
cs150: Exam 1
Due: Wednesday, 25 February at 3:30pm (in class) 

or by 6:30pm (under door of Olsson 219)

Directions
Work alone. You may not discuss these problems or anything related to the material covered by 
this exam with anyone except for the course staff between receiving this exam and turning it in.

Open resources. You may use any books you want, lecture notes, slides, your notes, and problem 
sets. You may not use DrScheme, but it is not necessary to do so. You may also use external non-
human sources including books and web sites. If you use anything other than the course books, 
slides, and notes, cite what you used. You may not obtain any help from other humans other than 
the course staff. 

Answer well. Answer all questions 1-9 (question 0 is your name, which hopefully everyone will 
receive full credit for), and optionally answer questions 10-11. 

You may either: (1) print out this exam and write your answers on it or (2) write your answers 
directly into the provided Word template and print the result out. Whichever one you choose, you 
must turn in your answers printed on paper and they must be clear enough for us to read and 
understand. You should not need more space than is provided to write good answers, but if you 
want more space you may attach extra sheets. If you do, make sure they are clearly marked. 

The questions are not necessarily in order of increasing difficulty, so if you get stuck on one 
question you should continue on to the next question. There is no time limit on this exam, but it 
should not take a well-prepared student more than a few hours to complete.  It may take you 
longer, though, so please do not delay starting the exam.  There is no valid excuse (other than a 
medical or personal emergency) for running out of time on this exam. 

Full credit depends on the clarity and elegance of your answer, not just correctness. Your 
answers should be as short and simple as possible, but not simpler. Your programs will be judged 
for  correctness,  clarity  and  elegance,  but  you  will  not  lose  points  for  trivial  errors  (such  as 
missing a closing parenthesis). 

UVA ID (e.g., wrw6y) : 



Your Scores
0 1 2 3 4 5 6 7 8 9 Total

10 10 10 10 10 10 10 10 10 10 100

 (Your scores are recorded on the second page so that they are not visible to other 
students when tests are distributed or passed back.)

2



1. The and-expression is a special form for logical conjunction. An and-expression has any 
number of operand expressions. We will consider a restricted form of the and-expression in 
which every argument must be either #t or #f. For example, all of the expressions below are valid 
and-expressions (question 2 will describe the evaluation rule for and-expressions): 

> (and)
#t
> (and #t #t)
#t
> (and #t #t #f #t #t)
#f

Define a BNF grammar rule for the AndExpression. 

2. For simplicity, the rest of this question assumes a limited version of the and-expression that 
only takes two operands:(and expr1 expr2). However, the operands to the and-expression in 
this question can be any Scheme expressions (not just #t and #f). This simplified and-expression 
behaves identically to the standard and-expression when applied to two operands, but is not 
defined for other than two operands. The evaluation rule for an and-expression is: 

To evaluate an and-expression, evaluate the first subexpression. If it evaluates to a false 
value, the value of the and-expression is false. Otherwise, the value of the and-expression 
is the value of the second subexpression. 

Professor Wrongo doesn't like unnecessary special forms and suggest that the and-expression 
special form can be replaced with this procedure: 

     (define (and e1 e2) (if e1 e2 #f))

Provide a convincing argument that the and procedure above is not equivalent to the and-
expression special form. (Hint: describe inputs where they mean different things.) 

3

AndExpression ::= 



For convenience, here is the find-maximum procedure from Chapter 4: 
(define (find-maximum f low high)
    (if (= low high) 
        (f low)
        (max (f low) 
             (find-maximum f (+ low 1) high)))))

3. (This is a slight rewording of Exercise 4.8 in the book.) The find-maximum procedure we 
defined in Chapter 4 evaluates to the maximum value of the input function in the range, but does 
not provide the input value that produces that maximum output value. Define a procedure, find-
maximizing-input that takes the same inputs as find-maximum, but outputs the input value 
in the range that produces the maximum output value. 
For example: 

> (find-maximizing-input (lambda (x) x) 3 150)
150
> (find-maximizing-input (lambda (x) (- (* 12 x) (* x x))) 0 50)
6

For maximum credit, your answer should have running time in Θ(n) where n is the difference 
between the values of the high and low inputs. (But you will receive most of the credit even if 
your solution is less efficient.) You may assume low <= high and that f  runs in Θ(1).

4

(define (find-maximizing-input f low high)



4. Define a make-incrementer procedure that takes one input, the increment number, as input 
and produces as output a procedure. The output procedure is a procedure that takes one number as 
input, and produces as output the value of that number increased by the increment number. 

For example: 
> (make-incrementer 1)
#<procedure>
> ((make-incrementer 2) 148)
150
>((make-incrementer 3) ((make-incrementer 7) 1))
11

5. Define a procedure find-worst that takes two inputs: a non-empty list and a comparison 
function. As output it produces the element in the list which is the worst according to the 
comparison procedure. (No points off if you mistakenly write find-best.)

For example: 
> (find-worst (list 1 5 0) <)
5

5

(define (make-incrementer n) 

(define (find-worst lst cf) 



6. Answer each of the following questions about function growth. Give an argument that explains 
each answer. For example, to prove that n is in O(n/2) you might demonstrate the constants n0 = 1 
and c = 2. If there is any ambiguity, use the definitions from Chapter 7 of the course book. 

6

Is n in O(2n+5) ? Why or why not? 

Is n2 in O(2n+5) ? Why or why not? 

Is 4n2 in Ω(n) ? Why or why not? 

Is 4n2 in Ω(n3) ? Why or why not? 

Is nlog n in Θ(n2) ? Why or why not? 
 



Another cryptographic invention of Alan Turing’s at Bletchley Park was a process then known as 
banburismus (more commonly now called sequential analysis) developed to determine if two 
intercepted Enigma messages had been encrypted using the same key. 

The goal of the banburismus technique is to determine when two intercepted Enigma messages 
were encrypted using the same or similar initial machine settings. The key insight is identical to 
that behind the double delta technique used by Colossus: since the letter distribution in a natural 
language (in this cases German) is not even, it is much more likely that the same letters will occur 
at a given position than would occur by random chance (which is approximately the case if the 
Enigma machines were not configured with similar wheel settings). 

So, to determine if two messages were sent by Enigma machines with the same wheel settings we 
need to count the number of occurrences in the ciphertext where the two messages have the same 
letter at the same position. If that number significantly exceeds the number predicted by random 
chance, then it is likely the messages were encoded using the same wheel settings. 

7. Define a procedure count-matches that takes as input two lists of characters (representing 
two intercepted ciphertexts) and outputs a number that is the number of positions where the 
characters in the two lists match (use eq? to test two characters for equality). 

For example, 
> (count-matches (list #\A #\B #\C) (list #\B #\B #\C)
2
> (count-matches (list #\A #\B #\C) (list #\B))
0
>(count-matches (list #\A #\B #\C) (list #\A #\B #\C #\D))
3

7

(define (count-matches lst1 lst2)



Since the Enigma wheels rotate, it was also possible to use this technique to find messages sent 
using similar initial configurations by trying different alignments of the two messages. For 
example, suppose the intercepted messages are: 

Message 1: GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF
Message 2: YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ

The Bletchley Park analysts would try aligning the messages at different starting points, looking 
for ways of aligning them that have a high number of matches. For example: 

Align 0:
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF
YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ

Align +1
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF
 YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ
...

Align +9
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF
         YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ

With the Align +9, there are 9 matches which is promising (that is, it would be very unlikely to 
occur by chance, so the wheel settings are probably similar). 

8. Define a procedure find-best-alignment that takes as input two lists, representing two 
intercepted ciphertexts, and outputs the number of matching letters in the best possible alignment. 
You may assume that count-matches is correctly defined.

A good answer will find the best positive alignment (only considering moving the second 
message to the right, as in the example above). An excellent answer will consider both positive 
and negative alignments (moving the second message to the left instead). 
For example:

> (find-best-alignment (list #\A #\B #\C) (list #\B #\B #\C))
2
> (find-best-alignment (list #\A #\B #\C #\D) (list #\B #\C #\D))
3
> (find-best-alignment (list #\A #\B #\C #\D) 
                       (list #\F #\A #\B #\C #\D))
4

This is the correct result for “excellent” answers that consider negative alignments. The 
answer using just positive alignments is 0.

Hint: note that the letters with no corresponding letter in the other message don't matter. So, we 
could view Align +1 above as 
    XCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF
    YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ

without the leading G in message one. Hint 2: this is different than rotate-wheel in PS4 in that you 
probably do not want to move the first character to the end of the list. Hint 3: helper functions are 
perfectly legal. 

(Answer space is on the next page)

8



8 (continued). Define your find-best-alignment procedure here:

9. Analyze the running time of your find-best-alignment procedure. Your analysis 
should include a description of the running time using Θ notation.

9

(define (find-best-alignment msg1 msg2)



10. Extra Credit 1: 2 points. Either indicate that you went to at least one of the Shuttle Rescue 
demonstrations (the CS 340 bit with the Lego robots) for at least 20 minutes or read 
http://shuttle.cs.virginia.edu:8080/specs.html and use techniques from PS2 and PS3 to 
solve the following problem: You are given a non-empty list of routes from the start to 
the location of the Escape Pod. Each route is a list commands such as “go forward X 
centimeters” or “rotate right Y degrees”. It takes 1 unit of battery power to turn 10 
degrees and 1 unit of battery power to go forward 5 centimeters. Write a function that 
returns the cheapest route to the escape pod. 

11. (0 points.) Do you feel your performance on this exam will fairly reflect your 
understanding of the course material so far? If not, explain why. You will not lose any 
points for your answer. 

10

(define (find-best-route routes)

http://shuttle.cs.virginia.edu:8080/specs.html

