List Recursion Examples \& Recursive Procedures

One-Slide Summary

- Recursive functions that operate on lists have a similar structure. list-cruncher is a higher-order function that can be used to implement many others.
- Decisions in a function can be abstracted out by adding a function argument. For example, find-closest-number is just find-closest plus a function defining what a close-number is.
- The Fibonacci numbers are a recursively-defined sequence.
- Almost all music uses a stack structure: starts on the tonic, repeats similar patterns in a structured way, ends on the tonic.

Anonymous Course Feedback

- Too Fast v. Too Slow?
- No CS experience? Jargon in "base lecture"?
- "I really do appreciate that he tries to read people's facial expressions and ensure that we understand before we move on." vs. "The hand-raising is too frequent."
- "I wish the TAs would get around to more people in lab." vs. "I asked a TA a question about why one of my procedures wasn't working, and thoroughly explained why, and after he was done asked if his explanation made sense to make sure that I understood everything."
- "Wes does try to involve everyone, but it seems like students are punished for wanting to participate more than once." vs. "I

Similarities and Differences

```
(define (map fp) (define (sumlist p)
    (if (null? p)
        null
        (cons (f (car p))
                            (map f(cdr p))))) (sumlist (cdr p)))))
        (define (list-cruncher Ist)
        (if (null? Ist)
            base result
            (combiner (car Ist)
                            (recursive-call ... (cdr Ist))))
```


Similarities and Differences

- list-cruncher
- find-closest-number
- Reminder: procedure definition strategy!
- find-closest
- Fibonacci numbers
- Recursive Transition Networks
- vs. Backus-Naur Form Grammars
- Musical Harmony
think there are too many questions directed towards the class."

How could this work?

- I want to crunch all lists. How would I get started?

Crunchy Center

(define (list-cruncher base proc combiner Ist)
(if (null? Ist)
base
(combiner (proc (car Ist))
(list-cruncher base proc combiner
(cdr Ist)))))

- How would you define length using list-cruncher? (define (length Ist)
(if (null? Ist) 0
(+1 (length (cdr lst)))))

One Ring To Rule Them All?

(define (list-cruncher base proc combiner Ist) (if (null? Ist)
base
(combiner (proc (car Ist))
(list-cruncher base proc combiner (cdr Ist)))))
(define (sumlist p)
(list-cruncher 0 (lambda (\mathbf{x}) \mathbf{x}) + p))
(define (map f p)
(list-cruncher null f cons p))
\qquad
list-cruncher crunches length
(define (list-cruncher base proc combiner Ist) (if (null? Ist)
base
(combiner (proc (car Ist))
(list-cruncher base proc combiner
(define (length p)
(if (null? p) 0
$(+1($ length $(c d r p)))))$
(define (length p)
(list-cruncher 0 (lambda (x) 1) + p))

Crunchy Center 2

(define (list-cruncher base proc combiner Ist)
(if (null? Ist)
base
(combiner (proc (car Ist))
(list-cruncher base proc combiner
(cdr Ist)))))

- How would you define filter using list-cruncher?
(define (filter predicate Ist)
(if (null? Ist) null
(append
(if (predicate (car Ist)) (list (car Ist)) null)
(filter predicate (cdr Ist)))))
list-cruncher crunches filters
(define (list-cruncher base proc combiner Ist) (if (null? Ist)

base

(combiner (proc (car Ist))
(list-cruncher base proc combiner (cdr Ist)))))
(define (filter predicate Ist)
(if (null? Ist) null
(append
(if (predicate (car Ist)) (list (car Ist)) null)
(filter predicate (cdr Ist)))))
(define (filter pred Ist)
(list-cruncher null
(lambda (carlst) (if (pred carlst) (list carlst) null)) append Ist))

Liberal Arts Trivia: Drama

- In this 1948 play by Samuel Beckett has been called "the most significant English-language play of the $20^{\text {th }}$ century". The minimal setting calls to mind "the idea of the 'lieu vague', a location which should not be particularised", and the play features two characters who never meet the title character.

Liberal Arts Trivia: History

- At the height of its power, in the $16^{\text {th }}$ and $17^{\text {th }}$ century, this political organization spanned three continents. It controlled much of Southeastern Europe, the Middle East and North Africa, and contained 29 provinces and multiple vassal states. Noted cultural achievements include architecture (vast inner spaces confined by seemingly weightless yet massive domes, harmony between inner and outer spaces, articulated light and shadow, etc.), classical music, and cuisine.

find-closest-number

- The function find-closest-number takes two arguments. The first is a single number called the goal. The second is a non-empty list of numbers. It returns the number in the input list that is closest to the goal number.
> (find-closest-number 150 (list 101110120157340 588)) 157
> (find-closest-number 12 (list 411 23))
11
> (find-closest-number 12 (list 95))
95

Recall The Strategy!

Be optimistic!

Assume you can define:
(find-closest-number goal numbers)
that finds the closest number to goal
from the list of numbers.
What if there is one more number?
Can you write a function that finds the closest number to match from newnumber and numbers?

find-closest-number hint

One Approach for the Recursive Case:

You have two possible answers: the current car of the list and the result of the recursive call. Compare them both against the goal number, and return the
one that is closer.

Optimistic Function

(define (find-closest goal numbers)
;; base case missing for now (if (< (abs (- goal (car numbers))) (abs (- goal
(find-closest-number
goal (cdr numbers)))))
(car numbers)
(find-closest-number goal (cdr numbers))))

Defining Recursive Procedures

2. Think of the simplest version of the problem (almost always null), something you can already solve. (base case)

find-closest-number defined

(define (find-closest-number goal numbers)
(if (= 1 (length numbers)) ;; base case
(car numbers)
(if (< (abs (- goal (first numbers)))
(abs (- goal
(find-closest-number goal (cdr numbers)))))
(car numbers)
(find-closest-number (cdr numbers))))

```
(define (find-closest-number goal numbers)
    (if (= 1 (length numbers))
        (car numbers)
        (if (< (abs (- goal (car numbers)))
            (abs (- goal
                (find-closest-number goal (cdr numbers)))))
        (car numbers)
        (find-closest-number goal (cdr numbers)))))
```

> (find-closest-number 150
(list 101110120157340 588))
157
> (find-closest-number 0 (list 1))
1
> (find-closest-number 0 (list))
first: expects argument of type <non-empty list>; given ()

Generalizing find-closest-number

- How would we implement
find-closest-number-without-going-over?
- What about find-closest-word?
- ...

The "closeness" metric should be a procedure parameter!

Generalizing find-closest-number

- How would we implement
find-closest-number-without-going-over?
- What about find-closest-word?
-...

find-closest

(define (find-closest goal lst closeness)
(if (= 1 (length Ist)) (car Ist) (if (< (closeness goal (car lst)) (closeness goal
(find-closest goal (cdr lst) closeness))) (car lst)
(find-closest goal (cdr lst) closeness)))

[^0]| Using find-closest | osest |
| :---: | :---: |
| (define (find-closest-number goal numbers) (find-closest goal numbers (lambda (a b) (abs (- a b)))))
 (define (find-closest-below goal numbers) (find-closest goal numbers (lambda (a b) (if (>= a b) (- a b) 99999)))) | ```(define (find-closest goal Ist closeness) (if (= 1 (length Ist)) (car Ist) (if (< (closeness goal (car Ist)) (closeness goal (find-closest goal (cdr Ist) closeness))) (car Ist) (find-closest goal (cdr Ist) closeness)))None``` |
| find-closest ```(define (find-closest goal lst closeness) (if (= 1 (length lst)) (car lst) (pick-closest closeness goal (car lst) (find-closest goal (cdr lst) closeness)))) (define (pick-closest closeness goal num1 num2) (if (< (closeness goal num1) (closeness goal num2)) num1``` | Seen Anything Like This? |
| \#27 | $\begin{array}{l}\text { find-best-match from PA1 (Photomosaics) is just find-closest ! } \\ \text { pick-better-match is just pick-closest ! You could write all of PA1. }\end{array}$ |
| Liberal Arts Trivia: Philosophy | Liberal Arts Trivia: Film Studies |
| This branch of philosophy, which Aristotle called "First Philosophy", investigates principles of reality transcending those of any particular science. It is concerned with explaining the ultimate nature of being and the world (e.g., determinism and free will, mind and matter, space and time). Its modern name comes from the fact that Aristotle's chapters about it were placed "beyond" his chapters on matter and force. | - Born in 1965 to Muslim parents, this Indian actor has starred in flims such as Kuch Kuch Hota Hai, Kal Ho Naa Ho, Veer-Zaara, and Devdas. In 2008, Newsweek named him one of the 50 most powerful people in the world. He has replaced Amitabh "Big B" Bachchan as the host of Kaun Banega Crorepti, and has won India's Padma Shri, a life-sized wax statue at Madame Tussaud's, and the French government's Ordre des Arts et des Lettres. |

Liberal Arts Trivia: Painting

- Name this 1930 oil-on-beaverboard painting by Grant Wood. It is one of the most familiar images of $20^{\text {th }}$ century American art and has achieved an iconic status.

GEB Chapter V

Consider the optional reading!
You could spend the rest of your life just
studying things in this chapter (25 pages)!

- Music Harmony
- Stacks and Recursion
- Theology
- Language Structure
- Number Sequences
- Chaos
- Fractals (PS3 out today. Start early. Why?)
- Quantum Electrodynamics (later lecture)
- DNA (later lecture)
- Sameness-in-differentness
- Game-playing algorithms (later lecture)

Filius Bonacci, 1202 in Pisa:
Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits.

Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on.

How many pairs will there be in one year?

Fibonacci's Problem

Rabbits

From http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html \#34

Fibonacci Numbers

GEB p. 136:
These numbers are best defined recursively by the pair of formulas
$\operatorname{FIBO}(n)=\operatorname{FIBO}(\mathrm{n}-1)+\operatorname{FIBO}(\mathrm{n}-2)$

$$
\text { for } n>2
$$

FIBO (1) = FIBO (2) = 1

$$
\text { for } n<=2
$$

Can we turn this into a Scheme procedure?

Defining FIBO

1. Be optimistic - assume you can solve it, if you could, how would you solve a bigger problem.
2. Think of the simplest version of the problem, something you can already solve.
3. Combine them to solve the problem.

These numbers are best defined recursively by the pair of formulas
$\operatorname{FIBO}(n)=$
$\operatorname{FIBO}(\mathrm{n}-1)$

+ FIBO ($\mathrm{n}-2$)
for $n>2$
$\operatorname{FIBO}(1)=\operatorname{FIBO}(2)=1$

Defining fibo

;;; (fibo n) evaluates to the $n^{\text {th }}$ Fibonacci
;;; number
(define (fibo n)
(if (or (= n 1) (= n 2))
1 ;;; base case
(+ (fibo (-n 1))
(fibo (-n2)))))
$\operatorname{FIBO}(1)=\operatorname{FIBO}(2)=1$
$\operatorname{FIBO}(n)=$
$\operatorname{FIBO}(\mathrm{n}-1)$
$+\operatorname{FIBO}(\mathrm{n}-2)$
for $\mathrm{n}>2$
$>$ (fibo 2)
1
$>$ (fibo 3)
2
$>$ (fibo 4)
3
$>$ (fibo 10)
55
$>$ (fibo 60)
Still working after 4 hours...
To be continued...

Fibo Results

Why can't our 4Mx Apollo Guidance Computer figure out how many rabbits there will be in 5 years?

Recursive Transition Networks

ORNATE NOUN

Can we describe this using Backus Naur Form?

Recursive Transition Networks

ORNATE NOUN

ORNATE NOUN ::= NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN

Recursive Transition Networks

ORNATE NOUN

Recursive Transition Networks

ORNATE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE AdJECTIVE AdJECTIVE ADJECTIVE Noun

Recursive Transition Networks

ORNATE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVES NOUN
ADJECTIVES ::= ADJECTIVE ADJECTIVES
ADJECTIVES ::=

Recursive Transition Networks

ORNATE NOUN

ORNATE NOUN ::= OPTARTICLE ADJECTIVES NOUN
ADJECTIVES ::= ADJECTIVE ADJECTIVES
ADJECTIVES ::=
OPTARTICLE $::=A R T I C L E$ OPTARTICLE $::=\varepsilon$

Which notation is better?

Hey Jude

John Lennon and Paul McCartney, 1968
(Little Harmonic Labyrinth)

Tonic: Hey Jude, don't make it
V : bad. take a sad song and make it
Tonic: better Re-
IV: member to let her into your
Tonic: heart, then you can
V : start to make it bet-
Tonic: -ter.
Breakdown of Lyrics to "Hey Jude"

HeyJude ::= Verse VBBN VBBN Verse Verse Better Coda VBBN ::= Verse Bridge Bridge Nanana (ends on C) Coda ::= F Eb Bb F Coda

Music

- Almost All Music Is Like This

- Pushes and pops the listener's stack, but doesn't go too far away from it
- Repeats similar patterns in structured way
- Keeps coming back to Tonic, and Ends on the Tonic
- Any famous Beatles song that doesn't end on Tonic?

Charge

- Challenge: Try to find a "pop" song with a 3-level deep harmonic stack
- PS3: due in Wed Feb 17.

Be optimistic!
You know everything you need to finish it now, and it is longer than PS2, so get started now!

Sign Up
 It's free and anyone can join

You are ineligible to register for Facebook

Beatles: "A Day in the Life" (starts on G, ends on E)

Homework

- Start Problem Set 3 Now
- No, really.
- Due Wed Feb 17
- Read Course Book Chapter 6
- By Monday Feb 15

[^0]: How can we implement find-closest-number using find-closest?

