

Sneezewort

One-Slide Summary

- The basic recursive computation of Fibonacci can take quite a while. There are faster ways.
- We can formally measure and evaluate the cost of a computer program. We abstract away details such as processor speed and instead measure how the solving time increases as the input increases.
- g is in $\mathbf{O (f)}$ iff there exist positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.
- If g is in $O(f)$ we say that f is an upper bound for g.

After the Incident by Ben Morrison and Liz Peterson

Robot Cav Man by Jamie Jeon \& Walter Borges

Breaking News

- "Follow-up discussion on the CS education email list has focused on the clothes, the accessories, and whether members of the list or their students might have stuffed the ballot box electronically. (Might have happened!) One person did ask a good question: he asked that anyone with young kids who like Barbie to report back on how they react to CpE Barbie.

Tom Horton

THE VOTE IS IN: BARBIE ${ }^{\text {® }}$ DOLL'S $126^{\text {TH }}$ CAREER COMPUTER ENGINEER

 End and represintave da araal compule engireet Lookhn

 Winter 20 OIIC. 1 .

Outline

- Sneezewort and Fibonacci
- Cost of computing Fibonacci
- Cost of sorting
- Intro to Big-Oh Notation

Sneezewort

- Achillea ptarmica is real.
- It is "moste efficacious in the inflaming of the braine, and [is] therefore much used in Confusing and Befuddlement Draughts, where the wizard is desirous of producing hot-headedness and recklessness."
- Order of the Phoenix, p. 18
- Sneezewort's pattern of development displays the Fibonacci sequence.

Sneezewort Growth

Second Time Unit
Offshoot
Could we model Sneezewort with PS3 code?
$>$ (fibo 2)
1
$>$ (fibo 3)
2
$>$ (fibo 4)
3 $>$ (fibo 10)
55
$>$ (fibo 60)
Still working...

Liberal Arts Trivia: History

- This $20^{\text {th }}$-century American inventor is credited with the phonograph, the carbon telephone transmitter, the practical electric light, and the phrase "Genius is one percent inspiration, ninety-nine percent perspiration." He fought against Nikola Tesla's alternating current in the so-called War of the Currents.

Liberal Arts Trivia: Physics

 fast-fibo- Count Alessandro Antonio Anastasio Volta was a $19^{\text {th }}$-century Italian physicist. Volta studied what we now call capacitance, developing separate means to study both electrical potential V and charge Q, and discovering that for a given object they are proportional. His experiments in "animal electricity", in which two different metals were connected in series with frog's legs, eventually led to his most famous discovery. What was it?

```
(define (fast-fibo n)
    (define (fib-helper a b left)
        (if (<= left 0)
            b
            (fib-helper b (+ a b) (- left 1))))
    (fib-helper 1 1 (- n 2)))
```


(define (fast-fibo n)

``` (define (fib-helper a b left) (if (<= left 0)
b
(fib-helper b (+ a b) (- left 1)))) (fib-helper 11 (-n 2)))
```


Fast-Fibo Results
 > (fast-fibo 10)
 55
 > (time (fast-fibo 61))
 cpu time: 0 real time: 0 gc time: 0 2504730781961

The original fibo would take at least 2.5 Trillion applications. A 2.5 GHz computer does 2.5 Billion simple operations per second, so 2.5 Trillion applications operations take ~ 1000 seconds.
Each application of fibo involves hundreds of simple operations...
;,;; The Earth's mass is $6.0 \times 10^{\wedge} 24 \mathrm{~kg}$
$>$ (define mass-of-earth (* 6 (expt 1024)))
;,; A typical rabbit's mass is 2.5 kilograms
> (define mass-of-rabbit 2.5)
> (/ (* mass-of-rabbit (fast-fibo 60)) mass-of-earth)
$6.450036483 \mathrm{e}-013$
> (/ (* mass-of-rabbit (fast-fibo 120)) mass-of-earth)
2.2326496895795693

According to Bonacci's model, after less than 10 years, rabbits would out-weigh the Earth!
,,; The Earth's mass is $6.0 \times 10^{\wedge} 24 \mathrm{~kg}$
$>$ (define mass-of-earth (* 6 (expt 1024)))
;,; A typical rabbit's mass is 2.5 kilograms
> (define mass-of-rabbit 2.5)
> (/ (* mass-of-rabbit (fast-fibo 60)) mass-of-earth)
$6.450036483 \mathrm{e}-013$
> (/ (* mass-of-rabbit (fast-fibo 120)) mass-of-earth)
2.2326496895795693

According to Bonacci's model, after less than 10 years, rabbits would out-weigh the Earth!

> Beware the Bunnies!! Beware the Sneezewort!!

Evaluation Cost

Actual running times vary according to:

- How fast a processor you have
- How much memory you have
Where data is located in memory
- How hot it is
- What else is running
- etc...

Moore's "Law" - computing power doubles every 18 months

Measuring Cost

- How does the cost scale with the size of the input?
- If the input size increases by one, how much longer will it take?
- If the input size doubles, how much longer will it take?

Cost of Fibonacci Procedures

(define (fibo n)
(if (or (= n 1) (= n 2))
1 ;,; base case
(+ (fibo (-n 1))
(fibo (-n 2)))))
(define (fast-fibo n)
(define (fib-helper a b left) (if (= left 0)
b
(fib-helper b (+ a b) (- left 1))))
(fib-helper $11(-\mathrm{n} 2))$)

Input	fibo	fast-fibo
m	q	$m k$
$m+1$		$(m+1) k$
$m+2$	at least q^{2}	$(m+2) k$

Parthenon

Cost of Fibonacci Procedures

(define (fibo n)
(if (or (= n 1) (= n 2))
1 ;,; base case
(+(fibo (-n 1))
(fibo (-n 2)))))
(define (fast-fibo n)
(define (fib-helper a b left) (if (= left 0) b
(fib-helper b (+ a b) (- left 1))))
(fib-helper 11 (-n 2)))

Input	fibo	fast-fibo
m	q	$m k$
$m+1$	$q^{*} \Phi$	$(m+1) k$
$m+2$	at least q^{2}	$(m+2) k$

$\Phi=(/(+1($ sqrt 5$)) 2)=$ "The Golden Ratio" $\sim 1.618033988749895 \ldots$
$\sim(/($ fast-fibo 61) $($ fast-fibo 60) $)=1.618033988749895$

More Golden Ratios

http://www.fenkefeng.org/essaysm18004.html by Oleksiy Stakhov

PS2 Question

(define (find-best-hand hands) (car (sort hands higher-hand?)))
(define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))
(define (pick-better cf num1 num2)
(if (cf num1 num2) num1 num2))
(define (find-best-hand hands)
(find-best hands higher-hand?))
Which is better and by how much?

Simple Sort

;; cf = comparison function
(define (sort lst cf) ;; simple sort (if (null? Ist) Ist (let ((best (find-best Ist cf))) (cons best
(sort (delete Ist best) cf)))))
;; delete Ist $x=$ (filter ... (not (eq? x ...

Simple Sorting

- Can we use find-best to implement sort?
- Yes!
- Use (find-best lst) to find the best
- Remove it from the list
- Adding it to the answer
- Repeat until the list is empty
crazy blue tree by Victor Malaret, Folami Williams

Sorting Hands

(define (sort lst cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best
(sort (delete Ist best) cf)))))
(define (sort-hands Ist)
(sort Ist higher-hand?))

Sorting

(define (sort Ist cf) (if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (sort (delete Ist best) cf)))))
(define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))
(define (pick-better cf num1 num2)
(if (cf num1 num2) num1 num2))
How much work is sort?

Sorting Cost

- What grows?
$-n=$ the number of elements in lst
- How much work are the pieces?
find-best:
delete:

Sorting Cost

-What grows?

$-n=$ the number of elements in lst

- How much work are the pieces?
find-best: work scales as n (increases by one) delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete?

Sorting Cost

-What grows?
$-n=$ the number of elements in Ist

- How much work are the pieces?
find-best: work scales as n (increases by one) delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete? n
- Total cost: scales as

Sorting Cost

-What grows?

$-n=$ the number of elements in lst

- How much work are the pieces?
find-best: work scales as n (increases by one) delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete? n
- Total cost: scales as n^{2}

Liberal Arts Trivia: Medicine

- Nicolae Paulescu was a $20^{\text {th }}$ century physiologist and professor of medicine. He is considered the true discoverer of hormone that causes most of the body's cells to take up glucose from the blood. His first experiments involved an aqueous pancreatic extract which, when injected into a diabetic dog, proved to have a normalizing effect on blood sugar levels. Name the hormone.

Sorting Cost

(define (sort Ist cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (sort (delete lst best) cf)))))
(define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))

If we double the length of the list, the amount of work approximately quadruples: there are twice as many applications of find-best, and each one takes twice as long

Liberal Arts Trivia: Sailing

- Name the collection of apparatus through which the force of the wind is transferred to the ship in order to propel it forward - this includes the masts, yardarms, sails, spars and cordage.

Timing Sort

$>$ (time (sort < (revintsto 100))) cpu time: 20 real time: 20 gc time: 0 > (time (sort < (revintsto 200))) cpu time: 80 real time: 80 gc time: 0 $>$ (time (sort < (revintsto 400))) cpu time: 311 real time: 311 gc time: 0 $>$ (time (sort < (revintsto 800))) cpu time: 1362 real time: 1362 gc time: 0 > (time (sort < (revintsto 1600))) cpu time: 6650 real time: 6650 gc time: 0

Cherry Blossom by Ji Hyun Lee, Wei Wang

Timing Sort

Growth Notations

- $g \in O(f) \quad$ ("Big-Oh")
g grows no faster than $f \quad(f$ is upper bound)
- $g \in \Theta(f) \quad$ ("Theta")
g grows as fast as f
(f is tight bound)
- $g \in \Omega(f) \quad$ ("Omega")
g grows no slower than $f \quad(f$ is lower bound)
Which one would we most like to know?

Meaning of O ("big Oh")

g is in $O(f)$ iff:

There are positive constants

Examples

g is in $O(f)$ iff there are positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.

Is n in $O\left(n^{2}\right)$?
Is $10 n$ in $O(n) ?$
Is n^{2} in $O(n)$?

T-Mobile @Home Package

Get unlimited nationwide calling from your home phone with T-Mobile @Home service. $\$ 9.99$ per month $+\mathbf{\$ 9 9 9 , 9 9 9 . 9 9}$ phone price

More details ,
c and n_{0} such that
$g(n) \leq c f(n)$
for all $n \geq n_{0}$.

Examples

g is in $O(f)$ iff there are positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.

Is n in $O\left(n^{2}\right)$? Yes, $c=1$ and $n_{0}=1$ works. Is $10 n$ in $O(n) ? \quad$ Yes, $c=1 / 10$ and $n_{0}=1$ works.
Is n^{2} in $O(n) ? \quad$ No, no matter what c we pick, $c n^{2}>n$ for big enough $n(n>c)$

Revenge of O Examples

g is in $O(f)$ iff there are positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.

Is $n+5$ in $O\left(n^{2}\right) ?$
Is $n^{2}-100$ in $O(n) ?$
Is n^{2} in $O\left(n^{3}\right)$?

Revenge of O Examples

g is in $O(f)$ iff there are positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.

Is $n+5$ in $O\left(n^{2}\right) ? \quad$ Yes, $c=1$ and $n_{0}=3$ works.
Is $n^{2}-100$ in $O(n)$? No, no matter what c we pick, $c n^{2}-100>n$ for big enough n.

Yes, $c=1$ and $n_{0}=1$ works.
Is n^{2} in $O\left(n^{3}\right) ? \quad$ Yes, $c=2$ and $n_{0}=77$ works.
Yes, $c=55$ and $n_{0}=102$ works.

- Read Course Book Chapter 7 before Wednesday
- Has a formal notation for this kind of analysis!
- Problem Set 3 due!

The Mask
by Zachary Pruckowski, Kristen Henderson

