717927935257

Will there be any mystery
left in the Universe when
you die?

Only two things are
infinite, the universe
and human
stupidity, and I'm
not sure about the
former.

Albert Einstein

#56

The Endless Golden Age

• Golden Age: period in which
knowledge/quality of something doubles
quickly

• At any point in history, half of what is
known about astrophysics was discovered
in the previous 15 years!
– Moore’s law today, but other advances

previously: telescopes, photocopiers, clocks,
agriculture, etc.

#57

Endless/Short Golden Ages
• Endless golden age: at any point in history,

the amount known is twice what was known
15 years ago
– Always exponential growth: Θ(kn)
k is some constant, n is number of years

• Short golden age: knowledge doubles during
a short, “golden” period, but only improves
linearly most of the time
– Usually linear growth: Θ(n)
n is number of years

#58

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

Computing Power 1969-2008
(in Apollo Control Computer Units)

Moore’s “Law”: computing power
roughly doubles every 18 months!

#59

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

19
69

19
70

.5
19

72

19
73

.5
19

75

19
76

.5
19

78

19
79

.5
19

81

19
82

.5
19

84

19
85

.5
19

87

19
88

.5
19

90

Computing Power 1969-1990
(in Apollo Control Computer Units)

#60

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1
9
3
0

1
9
3
4

1
9
3
8

1
9
5
0

1
9
5
4

1
9
5
8

1
9
6
2

1
9
6
6

1
9
7
0

1
9
7
4

1
9
7
8

1
9
8
2

1
9
8
6

1
9
9
0

1
9
9
4

1
9
9
8

2
0
0
2

2
0
0
6A

ve
ra

ge
 G

oa
ls

 p
er

 G
am

e,
 F

IF
A

 W
or

ld
 C

up
s

Changed goalkeeper
passback rule

Goal-den age

#61

Endless Golden Age and
“Grade Inflation”

• Average student gets twice as smart
and well-prepared every 15 years
– You had grade school teachers (maybe

even parents) who went to college!

• If average GPA in 1980 is 2.00 what
should it be today (if grading
standards didn’t change)?

#62

Grade Inflation or Deflation?

 2.00 average GPA in 1980 (“gentle C”?)

* 2 better students 1980-1995

* 2 better students 1995-2010

* 1.49 population increase

* 0.74 increase in enrollment

Average GPA today should be: 8.82
(but our expectations should also increase)

Students 1976: 10,330
Students 2006: 13,900

Virginia 1976: ~5.1M
Virginia 2006: ~7.6M

#63

The Real Golden Rule?
Why do fields like astrophysics, medicine, biology
and computer science have “endless golden ages”,
but fields like ...
– rock n’ roll (1962-1973, or whatever was popular when

you were 16)
– music (1775-1825)
– philosophy (400BC-350BC?)
– art (1875-1925?)
– soccer (1950-1966)
– baseball (1925-1950?)
– movies (1920-1940?)

have short golden ages?
Think about it over the break!

#64

Homework
• Start PS 5 now!

– Due Wednesday after Break
– If you wait until after Break, you will probably

not have enough time.

• Read Course Book 9 and 10 over Break

