
Quickest Quickest
SortingSorting

andand
Double DeltasDouble Deltas

Guest Lecture
by

Kinga Dobolyi

#2

One-Slide Summary
• Insert-sort is Θ(n2) worst case (reverse list), but is

Θ(n) best case (sorted list).

• A recursive function that divides its input in half each
time is often in Θ(log n).

• If we could divide our input list in half rapidly, we
could do a quicker sort: Θ(nlog n).

• Sorted binary trees are an efficient data structure
for maintaining sorted sets.

• British codebreakers used cribs (guesses), brute
force, and analysis to break the Lorenz cipher.
Guessed wheel settings were likely to be correct if
they resulted in a message with the right linguistic
properties for German (e.g., repeated letters).

#3

Outline
• Insert-sort
• Going half-sies
• Sorted binary trees
• Quicker-sort
• WWII Codebreaking

Pick Up Graded
Problem Sets!

There is a “holding fee”.
Web page has a map.

#4

How much work is insert-sort?

running time of insert-
one is in Θ(n)

How many times does insert-
sort evaluate insert-one?

n times (once for each element)

insert-sort has running time in Θ(n2) where n is the
number of elements in the input list

(define (insert-sort lst cf)
 (if (null? lst) null
 (insert-one (car lst) (insert-sort (cdr lst) cf) cf)))

(define (insert-one el lst cf)
 (if (null? lst) (list el)
 (if (cf el (car lst)) (cons el lst)
 (cons (car lst) (insert-one el (cdr lst) cf)))))

#5

best-first-sort vs. insert-sort

• Both are Θ(n2) worst case (reverse list)

• Both are Θ(n2) when sorting a
randomly ordered list
– But insert-sort is about twice as fast

• insert-sort is Θ(n) best case (ordered
input list)

#6

Can we do better?

(quicker-insert < 88
 (list 1 2 3 5 6 23 63 77 89 90))

Suppose we had procedures
(first-half lst)
(second-half lst)

that quickly divided the list in two halves?

#7

quicker-insert using halves

(define (quicker-insert el lst cf)
 (if (null? lst) (list el) ;; just like insert-one
 (if (null? (cdr lst))
 (if (cf el (car lst)) (cons el lst) (list (car lst) el))
 (let ((front (first-half lst))
 (back (second-half lst)))
 (if (cf el (car back))
 (append (quicker-insert el front cf) back)
 (append front
 (quicker-insert el back cf)))))))

#8

Evaluating quicker-sort
> (quicker-insert < 3 (list 1 2 4 5 7))
|(quicker-insert #<procedure:traced-<> 3 (1 2 4 5 7))
| (< 3 1)
| #f
| (< 3 5)
| #t
| (quicker-insert #<procedure:traced-<> 3 (1 2 4))
| |(< 3 1)
| |#f
| |(< 3 4)
| |#t
| |(quicker-insert #<procedure:traced-<> 3 (1 2))
| | (< 3 1)
| | #f
| | (< 3 2)
| | #f
| | (quicker-insert #<procedure:traced-<> 3 (2))
| | |(< 3 2)
| | |#f
| | (2 3)
| |(1 2 3)
| (1 2 3 4)
|(1 2 3 4 5 7)
(1 2 3 4 5 7)

Every time we call quicker-
insert, the length of the list is
approximately halved!

(define (quicker-insert el lst cf)
 (if (null? lst) (list el)
 (if (null? (cdr lst))
 (if (cf el (car lst))
 (cons el lst)
 (list (car lst) el))
 (let ((front (first-half lst))
 (back (second-half lst)))
 (if (cf el (car back))
 (append (quicker-insert el front cf) back)
 (append front
 (quicker-insert el back cf)))))))

#9

How much work is quicker-sort?

Each time we call
quicker-insert, the size of
lst halves. So doubling
the size of the list only
increases the number of
calls by 1.

List Size # quicker-insert applications
1 1
2 2
4 3
8 4
16 5

(define (quicker-insert el lst cf)
 (if (null? lst) (list el)
 (if (null? (cdr lst))
 (if (cf el (car lst))
 (cons el lst)
 (list (car lst) el))
 (let ((front (first-half lst))
 (back (second-half lst)))
 (if (cf el (car back))
 (append (quicker-insert el front cf) back)
 (append front
 (quicker-insert el back cf)))))))

#10

Liberal Arts Trivia: ?

• The argan tree, found
primarily in Morocco, has a
knobby, twisted trunk that
allows these animals to climb
it easily. The animals eat the
fruit, which has an
indigestible nut inside, which
is collected by farmers and
used to make argan oil: handy
in cooking and cosmetics, but
pricey at $45 per 500 ml.

#11

Liberal Arts Trivia:
Scandinavian Studies

• This capital of and largest city in Denmark is
situated on the islands of Zealand and Amager.
It is the birthplace of Neils Bohr, Søren
Kierkegaard, and Victor Borge. The city's origin
as a harbor and a place of commerce is
reflected in its name. Its original designation,
from which the contemporary Danish name is
derived, was Køpmannæhafn, "merchants'
harbor". The English name for the city is
derived from its (similar) Low German name.

#12

Remembering Logarithms

logb n = x means bx = n

What is log2 1024?

What is log10 1024?

Is log10 n in Θ(log2 n)?

#13

Changing Bases

logbn = (1/logkb) logk n
If k and b are

constants,
this is constant

Θ(log2n) ≡ Θ(log10n) ≡ Θ(log n)
No need to include a constant base within asymptotic operators.

#14

Number of Applications

Assuming the list is well-balanced,
the number of applications of
quicker-insert is in Θ(log n) where n
is the number of elements in the
input list.

#15

quicker-sort ?

quicker-sort using halves would have running time in
Θ(n log n) if we have first-half, second-half, and
append procedures that run in constant time

(define (quicker-insert el lst cf)
 (if (null? lst) (list el)
 (if (null? (cdr lst))
 (if (cf el (car lst))
 (cons el lst)
 (list (car lst) el))
 (let ((front (first-half lst))
 (back (second-half lst)))
 (if (cf el (car back))
 (append (quicker-insert el front cf) back)
 (append front
 (quicker-insert el back cf)))))))

(define (quicker-sort lst cf)
 (if (null? lst) null
 (quicker-insert
 (car lst)
 (quicker-sort (cdr lst) cf)
 cf)))

#16

Orders of Growth

0

2000

4000

6000

8000

10000

12000

14000

1 9 17 25 33 41 49 57 65 73 81 89 97 105

n 2

n log n

#17

Is there a fast first-half procedure?

• No! (at least not on lists)
• To produce the first half of a list length n,

we need to cdr down the first n/2
elements

• So, first-half on lists has running time in
Θ(n)

#18

Making it faster
We need to either:

1. Reduce the number of applications of
insert-one in insert-sort

2. Reduce the number of applications of
quicker-insert in quicker-insert

3. Reduce the time for each application of
quicker-insert

Impossible – need to consider each element

Unlikely… each application already halves the list

Need to make first-half, second-half and append faster than Θ(n)

#19 #20

Sorted Binary Trees

el

A tree containing
all elements x such
that (cf x el) is true

A tree containing
all elements x such
that (cf x el) is false

left right

#21

Tree Example

5

2 8

741

cf is <

null nullnull null null null

null

#22

Tree Example

5

2 8

741

3

cf is <

null nullnull null null null

null

Where would we put 3?

#23

Representing Trees

(define (make-tree left el right)
 (cons el (cons left right))

(define (tree-element tree)
 (car tree))

(define (tree-left tree)
 (car (cdr tree)))

(define (tree-right tree)
 (cdr (cdr tree)))

left and right are trees
(null is a tree)

tree must be a non-null tree

tree must be a non-null tree

tree must be a non-null tree

#24

Representing Trees

5

2 8

1
(make-tree (make-tree (make-tree null 1 null)
 2
 null)
 5
 (make-tree null 8 null))

#25

insert-one-tree
(define (insert-one-tree cf el tree)
 (if (null? tree)
 (make-tree null el null)
 (if (cf el (get-element tree))
 (make-tree
 (insert-one-tree cf el (get-left tree))
 (get-element tree)
 (get-right tree))
 (make-tree
 (get-left tree)
 (get-element tree)
 (insert-one-tree cf el (get-right tree))))))

If the tree is null, make a new tree
with el as its element and no left or
right trees.

Otherwise, decide
if el should be in
the left or right subtree.
insert it into that
subtree, but leave the
other subtree unchanged.

#26

How much work is insert-one-tree?
(define (insert-one-tree cf el tree)
 (if (null? tree)
 (make-tree null el null)
 (if (cf el (get-element tree))
 (make-tree
 (insert-one-tree cf el (get-left tree))
 (get-element tree) (get-right tree))
 (make-tree (get-left tree)
 (get-element tree)
 (insert-one-tree cf el (get-right tree))))))

Each time we call
insert-one-tree, the size
of the tree approximately
halves (if it is well
balanced).

Each application is
constant time.

The running time of insert-one-tree is in
Θ (log n) where n is the number of elements in
the input tree, which must be well-balanced.

#27

quicker-insert-one

(define (quicker-insert-one cf lst)
 (if (null? lst) null
 (insert-one-tree
 cf (car lst)
 (quicker-insert-one cf (cdr lst)))))

No change (other than using insert-one-tree)…but evaluates to a tree not a list!

(((() 1 ()) 2 ()) 5 (() 8 ()))

#28

Lorenz Lorenz
Cipher Cipher
MachineMachine

#29

Liberal Arts Trivia: Classics

• This ancient Greek epic poem, traditionally
attributed to Homer, is widely believed to be
the oldest extant work of Western literature.
It describes the events of the final year of the
Trojan War. The plot follows Achilles and his
anger at Agamemnon, king of Mycenae. It is
written in dactylic hexameter and comprises
15,693 lines of verse. It begins:
– μ νιν ειδε θε Πηληϊάδεω χιλ οςῆ ἄ ὰ Ἀ ῆ
– ο λομένην, μυρί' χαιο ς λγε' θηκενὐ ἣ Ἀ ῖ ἄ ἔ

#30

Liberal Arts Trivia: Chemistry
• This violet variety of

quartz, often used in
jewelry, takes its name
from the ancient Greek (a
("not") and methustos
("intoxicated")), a reference
to the belief that it
protected its own from
drunkenness; ancient
Greeks and Romans made
drinking vessels of it to
prevent intoxication.

#31

Liberal Arts Trivia: Literature

• Name the author of the Age of Innocence
(1920). The novel describes the upper class in
New York city in the 1870s and questions the
mores and assumptions of society. The title is
an ironic comment on the polished outward
manners of New York society, when compared
to its inward machinations. The authors was
the first woman to win the Pulitzer Prize for
Literature.

#32

Lorenz Wheels
12 wheels
501 pins
total (set
to control
wheels)

Work to break in
Θ(pw) so real
Lorenz is 4112/53 ~
1 quintillion (1018)
times harder!

#33

Code Breaking Intuition

• Suppose we are using a simple letter
substitution cipher (i.e., replace every A with
Q, etc.)

• You intercept these two messages:
– pf1120: Pbzchgre Fpvrapr sebz Nqn naq Rhpyvq gb

Dhnaghz Pbzchgvat naq gur Jbeyq Jvqr Jro.
– pf1120: Pbzchgre Fpvrapr sebz Nqn gb gur Jbeyq

Jvqr Jro.

• What does the first one say? What hints did you
have?

#34

Breaking Fish
• Gov't Communications HQ learned about

first Fish link (Tunny) in May 1941
– British codebreakers used “Fish” to refer to

German teleprinter traffic
– Intercepted unencrypted Baudot-encoded test

messages

• August 30, 1941: Big Break!
– Operator retransmits failed message with same

starting configuration
– Gets lazy and uses some abbreviations, makes

some mistakes
• SPRUCHNUMMER/SPRUCHNR (Serial Number)

#35

“Two Time” Pad
• Allies have intercepted:

C1 = M1 ⊕ K1

C2 = M2 ⊕ K1

Same key used for both (same starting
configuration)

• Breaking message:
C1 ⊕ C2 = (M1 ⊕ K1) ⊕ (M2 ⊕ K1)

 = (M1 ⊕ M2) ⊕ (K1 ⊕ K1)

 = M1 ⊕ M2

⊕
means

XOR

#36

“Cribs”
• Know: C1, C2 (intercepted ciphertext)

 C1 ⊕ C2 = M1 ⊕ M2

• Don’t know M1 or M2
– But, can make some guesses (cribs)

• SPRUCHNUMMER
• Sometimes allies moved ships, sent out bombers to help the

cryptographers get good cribs

• Given guess for M1, calculate M2
M2 = C1 ⊕ C2 ⊕ M1

• Once guesses that work for M1 and M2
K1 = M1 ⊕ C1 = M2 ⊕ C2

#37

Reverse Engineering Lorenz
• From the 2 intercepted messages, Col. John

Tiltman worked on guessing cribs to find M1
and M2: 4000 letter messages, found 4000
letter key K1

• Bill Tutte (recent Chemistry graduate) given
task of determining machine structure
– Already knew it was 2 sets of 5 wheels and 2

wheels of unknown function
– Six months later new machine structure likely to

generate K1

#38

Intercepting Traffic
• Set up listening post to intercept traffic from

12 Lorenz (Fish) links
– Different links between conquered capitals
– Slightly different coding procedures, and

different configurations

• 600 people worked
 on intercepting traffic

#39

Breaking Traffic
• Knew machine structure, but a different

initial configuration was used for each
message

• Need to determine wheel setting:
– Initial position of each of the 12 wheels
– 1271 possible starting positions
– Needed to try them fast enough to decrypt

message while it was still strategically valuable

This is what you did for PS4 (except with fewer wheels)

#40

Recognizing a Good Guess
• Intercepted Message (divided into 5

channels for each Baudot code bit)
Zc = z0z1z2z3z4z5z6z7…

zc,i = ith bit of ciphertext is (ith bit of message) ⊕
with (ith bit of key)

key comes from all of the wheels (e.g., S-wheel, ...)

• Look for statistical properties
– How many of the zc,i’s are 0?

– How many of (zc,i+1 ⊕ zc,i) are 0?

½ (not useful)

½

#41

Double Delta
 ∆ Zc,i = Zc,i ⊕ Zc,i+1

Combine two channels:

∆ Z1,i ⊕ ∆ Z2,i = ∆ M1,i ⊕ ∆ M2,i

 ⊕ ∆ X1,i ⊕ ∆ X2,i

 ⊕ ∆ S1,i ⊕ ∆ S2,i

= ½ (key)

> ½ Yippee!

> ½ Yippee!

Why is ∆ M1,i ⊕ ∆ M2,i > ½
Message is in German, more likely following

letter is a repetition than random

Why is ∆ S1,i ⊕ ∆ S2,i > ½
S-wheels only turn when M-wheel is 1

X is random part of key
(i.e., K-wheel)

S is not-truly-random
part from S wheels

#42

Actual Advantage
• Probability of repeating letters

 Prob[∆ M1,i ⊕ ∆ M2,i = 0] ~ 0.614
 3.3% of German digraphs are repeating

• Probability of repeating S-keys

 Prob[∆ S1,i ⊕ ∆ S2,i = 0] ~ 0.73

Prob[∆ Z1,i ⊕ ∆ Z2,i ⊕ ∆ X1,i ⊕ ∆ X2,i = 0]

 = 0.614 * 0.73 + (1-0.614) * (1-0.73)

 ∆ M and S are 0 ∆ M and S are 1

 = 0.55 if the wheel settings guess is correct (0.5 otherwise)

#43

Using the Advantage
• If the guess of X is correct, should see higher

than ½ of the double deltas are 0
• Try guessing different configurations to find

highest number of 0 double deltas
• Problem:

of double delta operations to try one config
= length of Z * length of X
= for 10,000 letter message = 12 M for each setting *

7 ⊕ per double delta

= 89 M ⊕ operations Need a fast
way to compute XOR!

#44

Homework

• Problem Set 4 Due Today
• Study for Exam 1

– Out on Monday

