
#1

List
Recursion:

Practice
&

Examples

#2

One-Slide Summary
• Writing recursive functions that operate on

recursive data structures takes practice. There
are standard approaches to such problems.

• list?, member, sumlist, intsto, map and filter
are all important recursive functions that
operate on lists. You should know what they do
and how to write them.

• DrScheme can trace the execution of a
recursive function to make it easier to
understand.

#3

Outline
• Review: Procedure Problem Solving
• Review: list, cons, car, cdr
• list?

• member

• sumlist

• intsto

• map

• filter

• Tracing
#4

Bookkeeping

• PS2 Partners Posted
– Meet during lab hours?

• PS1 Written Grades
Posted
– Holding Fee
– Pick them up

• Feynman Point?
– Read the book!

#5

How To Write A Procedure

• Find out what it is supposed to do.
– What are the inputs? What types of values?
– What is the output? A number? Procedure? List?

• Think about some example inputs and outputs
• Define your procedure

– More on this next slide

• Test your procedure

#6

Defining A Procedure
• Be optimistic!
• Base case: Think of the simplest input to the

problem that you know the answer to.
– For number inputs, this is often zero.
– For list inputs, this is often the empty list (null).

• Recursive step: Think of how you would solve
the problem in terms of a smaller input. Do
part of the work now, then make a recursive
call to handle the rest.
– For numbers, this usually involves subtracting 1.
– For lists, this usually involves cdr.

#7

Procedure Skeleton

• The vast majority of recursive functions look
like this:

(define (my-procedure my-input)
 (if (is-base-case? my-input)
 (handle-base-case my-input)
 (combine (first-part-of my-input)
 (my-procedure (rest-of my-input)))))

#8

Pairs and Lists
• cons makes a pair of two things

– (cons 1 2) --> (1 . 2)
– (pair? (cons 1 2)) --> #t

• car and cdr get the first and second part
– (car (cons “a” “b”)) --> “a”
– (cdr (cons “y” “z”)) --> “z”

• A list is either null or a pair where the second
element is also a list
– (cons 1 (cons 2 (cons 3 null))) --> (1 2 3)
– (list 1 2 3) --> (1 2 3)
– (null? (list 1 2)) --> #f
– (append (list 1 2) (list 3 4)) -> (1 2 3 4)

#9

More Power Needed!

#10

list?
• The list? function takes a single argument and

returns #t if that argument is a list, #f
otherwise.
– Recall: a list is either null or a pair where the

second element is a list
– (list? null) --> #t
– (pair? (cons 1 2)) --> #t
– (list? (cons 1 null)) --> #t
– (list? 5) --> #f
– (list? (cons 1 2)) --> #f

• Write it now on paper. Base case? Recursion?

#11

list? Hint

• Here's a hint:

(define (list? something)
 (if (null? something) #t
 ...))

#12

Definition of list?

• Here it is:

(define (list? something)
 (if (null? something) #t
 (if (pair? something)
 (list? (cdr something))
 #f)))

Base Base
Case!Case!

InductiveInductive
Step!Step!

#13

Liberal Arts Trivia: Economics

• This 1930 Tariff Act raised US tariffs on
imported goods to record levels. Over 1000 US
Economists signed a petition against it, and
after it passed many other contributed
increased their tariffs in retribution. US
exports and imports dropped by half and many
view this Act as a major catalyst for the Great
Depression.

#14

Liberal Arts Trivia: German Lit

• This tragic closet play is considered by many to
be one of the greatest works of German
literature. It centers on a man who makes a
pact with the Devil in exchange for knowledge
in his quest to discover the essence of life
(“was die Welt im Innersten zusammenhält”)
The man's name officially means “Lucky” in
Latin, but now has negative connotations.

#15

member

• Write a function member that takes two
arguments: an element and a list. It returns #f
if the list does not contain the element.
Otherwise it returns the sublist starting with
that element.
– (member 2 (list 1 2 3)) -> (2 3)
– (member 5 (list 1 2 3)) -> #f
– (member 1 (list 1 2 3)) -> (1 2 3)
– (member 3 (list 1 2 3)) -> (3)
– (eq? 3 5) -> #f (eq? 2 2) -> #t

#16

Definition of member

(define (member elt lst)
 (if (null? lst)
 #f ;; empty list contains nothing
 (if (eq? elt (car lst))
 lst ;; we found it!
 (member elt (cdr lst))))) ;; keep looking
• Where is the base case? Where is the inductive

step?

#17

sumlist

• Write a procedure sumlist that takes as input a
list of numbers. It returns the sum (addition)
of all of the elements of the list. It returns 0
for the empty list.
– (sumlist (list 1 2 3)) -> 6
– (sumlist null) -> 0

#18

Definition of sumlist
• And here it is ...
(define (sumlist lst)
 (if (null? lst)
 0 ;; base case
 (+ (car lst) ;; else add current element

 (sumlist (cdr lst))))) ;; to rest of list

#19

intsto

• The function intsto takes a single non-negative
integer as an argument. It produces a list of all
of the integers between 1 and its argument.
– (intsto 3) -> (1 2 3)
– (intsto 7) -> (1 2 3 4 5 6 7)
– (intsto 0) -> null

#20

Definition of intsto ?

(define (intsto x)
 (if (< x 1)
 null ;; base case
 (cons ;; else make a list
 x ;; list contains x
 (intsto (- x 1))))) ;; and recursive result

• What's wrong?

#21

Correct Definition of intsto

(define (intsto x)
 (if (< x 1)
 null ;; base case
 (append ;; else make a list
 (intsto (- x 1)) ;; recursive result
 (list x)))) ;; followed by x

• Huzzah!
#22

Higher-Order Functions: map

• The map function takes two arguments: a work
function and a list. It applies the work function
to every element of the list in order and
returns a list of the result.
– (map sqrt (list 9 16 36)) -> (3 4 6)
– (map square (list 1 2 3)) -> (1 4 9)
– (map abs (list 2 -3 4)) -> (2 3 4)
– (map string-length (list “I” “Claudius”)) -> (1 8)
– (map sqrt null) -> null

#23

Mission Impossible: Write map

• You can do it!
– (map square (list 1 2 3)) -> (1 4 9)
– (map abs (list 2 -3 4)) -> (2 3 4)
– (map sqrt null) -> null

#24

Definition of map

• Let's look in detail:
(define (map work-fun lst)
 (if (null? lst)
 null ;; base case
 (cons ;; else make a list
 (work-fun (car lst)) ;; first part of result
 (map work-fun (cdr lst))))) ;; rest o'result

#25

Liberal Arts Trivia: Philosophy

• This branch of philosophy deals with the
theory, nature and scope of knowledge. Key
questions include “what is knowledge?”, “how
is knowledge acquired?”, “what do people
know?”, “how do we know what we know?”,
“what is the relationship between truth and
belief?”.

#26

Liberal Arts Trivia: Norse Myth

• In Norse Mythology, this god is associated with
light and beauty. His mother made every
object on earth vow never to harm him, but
she did not ask mistletoe. The other gods
made a new pastime of hurling objects at him
and watching them bounce off. The trickster
Loki heard of this, fashioned a spear from
mistletoe and had it thrown a him, with fatal
results.

#27

Liberal Arts Trivia: Music

• This musical instrument of the brass family
produces sound when the player's vibrating lips
cause the air column inside the instrument to
vibrate. It is usually characterized by a
telescopic slide with which the player varies
the length of the tube to change the pitch.
Glenn Miller, famous for his “big band” and
songs like In the Mood and Chattanooga Choo
Choo, played this instrument.

#28

Using map to get iteration

• In C or Java:
for (x=1 ; x <= 5 ; x=x+1) {
 display(x*x);
} // output: 1 4 9 16 25

• Recall that we have intsto:
– (intsto 3) -> (1 2 3)
– (intsto 7) -> (1 2 3 4 5 6 7)

• How can map and intsto to simulate for?

#29

Using map to get iteration

• In C or Java:
for (x=1 ; x <= 5 ; x=x+1) {
 display(x*x);
} // output: 1 4 9 16 25

• Recall that we have intsto:
– (intsto 3) -> (1 2 3)

• Then we can do:
(map (lambda (x) (display (square x))) (intsto 5))

Expect me on tests
or extra credit later!

#30

filter

• The filter function takes two arguments: a
predicate and a list. A predicate is a function
that returns true or false. Filter returns the
sublist consisting of those elements that satisfy
the predicate.
– (filter is-odd? (list 1 2 3 4)) -> (1 3)
– (filter null? (list 1 null null “hi”)) -> (null null)
– (filter (lambda (x) (< x 5)) (list 1 9 2 0)) -> (1 2 0)
– (filter null? (list “susan” “b” “anthony”)) -> null
– (filter is-odd? null) -> null

#31

Definition of filter

(define (filter pred lst)
 (if (null? lst)
 null ;; base case
 (if (pred (car lst)) ;; does this element
 ;; satisfy the predicate?
 (cons (car lst) (filter pred (cdr lst)))
 ;; if so, include it in the result
 (filter pred (cdr lst)))))
 ;; if not, do not include it

#32

Tracing

• DrScheme will trace through a functions
execution for you.

• This can make it easier to debug or understand
a function.

To enable tracing of myfun:
(require (lib "trace.ss"))

(trace myfun)

Tracing sumlist

> (trace sumlist)
> (sumlist (list 1 2 3 4))
|(sumlist (1 2 3 4))
| (sumlist (2 3 4))
| |(sumlist (3 4))
| | (sumlist (4))
| | |(sumlist ())
| | |0
| | 4
| |7
| 9
|10
10

(define (sumlist p)
 (if (null? p) 0 (+ (car p) (sumlist (cdr p)))))

Tracing map

> (map (lambda (x) (* x 2)) (list 1 2 3))
|(map #<procedure> (1 2 3))
| (map #<procedure> (2 3))
| |(map #<procedure> (3))
| | (map #<procedure> ())
| | ()
| |(6)
| (4 6)
|(2 4 6)
(2 4 6)

(define (map f lst)
 (if (null? lst)
 null
 (cons (f (car lst))
 (map f (cdr lst)))))

#35

Homework
• Problem Set 2 Due Monday
• (Re-)Read GEB 5 by Monday

