
#1

List Recursion Examples &
Recursive Procedures

#2

One-Slide Summary
• Recursive functions that operate on lists have a

similar structure. list-cruncher is a higher-order
function that can be used to implement many
others.

• Decisions in a function can be abstracted out by
adding a function argument. For example, find-
closest-number is just find-closest plus a function
defining what a close-number is.

• The Fibonacci numbers are a recursively-defined
sequence.

• Almost all music uses a stack structure: starts on the
tonic, repeats similar patterns in a structured way,
ends on the tonic.

#3

Outline
• Your Comments
• list-cruncher
• find-closest-number

– Reminder: procedure definition strategy!

• find-closest
• Fibonacci numbers
• Recursive Transition Networks

– vs. Backus-Naur Form Grammars

• Musical Harmony
#4

Anonymous Course Feedback

• Too Fast v. Too Slow?

– No CS experience? Jargon in “base lecture”?

• “I really do appreciate that he tries to read people's facial
expressions and ensure that we understand before we move
on.” vs. “The hand-raising is too frequent.”

• “I wish the TAs would get around to more people in lab.” vs. “I
asked a TA a question about why one of my procedures wasn't
working, and thoroughly explained why, and after he was done
asked if his explanation made sense to make sure that I
understood everything.”

• “Wes does try to involve everyone, but it seems like students
are punished for wanting to participate more than once.” vs. “I
think there are too many questions directed towards the class.”

#5

Similarities and Differences

(define (map f p)
 (if (null? p)
 null
 (cons (f (car p))
 (map f (cdr p)))))

(define (sumlist p)
 (if (null? p)
 0
 (+ (car p)
 (sumlist (cdr p)))))

(define (list-cruncher lst)
 (if (null? lst)
 base result
 (combiner (car lst)
 (recursive-call ... (cdr lst))))

#6

Similarities and Differences

(define (map f p)
 (if (null? p)
 null
 (cons (f (car p))
 (map f (cdr p)))))

(define (sumlist p)
 (if (null? p)
 0
 (+ (car p)
 (sumlist (cdr p)))))

(define (list-cruncher ? ... ? lst)
 (if (null? lst)
 base result
 (combiner (car lst)
 (recursive-call ... (cdr lst))))

#7

How could this work?

• I want to crunch all lists. How would I get
started?

#8

One Ring To Rule Them All?
(define (list-cruncher base proc combiner lst)
 (if (null? lst)
 base
 (combiner (proc (car lst))
 (list-cruncher base proc combiner
 (cdr lst)))))

(define (sumlist p)
 (list-cruncher 0 (lambda (x) x) + p))

(define (map f p)
 (list-cruncher null f cons p))

#9

Crunchy Center
(define (list-cruncher base proc combiner lst)
 (if (null? lst)
 base
 (combiner (proc (car lst))
 (list-cruncher base proc combiner
 (cdr lst)))))

• How would you define length using list-cruncher?
(define (length lst)
 (if (null? lst) 0
 (+ 1 (length (cdr lst)))))

#10

list-cruncher crunches length
(define (list-cruncher base proc combiner lst)
 (if (null? lst)
 base
 (combiner (proc (car lst))
 (list-cruncher base proc combiner
 (cdr lst)))))
(define (length p)
 (if (null? p) 0
 (+ 1 (length (cdr p)))))

(define (length p)
 (list-cruncher 0 (lambda (x) 1) + p))

#11

Crunchy Center 2
(define (list-cruncher base proc combiner lst)
 (if (null? lst)
 base
 (combiner (proc (car lst))
 (list-cruncher base proc combiner
 (cdr lst)))))

• How would you define filter using list-cruncher?
(define (filter predicate lst)
 (if (null? lst) null
 (append
 (if (predicate (car lst)) (list (car lst)) null)
 (filter predicate (cdr lst)))))

#12

list-cruncher crunches filters
(define (list-cruncher base proc combiner lst)
 (if (null? lst)
 base
 (combiner (proc (car lst))
 (list-cruncher base proc combiner
 (cdr lst)))))
 (define (filter predicate lst)

 (if (null? lst) null
 (append
 (if (predicate (car lst)) (list (car lst)) null)
 (filter predicate (cdr lst)))))

(define (filter pred lst)
 (list-cruncher null
 (lambda (carlst) (if (pred carlst) (list carlst) null))
 append lst))

#13

Liberal Arts Trivia: Drama

• In this 1948 play by Samuel Beckett has been
called “the most significant English-language
play of the 20th century”. The minimal setting
calls to mind “the idea of the ‘lieu vague’, a
location which should not be particularised”,
and the play features two characters who
never meet the title character.

#14

Liberal Arts Trivia: History
• At the height of its power, in the 16th and 17th

century, this political organization spanned
three continents. It controlled much of
Southeastern Europe, the Middle East and
North Africa, and contained 29 provinces and
multiple vassal states. Noted cultural
achievements include architecture (vast inner
spaces confined by seemingly weightless yet
massive domes, harmony between inner and
outer spaces, articulated light and shadow,
etc.), classical music, and cuisine.

#15

find-closest-number

• The function find-closest-number takes two
arguments. The first is a single number called
the goal. The second is a non-empty list of
numbers. It returns the number in the input
list that is closest to the goal number.

> (find-closest-number 150 (list 101 110 120 157 340 588))
157
> (find-closest-number 12 (list 4 11 23))
11
> (find-closest-number 12 (list 95))
95

We'll do this
one together!

#16

Recall The Strategy!
Be optimistic!
Assume you can define:
 (find-closest-number goal numbers)

that finds the closest number to goal
from the list of numbers.

What if there is one more number?
Can you write a function that finds the
closest number to match from new-
number and numbers?

#17

find-closest-number hint
One Approach for the Recursive Case:

You have two possible answers: the
current car of the list and the result of
the recursive call. Compare them both
against the goal number, and return the
one that is closer.

#18

Optimistic Function

(define (find-closest goal numbers)
 ;; base case missing for now
 (if (< (abs (- goal (car numbers)))

 (abs (- goal
 (find-closest-number
 goal (cdr numbers)))))
 (car numbers)
 (find-closest-number goal (cdr numbers))))

#19

Defining Recursive Procedures

2. Think of the simplest version of the
problem (almost always null), something
you can already solve. (base case)

Is null the base case for
find-closest-number?

#20

(define (find-closest-number goal numbers)
 (if (= 1 (length numbers)) ;; base case

 (car numbers)
 (if (< (abs (- goal (first numbers)))
 (abs (- goal
 (find-closest-number
 goal (cdr numbers)))))
 (car numbers)
 (find-closest-number (cdr numbers))))

find-closest-number defined

#21

> (find-closest-number 150
 (list 101 110 120 157 340 588))
157
> (find-closest-number 0 (list 1))
1
> (find-closest-number 0 (list))
first: expects argument of type <non-empty list>; given ()

(define (find-closest-number goal numbers)
 (if (= 1 (length numbers))

 (car numbers)
 (if (< (abs (- goal (car numbers)))
 (abs (- goal
 (find-closest-number goal (cdr numbers)))))
 (car numbers)
 (find-closest-number goal (cdr numbers)))))

#22

Generalizing find-closest-number

• How would we implement
find-closest-number-without-going-over?

• What about find-closest-word?
• ...

#23

Generalizing find-closest-number

• How would we implement
find-closest-number-without-going-over?

• What about find-closest-word?
• ...

The “closeness” metric should
be a procedure parameter!

#24

find-closest

(define (find-closest goal lst closeness)
 (if (= 1 (length lst))

 (car lst)
 (if (< (closeness goal (car lst))
 (closeness goal
 (find-closest goal (cdr lst) closeness)))
 (car lst)
 (find-closest goal (cdr lst) closeness)))

How can we implement find-closest-number
using find-closest?

#25

Using find-closest

(define (find-closest-number goal numbers)
 (find-closest goal numbers
 (lambda (a b) (abs (- a b)))))

(define (find-closest-below goal numbers)
 (find-closest goal numbers
 (lambda (a b)
 (if (>= a b) (- a b) 99999))))

#26

find-closest

(define (find-closest goal lst closeness)
 (if (= 1 (length lst))

 (car lst)
 (if (< (closeness goal (car lst))
 (closeness goal
 (find-closest goal (cdr lst) closeness)))
 (car lst)
 (find-closest goal (cdr lst) closeness)))

How can we avoid
evaluating find-closest twice?

#27

find-closest

(define (find-closest goal lst closeness)
 (if (= 1 (length lst))

 (car lst)
 (pick-closest closeness goal (car lst)

 (find-closest goal (cdr lst) closeness))))

(define (pick-closest closeness goal num1 num2)
 (if (< (closeness goal num1)
 (closeness goal num2))
 num1
 num2))

#28

Seen Anything Like This?
(define (find-best-match sample tiles color-comparator)
 (if (= (length tiles) 1)
 (car tiles)
 (pick-better-match
 sample
 (car tiles)
 (find-best-match
 sample
 (cdr tiles)
 color-comparator)
 color-comparator))))

(define (pick-better-match
 sample tile1 tile2
 color-comparator)
 (if (color-comparator sample
 (tile-color tile1) (tile-color tile2))
 tile1
 tile2))

find-best-match from PA1 (Photomosaics) is just find-closest !
pick-better-match is just pick-closest ! You could write all of PA1.

#29

Liberal Arts Trivia: Philosophy

• This branch of philosophy, which Aristotle
called “First Philosophy”, investigates
principles of reality transcending those of any
particular science. It is concerned with
explaining the ultimate nature of being and
the world (e.g., determinism and free will,
mind and matter, space and time). Its modern
name comes from the fact that Aristotle's
chapters about it were placed “beyond” his
chapters on matter and force.

#30

Liberal Arts Trivia: Film Studies
• Born in 1965 to Muslim parents, this Indian

actor has starred in flims such as Kuch Kuch
Hota Hai, Kal Ho Naa Ho, Veer-Zaara, and
Devdas. In 2008, Newsweek named him one of
the 50 most powerful people in the world. He
has replaced Amitabh “Big B” Bachchan as the
host of Kaun Banega Crorepti, and has won
India's Padma Shri, a life-sized wax statue at
Madame Tussaud's, and the French
government's Ordre des Arts et des Lettres.

#31

Liberal Arts Trivia: Painting

• Name this 1930 oil-
on-beaverboard
painting by Grant
Wood. It is one of the
most familiar images
of 20th century
American art and has
achieved an iconic
status.

#32

GEB Chapter V
Consider the optional reading!

You could spend the rest of your life just
studying things in this chapter (25 pages)!
– Music Harmony
– Stacks and Recursion
– Theology
– Language Structure
– Number Sequences
– Chaos
– Fractals (PS3 out today. Start early. Why?)
– Quantum Electrodynamics (later lecture)
– DNA (later lecture)
– Sameness-in-differentness
– Game-playing algorithms (later lecture)

#33

Fibonacci’s Problem
Filius Bonacci, 1202 in Pisa:

Suppose a newly-born pair of rabbits, one male, one
female, are put in a field. Rabbits mate at the age of one
month so that at the end of its second month a female can
produce another pair of rabbits.

Suppose that our rabbits never die and that the female
always produces one new pair (one male, one female)
every month from the second month on.

How many pairs will there be in one year?

#34

Rabbits

From http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

#35

Fibonacci Numbers
GEB p. 136:

These numbers are best defined
recursively by the pair of formulas

FIBO (n) = FIBO (n – 1) + FIBO (n – 2)
for n > 2

FIBO (1) = FIBO (2) = 1
 for n <= 2

Can we turn this into a Scheme procedure?

#36

Defining FIBO

1. Be optimistic - assume
you can solve it, if you
could, how would you
solve a bigger
problem.

2. Think of the simplest
version of the
problem, something
you can already solve.

3. Combine them to solve
the problem.

These numbers are best
defined recursively by the
pair of formulas
FIBO (n) =
 FIBO (n – 1)
 + FIBO (n – 2)

for n > 2
FIBO (1) = FIBO (2) = 1

#37

Defining fibo

;;; (fibo n) evaluates to the nth Fibonacci
;;; number
(define (fibo n)

(if (or (= n 1) (= n 2))
 1 ;;; base case
 (+ (fibo (- n 1))
 (fibo (- n 2)))))

FIBO (1) = FIBO (2) = 1

FIBO (n) =
 FIBO (n – 1)
 + FIBO (n – 2)

for n > 2

#38

Fibo Results
> (fibo 2)
1
> (fibo 3)
2
> (fibo 4)
3
> (fibo 10)
55
> (fibo 60)
Still working after 4 hours…

Why can’t our 4Mx
Apollo Guidance
Computer figure
out how many
rabbits there will be
in 5 years?

To be continued...

#39

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

Can we describe this using Backus Naur Form?

#40

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= NOUN

#41

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN

#42

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE NOUN

#43

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVES NOUN

ADJECTIVES ::= ADJECTIVE ADJECTIVES

ADJECTIVES ::=

#44

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= OPTARTICLE ADJECTIVES NOUN

ADJECTIVES ::= ADJECTIVE ADJECTIVES

ADJECTIVES ::= ε

OPTARTICLE ::= ARTICLE

OPTARTICLE ::= ε
Which notation is better?

#45

Music Harmony

Kleines Harmonisches Labyrinth
(Little Harmonic Labyrinth)

#46

Hey Jude

John Lennon and Paul McCartney, 1968

#47

Hey Jude

Tonic: F = 1

V: C = 3/2 * F

Tonic: F

IV: Bb = 4/3 * F

P
us

h
Fi

fth

Pus
h

Fo
ur

th

Pop

Tonic: F

P
op

V: C = 3/2 * F

Tonic: F

P
us

h
Fi

fth P
op

Tonic: Hey Jude, don’t make it

V: bad. take a sad song and make it

Tonic: better Re-

IV: member to let her into your
Tonic: heart, then you can

V: start to make it bet-
Tonic: -ter.

#48

Tonic: F = 1

V: C = 3/2 * F

Tonic: F

IV: Bb = 4/3 * F

P
us

h
Fi

fth

Pus
h

Fo
ur

th

Pop

Tonic: F

Pop

V: C = 3/2 * F

Tonic: F

Pus
h

Fi
fth

P
opVerse ::=

Bridge ::=

Tonic: F = 1

V+V: Gm = 3/2 * 3/2 * F

Pus
h

Fo
ur

th

V: C = 3/2 * F

Tonic: F

Pop

IV: Bb = 4/3 * F

And Anytime you feel the

Pain, Hey Jude re-

-frain, don’t’ carry the

world up-on you shoul-

ders.

HeyJude ::= Verse VBBN VBBN Verse Verse Better Coda
VBBN ::= Verse Bridge Bridge Nanana (ends on C)
Coda ::= F Eb Bb F Coda

#49

Music

• Almost All Music Is Like This
– Pushes and pops the listener’s stack, but

doesn’t go too far away from it
– Repeats similar patterns in structured way
– Keeps coming back to Tonic, and Ends on the

Tonic

• Any famous Beatles song that doesn’t end
on Tonic?

#50

Charge

• Challenge:
Try to find a
“pop” song with
a 3-level deep
harmonic stack

• PS3: due in
Wed Feb 17.

Be optimistic!

You know
everything you
need to finish it
now, and it is
longer than
PS2, so get
started now!

Beatles: “A Day in the Life” (starts on G, ends on E)

#51

Homework
• Start Problem Set 3 Now

– No, really.
– Due Wed Feb 17

• Read Course Book Chapter 6
– By Monday Feb 15

