

Handbook of Computer Science and Engineering, Chapter 103. CRC Press, 1997.

1

Copyright

©

 1996 by Digital Equipment Corporation. Revised Friday, March 28, 1997, 4:45 pm.

1 Introduction

The fundamental purpose of a

type system

 is to prevent the occurrence of

execution er-
rors

 during the running of a program. This informal statement motivates the study of
type systems, but requires clarification. Its accuracy depends, first of all, on the rather
subtle issue of what constitutes an execution error, which we will discuss in detail.
Even when that is settled, the absence of execution errors is a nontrivial property.
When such a property holds for all of the program runs that can be expressed within a
programming language, we say that the language is

type sound

. It turns out that a fair
amount of careful analysis is required to avoid false and embarrassing claims of type
soundness for programming languages. As a consequence, the classification, descrip-
tion, and study of type systems has emerged as a formal discipline.

The formalization of type systems requires the development of precise notations
and definitions, and the detailed proof of formal properties that give confidence in the
appropriateness of the definitions. Sometimes the discipline becomes rather abstract.
One should always remember, though, that the basic motivation is pragmatic: the ab-
stractions have arisen out of necessity and can usually be related directly to concrete
intuitions. Moreover, formal techniques need not be applied in full in order to be useful
and influential. A knowledge of the main principles of type systems can help in avoid-
ing obvious and not so obvious pitfalls, and can inspire regularity and orthogonality in
language design.

When properly developed, type systems provide conceptual tools with which to
judge the adequacy of important aspects of language definitions. Informal language
descriptions often fail to specify the type structure of a language in sufficient detail to
allow unambiguous implementation. It often happens that different compilers for the
same language implement slightly different type systems. Moreover, many language
definitions have been found to be type unsound, allowing a program to crash even
though it is judged acceptable by a

typechecker

. Ideally, formal type systems should
be part of the definition of all typed programming languages. This way, typechecking
algorithms could be measured unambiguously against precise specifications and, if at
all possible and feasible, whole languages could be shown to be type sound.

In this introductory section we present an informal nomenclature for typing, exe-
cution errors, and related concepts. We discuss the expected properties and benefits of
type systems, and we review how type systems can be formalized. The terminology
used in the introduction is not completely standard; this is due to the inherent incon-
sistency of standard terminology arising from various sources. In general, we avoid the

Type Systems

Luca Cardelli

Digital Equipment Corporation
Systems Research Center

2

words

type

 and

typing

 when referring to run time concepts; for example we replace dy-
namic typing with dynamic checking and avoid common but ambiguous terms such as
strong typing. The terminology is summarized in the Defining Terms section.

In section 2, we explain the notation commonly used for describing type systems.
We review

judgments

, which are formal assertions about the typing of programs,

type
rules

, which are implications between judgments, and

derivations

, which are deduc-
tions based on type rules. In section 3, we review a broad spectrum of simple types, the
analog of which can be found in common languages, and we detail their type rules. In
section 4, we present the type rules for a simple but complete imperative language. In
section 5, we discuss the type rules for some advanced type constructions:

polymor-
phism

 and

data abstraction

. In section 6, we explain how type systems can be extended
with a notion of

subtyping

. Section 7 is a brief commentary on some important topics
that we have glossed over. In section 8, we discuss the

type inference

 problem, and we
present type inference algorithms for the main type systems that we have considered.
Finally, section 9 is a summary of achievements and future directions.

Execution errors

The most obvious symptom of an execution error is the occurrence of an unexpected
software fault, such as an illegal instruction fault or an illegal memory reference fault.

There are, however, more subtle kinds of execution errors that result in data cor-
ruption without any immediate symptoms. Moreover, there are software faults, such
as divide by zero and dereferencing

nil

, that are not normally prevented by type sys-
tems. Finally, there are languages lacking type systems where, nonetheless, software
faults do not occur. Therefore we need to define our terminology carefully, beginning
with what is a type.

Typed and untyped languages

A program variable can assume a range of values during the execution of a program.
An upper bound of such a range is called a

type

 of the variable. For example, a variable

x

 of type

Boolean

 is supposed to assume only boolean values during every run of a pro-
gram. If

x

 has type

Boolean

, then the boolean expression

not

(

x

) has a sensible meaning
in every run of the program. Languages where variables can be given (nontrivial) types
are called

typed languages

.
Languages that do not restrict the range of variables are called

untyped languages

:
they do not have types or, equivalently, have a single universal type that contains all
values. In these languages, operations may be applied to inappropriate arguments: the
result may be a fixed arbitrary value, a fault, an exception, or an unspecified effect. The
pure

λ

-calculus (see Chapter 139) is an extreme case of an untyped language where no
fault ever occurs: the only operation is function application and, since all values are
functions that operation never fails.

A type system is that component of a typed language that keeps track of the types
of variables and, in general, of the types of all expressions in a program. Type systems

3

are used to determine whether programs are

well behaved

 (as discussed subsequent-
ly). Only program sources that comply with a type system should be considered real
programs of a typed language; the other sources should be discarded before they are
run.

A language is typed by virtue of the existence of a type system for it, whether or
not types actually appear in the syntax of programs. Typed languages are

explicitly
typed

 if types are part of the syntax, and

implicitly typed

 otherwise. No mainstream
language is purely implicitly typed, but languages such as ML and Haskell support
writing large program fragments where type information is omitted; the type systems
of those languages automatically assign types to such program fragments.

Execution errors and safety

It is useful to distinguish between two kinds of execution errors: the ones that cause the
computation to stop immediately, and the ones that go unnoticed (for a while) and later
cause arbitrary behavior. The former are called

trapped errors

, whereas the latter are

untrapped errors

.
An example of an untrapped error is improperly accessing a legal address, for ex-

ample, accessing data past the end of an array in absence of run time bounds checks.
Another untrapped error that may go unnoticed for an arbitrary length of time is jump-
ing to the wrong address: memory there may or may not represent an instruction
stream. Examples of trapped errors are division by zero and accessing an illegal ad-
dress: the computation stops immediately (on many computer architectures).

A program fragment is

safe

 if it does not cause untrapped errors to occur. Languag-
es where all program fragments are safe are called

safe languages

. Therefore, safe lan-
guages rule out the most insidious form of execution errors: the ones that may go
unnoticed. Untyped languages may enforce

safety

 by performing run time checks.
Typed languages may enforce safety by statically rejecting all programs that are poten-
tially unsafe. Typed languages may also use a mixture of run time and

static checks

.
Although safety is a crucial property of programs, it is rare for a typed language to

be concerned exclusively with the elimination of untrapped errors. Typed languages
usually aim to rule out also large classes of trapped errors, along with the untrapped
ones. We discuss these issues next.

Execution errors and well-behaved programs

For any given language, we may designate a subset of the possible execution errors as

forbidden errors

. The forbidden errors should include all of the untrapped errors, plus
a subset of the trapped errors. A program fragment is said to have

good behavior

, or
equivalently to be well behaved, if it does not cause any forbidden error to occur. (The
contrary is to have

bad behavior

, or equivalently to be

ill behaved

.) In particular, a well
behaved fragment is safe. A language where all of the (legal) programs have good be-
havior is called

strongly checked

.

4

Thus, with respect to a given type system, the following holds for a strongly
checked language:

• No untrapped errors occur (safety guarantee).

• None of the trapped errors designated as forbidden errors occur.

• Other trapped errors may occur; it is the programmer’s responsibility to avoid
them.

Typed languages can enforce good behavior (including safety) by performing stat-
ic (i.e., compile time) checks to prevent unsafe and ill behaved programs from ever run-
ning. These languages are

statically checked

; the checking process is called

typechecking

, and the algorithm that performs this checking is called the typechecker.
A program that passes the typechecker is said to be

well typed

; otherwise, it is

ill
typed

, which may mean that it is actually ill-behaved, or simply that it could not be
guaranteed to be well behaved. Examples of statically checked languages are ML and
Pascal (with the caveat that Pascal has some unsafe features).

Untyped languages can enforce good behavior (including safety) in a different
way, by performing sufficiently detailed run time checks to rule out all forbidden er-
rors. (For example, they may check all array bounds, and all division operations, gen-
erating recoverable exceptions when forbidden errors would happen.) The checking
process in these languages is called

dynamic checking

; LISP is an example of such a
language. These languages are strongly checked even though they have neither static
checking, nor a type system.

Even statically checked languages usually need to perform tests at run time to
achieve safety. For example, array bounds must in general be tested dynamically. The
fact that a language is statically checked does not necessarily mean that execution can
proceed entirely blindly.

Several languages take advantage of their static type structures to perform sophis-
ticated dynamic tests. For example Simula67’s INSPECT and Modula-3’s TYPECASE
constructs discriminate on the run time type of an object. These languages are still
(slightly improperly) considered statically checked, partially because the dynamic type
tests are defined on the basis of the static type system. That is, the dynamic tests for
type equality are compatible with the algorithm that the typechecker uses to determine
type equality at compile time.

Lack of safety

By our definitions, a well behaved program is safe. Safety is a more primitive and per-
haps more important property than good behavior. The primary goal of a type system
is to ensure language safety by ruling out

all

 untrapped errors in all program runs.
However, most type systems are designed to ensure the more general good behavior
property, and implicitly safety. Thus, the declared goal of a type system is usually to
ensure good behavior of all programs, by distinguishing between well typed and ill
typed programs.

5

In reality, certain statically checked languages do not ensure safety. That is, their
set of forbidden errors does not include all untrapped errors. These languages can be
euphemistically called

weakly checked

 (or

weakly typed

, in the literature) meaning that
some unsafe operations are detected statically and some are not detected. Languages
in this class vary widely in the extent of their weakness. For example, Pascal is unsafe
only when untagged variant types and function parameters are used, whereas C has
many unsafe and widely used features, such as pointer arithmetic and casting. It is in-
teresting to notice that the first five of the ten commandments for C programmers [29]
are directed at compensating for the weak-checking aspects of C. Some of the problems
caused by weak checking in C have been alleviated in C++, and even more have been
addressed in Java, confirming a trend away from weak checking. Modula-3 supports
unsafe features, but only in modules that are explicitly marked as unsafe, and prevents
safe modules from importing unsafe interfaces.

Most untyped languages are, by necessity, completely safe (e.g., LISP). Otherwise,
programming would be too frustrating in the absence of both compile time and run
time checks to protect against corruption. Assembly languages belong to the unpleas-
ant category of untyped unsafe languages.

Table 1. Safety

Should languages be safe?

Lack of safety in a language design is motivated by performance considerations (when
not introduced by mistake). The run time checks needed to achieve safety are some-
times considered too expensive. Safety has a cost even in languages that do extensive
static analysis: tests such as array bounds checks cannot be, in general, completely
eliminated at compile time.

Safety, however, is cost effective according to different measures. Safety produces
fail-stop behavior in case of execution errors, reducing debugging time. Moreover,
safety guarantees the integrity of run time structures, and therefore enables garbage
collection. In turn, garbage collection considerably reduces code size and code devel-
opment time, at the price of some performance.

Thus, the choice between a safe and unsafe language may be ultimately related to
a tradeoff between development time and execution time. Although undeniable, the
advantages of safety have not yet caused a widespread adoption of safe languages. In-
stead of regarding lack of safety as bad, many developers consider almost safety as al-
most good, and live with the consequences.

Typed Untyped
Safe ML LISP
Unsafe C Assembler

6

Should languages be typed?

The issue of whether programming languages should have types (even with weak
checking) is still subject to some debate. There is little doubt, though, that production
code written in untyped languages can be maintained only with great difficulty. From
the point of view of maintainability, even weakly checked unsafe languages are supe-
rior to safe but untyped languages (e.g., C vs. LISP). Here are the arguments that have
been put forward in favor of typed languages, from an engineering point of view:

•

Economy of execution

. Type information was first introduced in programming to
improve code generation and run time efficiency for numerical computations,
for example, in FORTRAN. In ML, accurate type information eliminates the
need for

nil

-checking on pointer dereferencing. In general, accurate type infor-
mation at compile time leads to the application of the appropriate operations at
run time without the need of expensive tests.

•

Economy of small-scale development

. When a type system is well designed,
typechecking can capture a large fraction of routine programming errors, elim-
inating lengthy debugging sessions. The errors that do occur are easier to de-
bug, simply because large classes of other errors have been ruled out. Moreover,
experienced programmers adopt a coding style that causes some logical errors
to show up as typechecking errors: they use the typechecker as a development
tool. (For example, by changing the name of a field when its invariants change
even though its type remains the same, so as to get error reports on all its old
uses.)

•

Economy of compilation

. Type information can be organized into

interfaces

for pro-
gram modules, for example as in Modula-2 and Ada. Modules can then be com-
piled independently of each other, with each module depending only on the
interfaces of the others. Compilation of large systems is made more efficient be-
cause, at least when interfaces are stable, changes to a module do not cause other
modules to be recompiled.

•

Economy of large-scale development

. Interfaces and modules have methodological
advantages for code development. Large teams of programmers can negotiate
the interfaces to be implemented, and then proceed separately to implement the
corresponding pieces of code. Dependencies between pieces of code are mini-
mized, and code can be locally rearranged without fear of global effects. (These
benefits can be achieved also by informal interface specifications, but in practice
typechecking helps enormously in verifying adherence to the specifications.)

•

Economy of language features

. Type constructions are naturally composed in or-
thogonal ways. For example, in Pascal an array of arrays models two-dimen-
sional arrays; in ML, a procedure with a single argument that is a tuple of

n

parameters models a procedure of

n

 arguments. Thus, type systems promote or-
thogonality of language features, question the utility of artificial restrictions,
and thus tend to reduce the complexity of programming languages.

7

Expected properties of type systems

In the rest of this chapter we proceed under the assumption that languages should be
both safe and typed, and therefore that type systems should be employed. In the study
of type systems, we do not distinguish between trapped and untrapped errors, nor be-
tween safety and good behavior: we concentrate on good behavior, and we take safety
as an implied property.

Types, as normally intended in programming languages, have pragmatic charac-
teristics that distinguish them from other kinds of program annotations. In general, an-
notations about the behavior of programs can range from informal comments to formal
specifications subject to theorem proving. Types sit in the middle of this spectrum: they
are more precise than program comments, and more easily mechanizable than formal
specifications. Here are the basic properties expected of any type system:

• Type systems should be

decidably verifiable

: there should be an algorithm (called
a typechecking algorithm) that can ensure that a program is well behaved. The
purpose of a type system is not simply to state programmer intentions, but to
actively capture execution errors before they happen. (Arbitrary formal specifi-
cations do not have these properties.)

• Type systems should be

transparent

: a programmer should be able to predict
easily whether a program will typecheck. If it fails to typecheck, the reason for
the failure should be self-evident. (Automatic theorem proving does not have
these properties.)

• Type systems should be

enforceable

: type declarations should be statically
checked as much as possible, and otherwise dynamically checked. The consis-
tency between type declarations and their associated programs should be rou-
tinely verified. (Program comments and conventions do not have these
properties.)

How type systems are formalized

As we have discussed, type systems are used to define the notion of well typing, which
is itself a static approximation of good behavior (including safety). Safety facilitates de-
bugging because of fail-stop behavior, and enables garbage collection by protecting
run time structures. Well typing further facilitates program development by trapping
execution errors before run time.

But how can we guarantee that well typed programs are really well behaved? That
is, how can we be sure that the type rules of a language do not accidentally allow ill
behaved programs to slip through?

Formal type systems

 are the mathematical characterizations of the informal type sys-
tems that are described in programming language manuals. Once a type system is for-
malized, we can attempt to prove a

type soundness

 theorem stating that

well-typed
programs are well behaved

. If such a soundness theorem holds, we say that the type sys-

8

tem is sound. (Good behavior of all programs of a typed language and soundness of its
type system mean the same thing.)

In order to formalize a type system and prove a soundness theorem we must in es-
sence formalize the whole language in question, as we now sketch.

The first step in formalizing a programming language is to describe its syntax. For
most languages of interest this reduces to describing the syntax of types and

terms

.
Types express static knowledge about programs, whereas terms (statements, expres-
sions, and other program fragments) express the algorithmic behavior.

The next step is to define the

scoping

 rules of the language, which unambiguously
associate occurrences of identifiers to their binding locations (the locations where the
identifiers are declared). The scoping needed for typed languages is invariably

static

,
in the sense that the binding locations of identifiers must be determined before run
time. Binding locations can often be determined purely from the syntax of a language,
without any further analysis; static scoping is then called

lexical scoping

.The lack of stat-
ic scoping is called

dynamic scoping

.
Scoping can be formally specified by defining the set of

free variables

 of a program
fragment (which involves specifying how variables are bound by declarations). The as-
sociated notion of

substitution

 of types or terms for free variables can then be defined
(see Chapter 139).

When this much is settled one can proceed to define the type rules of the language,
which describe a relation

has-type

 of the form

M

:

A

between terms

M

 and types

A

. Some
languages also require a relation

subtype-of

 of the form

A

<:

B

 between types, and often
a relation

equal-type

 of the form

A

=

B

 of type equivalence. The collection of type rules of
a language forms its type system. A language that has a type system is called a typed
language.

The type rules cannot be formalized without first introducing another fundamen-
tal ingredient that is not reflected in the syntax of the language:

static typing environ-
ments

. These are used to record the types of free variables during the processing of
program fragments; they correspond closely to the symbol table of a compiler during
the typechecking phase. The type rules are always formulated with respect to a static
environment for the fragment being typechecked. For example, the has-type relation

M

:

A

 is associated with a static typing environment

Γ

 that contains information about
the free variables of

M

 and

A

. The relation is written in full as

Γ

∫

M

:

A

, meaning that

M

 has type

A

 in environment

Γ

.
The final step in formalizing a language is to define its semantics as a relation

has-
value

 between terms and a collection of

results

. The form of this relation depends
strongly on the style of semantics that is adopted. In any case, the semantics and the
type system of a language are interconnected: the types of a term and of its result
should be the same (or appropriately related); this is the essence of the soundness the-
orem.

The fundamental notions of type system are applicable to virtually all computing
paradigms (functional, imperative, concurrent, etc.). Individual type rules can often be
adopted unchanged for different paradigms. For example, the basic type rules for func-

9

tions are the same whether the semantics is call-by-name or call-by-value or, orthogo-
nally, functional or imperative.

In this chapter we discuss type systems independently of semantics. It should be
understood, though, that ultimately a type system must be related to a semantics, and
that soundness should hold for that semantics. Suffice it to say that the techniques of
structural operational semantics (see Chapters 139 and 141) deal uniformly with a large
collection of programming paradigms, and fit very well with the treatment found in
this chapter.

Type equivalence

As mentioned above, most nontrivial type systems require the definition of a relation
equal type of type equivalence. This is an important issue when defining a program-
ming language: when are separately written type expressions equivalent? Consider,
for example, two distinct type names that have been associated with similar types:

If the type names X and Y match by virtue of being associated with similar types, we
have structural equivalence. If they fail to match by virtue of being distinct type names
(without looking at the associated types), we have by-name equivalence.

In practice, a mixture of structural and by-name equivalence is used in most com-
pilers, but the precise mixture is rarely prescribed in the corresponding language defi-
nition. In contrast, pure structural equivalence can be easily and precisely defined by
means of type rules. Moreover, structural equivalence has unique advantages when
typed data has to be stored or transmitted over a network (as in Modula-3). By-name
equivalence cannot deal easily with interacting program sources that have been devel-
oped and compiled separately in time or space.

We assume structural equivalence in what follows (although this issue does not
arise often). If by-name equivalence is desired for a language, one should attempt to
write the appropriate type rules: the arbitrary nature of by-name equivalence then be-
comes apparent. Moreover, satisfactory emulation of by-name equivalence can be ob-
tained within structural equivalence, as demonstrated by the Modula-3 branding
mechanism.

2 The language of type systems
A type system specifies the type rules of a programming language independently of
particular typechecking algorithms. This is analogous to describing the syntax of a pro-
gramming language by a formal grammar, independently of particular parsing algo-
rithms.

It is both convenient and useful to decouple type systems from typechecking algo-
rithms: type systems belong to language definitions, while algorithms belong to com-
pilers. It is easier to explain the typing aspects of a language by a type system, rather

type X = Bool
type Y = Bool

10

than by the algorithm used by a given compiler. Moreover, different compilers may
use different typechecking algorithms for the same type system.

As a minor problem, it is technically possible to define type systems that admit
only unfeasible typechecking algorithms, or no algorithms at all. The usual intent,
however, is to allow for efficient typechecking algorithms.

Judgments

Type systems are described by a particular formalism, which we now introduce. The
description of a type system starts with the description of a collection of formal utter-
ances called judgments. A typical judgment has the form:

We say that Γ entails ℑ. Here Γ is a static typing environment; for example, an ordered list
of distinct variables and their types, of the form , x1:A1, ..., xn:An. The empty environ-
ment is denoted by , and the collection of variables x1 ... xn declared in Γ is indicated
by dom(Γ). The form of the assertion ℑ varies from judgment to judgment, but all the free
variables of ℑ must be declared in Γ.

The most important judgment, for our present purposes, is the typing judgment,
which asserts that a term M has a type A with respect to a static typing environment
for the free variables of M. It has the form:

Other judgment forms are often necessary; a common one asserts simply that an
environment is well formed:

Any given judgment can be regarded as valid (e.g., Γ ∫ true : Bool) or invalid (e.g., Γ
∫ true : Nat). Validity formalizes the notion of well typed programs. The distinction be-
tween valid and invalid judgements could be expressed in a number of ways; however,
a highly stylized way of presenting the set of valid judgments has emerged. This pre-
sentation style, based on type rules, facilitates stating and proving technical lemmas
and theorems about type systems. Moreover, type rules are highly modular: rules for
different constructs can be written separately (in contrast to a monolithic typechecking
algorithm). Therefore, type rules are comparatively easy to read and understand.

Type rules

Type rules assert the validity of certain judgments on the basis of other judgments that
are already known to be valid. The process gets off the ground by some intrinsically
valid judgment (usually: ∫ Q, stating that the empty environment is well formed).

Γ ∫ ℑ ℑ is an assertion; the free variables of ℑ are declared in Γ

Γ ∫ M : A M has type A in Γ

Examples.
 ∫ true : Bool true has type Bool
, x:Nat ∫ x+1 : Nat x+1 has type Nat, provided that x has type Nat

Γ ∫ Q Γ is well-formed (i.e., it has been properly constructed)

11

Each type rule is written as a number of premise judgments Γi ∫ ℑi above a horizon-
tal line, with a single conclusion judgment Γ ∫ ℑ below the line. When all of the premises
are satisfied, the conclusion must hold; the number of premises may be zero. Each rule
has a name. (By convention, the first word of the name is determined by the conclusion
judgment; for example, rule names of the form “(Val ...)” are for rules whose conclu-
sion is a value typing judgment.) When needed, conditions restricting the applicability
of a rule, as well as abbreviations used within the rule, are annotated next to the rule
name or the premises.

For example, the first of the following two rules states that any numeral is an ex-
pression of type Nat, in any well-formed environment Γ. The second rule states that
two expressions M and N denoting natural numbers can be combined into a larger ex-
pression M+N, which also denotes a natural number. Moreover, the environment Γ for
M and N, which declares the types of any free variable of M and N, carries over to M+N.

A fundamental rule states that the empty environment is well formed, with no assump-
tions:

A collection of type rules is called a (formal) type system. Technically, type systems
fit into the general framework of formal proof systems: collections of rules used to carry
out step-by-step deductions. The deductions carried out in type systems concern the
typing of programs.

Type derivations

A derivation in a given type system is a tree of judgments with leaves at the top and a
root at the bottom, where each judgment is obtained from the ones immediately above
it by some rule of the system. A fundamental requirement on type systems is that it
must be possible to check whether or not a derivation is properly constructed.

A valid judgment is one that can be obtained as the root of a derivation in a given
type system. That is, a valid judgment is one that can be obtained by correctly applying
the type rules. For example, using the three rules given previously we can build the fol-

(Rule name) (Annotations)

Γ1 ∫ ℑ1 ... Γn ∫ ℑn (Annotations) General form of a type rule.

Γ ∫ ℑ

(Val n) (n = 0, 1, ...) (Val +)

Γ ∫ Q Γ ∫ M : Nat Γ ∫ N : Nat

Γ ∫ n : Nat Γ ∫ M+N : Nat

(Env)

 ∫ Q

12

lowing derivation, which establishes that ∫ 1+2 : Nat is a valid judgment. The rule ap-
plied at each step is displayed to the right of each conclusion:

Well typing and type inference

In a given type system, a term M is well typed for an environment Γ, if there is a type
A such that Γ ∫ M : A is a valid judgment; that is, if the term M can be given some type.

The discovery of a derivation (and hence of a type) for a term is called the type in-
ference problem. In the simple type system consisting of the rules (Env), (Val n), and
(Val +), a type can be inferred for the term 1+2 in the empty environment. This type is
Nat, by the preceding derivation.

Suppose we now add a type rule with premise Γ ∫ Q and conclusion Γ ∫ true : Bool.
In the resulting type system we cannot infer any type for the term 1+true, because there
is no rule for summing a natural number with a boolean. Because of the absence of any
derivations for 1+true, we say that 1+true is not typeable, or that it is ill typed, or that it
has a typing error.

We could further add a type rule with premises Γ ∫ M : Nat and Γ ∫ N : Bool, and
with conclusion Γ ∫ M+N : Nat (e.g., with the intent of interpreting true as 1). In such a
type system, a type could be inferred for the term 1+true, which would now be well
typed.

Thus, the type inference problem for a given term is very sensitive to the type sys-
tem in question. An algorithm for type inference may be very easy, very hard, or im-
possible to find, depending on the type system. If found, the best algorithm may be
very efficient, or hopelessly slow. Although type systems are expressed and often de-
signed in the abstract, their practical utility depends on the availability of good type in-
ference algorithms.

The type inference problem for explicitly typed procedural languages such as Pas-
cal is fairly easily solved; we treat it in section 8. The type inference problem for implic-
itly typed languages such as ML is much more subtle, and we do not treat it here. The
basic algorithm is well understood (several descriptions of it appear in the literature)
and is widely used. However, the versions of the algorithm that are used in practice are
complex and are still being investigated.

The type inference problem becomes particularly hard in the presence of polymor-
phism (discussed in section 5). The type inference problems for the explicitly typed
polymorphic features of Ada, CLU, and Standard ML are treatable in practice. Howev-
er, these problems are typically solved by algorithms, without first describing the as-
sociated type systems. The purest and most general type system for polymorphism is
embodied by a λ-calculus discussed in section 5. The type inference algorithm for this
polymorphic λ-calculus is fairly easy, and we present it in section 8. The simplicity of

 ∫ Q by (Env) ∫ Q by (Env)

 ∫ 1 : Nat by (Val n) ∫ 2 : Nat by (Val n)

 ∫ 1+2 : Nat by (Val +)

13

the solution, however, depends on impractically verbose typing annotations. To make
this general polymorphism practical, some type information has to be omitted. Such
type inference problems are still an area of active research.

Type soundness

We have now established all of the general notions concerning type systems, and we
can begin examining particular type systems. Starting in section 3, we review some
very powerful but rather theoretical type systems. The idea is that by first understand-
ing these few systems, it becomes easier to write the type rules for the varied and com-
plex features that one may encounter in programming languages.

When immersing ourselves in type rules, we should keep in mind that a sensible
type system is more than just an arbitrary collection of rules. Well typing is meant to
correspond to a semantic notion of good program behavior. It is customary to check the
internal consistency of a type system by proving a type soundness theorem. This is
where type systems meet semantics. In the notation of Chapter 141, for denotational se-
mantics we expect that if ∫ M : A is valid, then [M] Ï [A] holds (the value of M belongs
to the set of values denoted by the type A), and for operational semantics, we expect
that if ∫ M : A and M reduces to M’ then ∫ M’ : A. In both cases the type soundness
theorem asserts that well typed programs compute without execution errors. See [11,
33] for surveys of techniques, as well as state-of-the-art soundness proofs.

3 First-order Type Systems
The type systems found in most common procedural languages are called first order.
In type-theoretical jargon this means that they lack type parameterization and type ab-
straction, which are second order features. First-order type systems include (rather
confusingly) higher order functions. Pascal and Algol68 have rich first-order type sys-
tems, whereas FORTRAN and Algol60 have very poor ones.

A minimal first-order type system can be given for the untyped λ-calculus de-
scribed in Chapter 139. There, the untyped λ-abstraction λx.M represents a function of
parameter x and result M. Typing for this calculus requires only function types and
some base types; we will see later how to add other common type structures.

The first-order typed λ-calculus is called system F1. The main change from the un-
typed λ-calculus is the addition of type annotations for λ-abstractions, using the syntax
λx:A.M, where x is the function parameter, A is its type, and M is the body of the func-
tion. (In a typed programming language we would likely include the type of the result,
but this is not necessary here.) The step from λx.M to λx:A.M is typical of any progres-
sion from an untyped to a typed language: bound variables acquire type annotations.

Since F1 is based mainly on function values, the most interesting types are function
types: A→B is the type of functions with arguments of type A and results of type B. To
get started, though, we also need some basic types over which to build function types.
We indicate by Basic a collection of such types, and by KÏBasic any such type. At this

14

point basic types are purely a technical necessity, but shortly we will consider interest-
ing basic types such as Bool and Nat.

The syntax of F1 is given in Table 2. It is important to comment briefly on the role
of syntax in typed languages. In the case of the untyped λ-calculus, the context-free
syntax describes exactly the legal programs. This is not the case in typed calculi, since
good behavior is not (usually) a context-free property. The task of describing the legal
programs is taken over by the type system. For example, λx:K.x(y) respects the syntax
of F1 given in Table 2, but is not a program of F1 because it is not well typed, since K is
not a function type. The context-free syntax is still needed, but only in order to define
the notions of free and bound variables; that is, to define the scoping rules of the lan-
guage. Based on the scoping rules, terms that differ only in their bound variables, such
as λx:K.x and λy:K.y, are considered syntactically identical. This convenient identifica-
tion is implicitly assumed in the type rules (one may have to rename bound variables
in order to apply certain type rules).

Table 2. Syntax of F1

The definition of free variables for F1 is the same as for the untyped λ-calculus from
Chapter 139, simply ignoring the typing annotations.

We need only three simple judgments for F1; they are shown in Table 3. The judg-
ment Γ ∫ A is in a sense redundant, since all syntactically correct types A are automat-
ically well formed in any environment Γ. In second order systems, however, the well
formedness of types is not captured by grammar alone, and the judgement Γ ∫ A be-
comes essential. It is convenient to adopt this judgment now, so that later extensions
are easier.

Table 3. Judgments for F1

Validity for these judgments is defined by the rules in Table 4. The rule (Env) is
the only one that does not require assumptions (i.e., it is the only axiom). It states that
the empty environment is a valid environment. The rule (Env x) is used to extend an
environment Γ to a longer environment Γ, x:A, provided that A is a valid type in Γ.

A,B ::=
K KÏBasic
A→B

types
basic types
function types

M,N ::=
x
λx:A.M
M N

terms
variable
function
application

Γ ∫ Q

Γ ∫ A
Γ ∫ M : A

Γ is a well-formed environment
A is a well-formed type in Γ
M is a well-formed term of type A in Γ

15

Note that the assumption Γ ∫ A implies, inductively, that Γ is valid. That is, in the pro-
cess of deriving Γ ∫ A we must have derived Γ ∫ Q. Another requirement of this rule is
that the variable x must not be defined in Γ. We are careful to keep variables distinct in
environments, so that when Γ, x:A ∫ M : B has been derived, as in the assumption of
(Val Fun), we know that x cannot occur in dom(Γ).

Table 4. Rules for F1

The rules (Type Const) and (Type Arrow) construct types. The rule (Val x) extracts
an assumption from an environment: we use the notation Γ’, x:A, Γ”, rather informally,
to indicate that x:A occurs somewhere in the environment. The rule (Val Fun) gives the
type A→B to a function, provided that the function body receives the type B under the
assumption that the formal parameter has type A. Note how the environment changes
length in this rule. The rule (Val Appl) applies a function to an argument: the same type
A must appear twice when verifying the premises.

Table 5 shows a rather large derivation where all of the rules of F1 are used.

Table 5. A derivation in F1

(Env) (Env x)

Γ ∫ A xÌdom(Γ)

 ∫ Q Γ, x:A ∫ Q

(Type Const) (Type Arrow)

Γ ∫ Q KÏBasic Γ ∫ A Γ ∫ B

Γ ∫ K Γ ∫ A→B

(Val x) (Val Fun) (Val Appl)

Γ’, x:A, Γ” ∫ Q Γ, x:A ∫ M : B Γ ∫ M : A→B Γ ∫ N : A

Γ’, x:A, Γ” ∫ x:A Γ ∫ λx:A.M : A→B Γ ∫ M N : B

 ∫ Q by (Env) ∫ Q by (Env) ∫ Q by (Env) ∫ Q by (Env)

 ∫ K by (Type Const) ∫ K by (Type Const) ∫ K by (Type Const) ∫ K by (Type Const)

 ∫ K→K by (Type Arrow) ∫ K→K by (Type Arrow)

, y:K→K ∫ Q by (Env x) , y:K→K ∫ Q by (Env x)

, y:K→K ∫ K by (Type Const) , y:K→K ∫ K by (Type Const)

, y:K→K, z:K ∫ Q by (Env x) , y:K→K, z:K ∫ Q by (Env x)

, y:K→K, z:K ∫ y : K→K by (Val x) , y:K→K, z:K ∫ z : K by (Val x)

, y:K→K, z:K ∫ y(z) : K by (Val Appl)

, y:K→K ∫ λz:K.y(z) : K→K by (Val Fun)

16

Now that we have examined the basic structure of a simple first-order type system,
we can begin enriching it to bring it closer to the type structure of actual programming
languages. We are going to add a set of rules for each new type construction, following
a fairly regular pattern. We begin with some basic data types: the type Unit, whose only
value is the constant unit; the type Bool, whose values are true and false; and the type
Nat, whose values are the natural numbers.

The Unit type is often used as a filler for uninteresting arguments and results; it is
called Void or Null in some languages. There are no operations on Unit, so we need only
a rule stating that Unit is a legal type, and one stating that unit is a legal value of type
Unit (Table 6).

Table 6. Unit Type

We have a similar pattern of rules for Bool, but booleans also have a useful opera-
tion, the conditional, that has its own typing rule (Table 7). In the rule (Val Cond) the
two branches of the conditional must have the same type A, because either may pro-
duce the result.

The rule (Val Cond) illustrates a subtle issue about the amount of type information
needed for typechecking. When encountering a conditional expression, a typechecker
has to infer separately the types of N1 and N2, and then find a single type A that is com-
patible with both. In some type systems it might not be easy or possible to determine
this single type from the types of N1 and N2. To account for this potential typechecking
difficulty, we use a subscripted type to express additional type information: ifA is a hint
to the typechecker that the result type should be A, and that types inferred for N1 and
N2 should be separately compared with the given A. In general, we use subscripted
types to indicate information that may be useful or necessary for typechecking, de-
pending on the whole type system under consideration. It is often the task of a
typechecker to synthesize this additional information. When it is possible to do so, sub-
scripts may be omitted. (Most common languages do not require the annotation ifA.)

Table 7. Bool Type

(Type Unit) (Val Unit)

Γ ∫ Q Γ ∫ Q

Γ ∫ Unit Γ ∫ unit : Unit

(Type Bool) (Val True) (Val False)

Γ ∫ Q Γ ∫ Q Γ ∫ Q

Γ ∫ Bool Γ ∫ true : Bool Γ ∫ false : Bool

(Val Cond)

Γ ∫ M : Bool Γ ∫ N1 : A Γ ∫ N2 : A

Γ ∫ (ifA M then N1 else N2) : A

17

The type of natural numbers, Nat (Table 8), has 0 and succ (successor) as genera-
tors. Alternatively, as we did earlier, a single rule could state that all numeric constants
have type Nat. Computations on Nat are made possible by the pred (predecessor) and
isZero (test for zero) primitives; other sets of primitives can be chosen.

Table 8. Nat Type

Now that we have a collection of basic types, we can begin looking at structured
types, starting with product types (Table 9). A product type A1×A2 is the type of pairs of
values with first component of type A1 and second component of type A2. These com-
ponents can be extracted with the projections first and second, respectively. Instead of
(or in addition to) the projections, one can use a with statement that decomposes a pair
M and binds its components to two separate variables x1 and x2 in the scope N. The with
notation is related to pattern matching in ML, but also to Pascal’s with; the connection
with the latter will become clearer when we consider record types.

Product types can be easily generalized to tuple types A1×...×An, with correspond-
ing generalized projections and generalized with.

Table 9. Product Types

Union types (Table 10) are often overlooked, but are just as important as product
types for expressiveness. An element of a union type A1+A2 can be thought of as an el-
ement of A1 tagged with a left token (created by inLeft), or an element of A2 tagged with
a right token (created by inRight). The tags can be tested by isLeft and isRight, and the

(Type Nat) (Val Zero) (Val Succ)

Γ ∫ Q Γ ∫ Q Γ ∫ M : Nat

Γ ∫ Nat Γ ∫ 0 : Nat Γ ∫ succ M : Nat

(Val Pred) (Val IsZero)

Γ ∫ M : Nat Γ ∫ M : Nat

Γ ∫ pred M : Nat Γ ∫ isZero M : Bool

(Type Product) (Val Pair)

Γ ∫ A1 Γ ∫ A2 Γ ∫ M1 : A1 Γ ∫ M2 : A2

Γ ∫ A1×A2 Γ ∫ ÜM1,M2á : A1×A2

(Val First) (Val Second)

Γ ∫ M : A1×A2 Γ ∫ M : A1×A2

Γ ∫ first M : A1 Γ ∫ second M : A2

(Val With)

Γ ∫ M : A1×A2 Γ, x1:A1, x2:A2 ∫ N : B

Γ ∫ (with (x1:A1, x2:A2) := M do N) : B

18

corresponding value extracted with asLeft and asRight. If asLeft is mistakenly applied to
a right-tagged value, a trapped error or exception is produced; this trapped error is not
considered a forbidden error. Note that it is safe to assume that any result of asLeft has
type A1, because either the argument is left tagged, in which case the result is indeed of
type A1, or it is right tagged, in which case there is no result. Subscripts are used to dis-
ambiguate some of the rules, as we discussed in the case of the conditional.

The rule (Val Case) describes an elegant construct that can replace isLeft, isRight,
asLeft, asRight, and the related trapped errors. (It also eliminates any dependence of
union operations on the Bool type). The case construct executes one of two branches de-
pending on the tag of M, with the untagged contents of M bound to x1 or x2 in the scope
of N1 or N2, respectively. A vertical bar separates the branches.

Table 10. Union Types

In terms of expressiveness (if not of implementation) note that the type Bool can be
defined as Unit + Unit, in which case the case construct reduces to the conditional. The
type Int can be defined as Nat + Nat, with one copy of Nat for the nonnegative integers
and the other for the negative ones. We can define a prototypical trapped error as errorA

= asRight(inLeftA(unit)) : A. Thus, we can build an error expression for each type.
Product types and union types can be iterated to produce tuple types and multiple

unions. However, these derived types are rather inconvenient, and are rarely seen in
languages. Instead, labeled products and unions are used: they go under the names of
record types and variant types, respectively.

A record type is the familiar named collection of types, with a value-level opera-
tion for extracting components by name. The rules in Table 11 assume the syntactic
identification of record types and records up to reordering of their labeled components;

(Type Union) (Val inLeft) (Val inRight)

Γ ∫ A1 Γ ∫ A2 Γ ∫ M1 : A1 Γ ∫ A2 Γ ∫ A1 Γ ∫ M2 : A2

Γ ∫ A1+A2 Γ ∫ inLeftA2
 M1 : A1+A2 Γ ∫ inRightA1

 M2 : A1+A2

(Val isLeft) (Val isRight)

Γ ∫ M : A1+A2 Γ ∫ M : A1+A2

Γ ∫ isLeft M : Bool Γ ∫ isRight M : Bool

(Val asLeft) (Val asRight)

Γ ∫ M : A1+A2 Γ ∫ M : A1+A2

Γ ∫ asLeft M : A1 Γ ∫ asRight M : A2

(Val Case)

Γ ∫ M : A1+A2 Γ, x1:A1 ∫ N1 : B Γ, x2:A2 ∫ N2 : B

Γ ∫ (caseB M of x1:A1 then N1 | x2:A2 then N2) : B

19

this is analogous to the syntactic identification of functions up to renaming of bound
variables.

The with statement of product types is generalized to record types in (Val Record
With). The components of the record M labeled l1, ..., ln are bound to the variables x1,
..., xn in the scope of N. Pascal has a similar construct, also called with, but where the
binding variables are left implicit. (This has the rather unfortunate consequence of
making scoping depend on typechecking, and of causing hard-to-trace bugs due to
hidden variable clashes.)

Product types A1×A2 can be defined as Record(first:A1, second:A2).

Table 11. Record Types

Variant types (Table 12) are named disjoint unions of types; they are syntactically
identified up to reordering of components. The is l construct generalizes isLeft and is-
Right, and the as l construct generalizes asLeft and asRight. As with unions, these con-
structs may be replaced by a case statement, which has now multiple branches.

Union types A1+A2 can be defined as Variant(left:A1, right:A2). Enumeration types,
such as {red, green, blue}, can be defined as Variant(red:Unit, green:Unit, blue:Unit).

Table 12. Variant Types

(Type Record) (li distinct) (Val Record) (li distinct)

Γ ∫ A1 ... Γ ∫ An Γ ∫ M1 : A1 ... Γ ∫ Mn : An

Γ ∫ Record(l1:A1, ..., ln:An) Γ ∫ record(l1=M1, ..., ln=Mn) : Record(l1:A1, ..., ln:An)

(Val Record Select)

Γ ∫ M : Record(l1:A1, ..., ln:An) jÏ1..n

Γ ∫ M.lj : Aj

(Val Record With)

Γ ∫ M : Record(l1:A1, ..., ln:An) Γ, x1:A1, ..., xn:An ∫ N : B

Γ ∫ (with (l1=x1:A1, ..., ln=xn:An) := M do N) : B

(Type Variant) (li distinct) (Val Variant) (li distinct)

Γ ∫ A1 ... Γ ∫ An Γ ∫ A1 ... Γ ∫ An Γ ∫ Mj : Aj jÏ1..n

Γ ∫ Variant(l1:A1, ..., ln:An) Γ ∫ variant(l1:A1, ..., ln:An)(lj=Mj) : Variant(l1:A1, ..., ln:An)

(Val Variant Is)

Γ ∫ M : Variant(l1:A1, ..., ln:An) jÏ1..n

Γ ∫ M is lj : Bool

(Val Variant As)

Γ ∫ M : Variant(l1:A1, ..., ln:An) jÏ1..n

Γ ∫ M as lj : Aj

20

Reference types (Table 13) can be used as the fundamental type of mutable loca-
tions in imperative languages. An element of Ref(A) is a mutable cell containing an el-
ement of type A. A new cell can be allocated by (Val Ref), updated by (Val Assign), and
explicitly dereferenced by (Val Deref). Since the main purpose of an assignment is to
perform a side effect, its resulting value is chosen to be unit.

Table 13. Reference Types

Common mutable types can be derived from Ref. Mutable record types, for exam-
ple, can be modeled as record types containing Ref types.

Table 14. An implementation of arrays

(Val Variant Case)

Γ ∫ M : Variant(l1:A1, ..., ln:An) Γ, x1:A1 ∫ N1 : B ... Γ, xn:An ∫ Nn : B

Γ ∫ (caseB M of l1=x1:A1 then N1 | ... | ln=xn:An then Nn) : B

(Type Ref) (Val Ref)

Γ ∫ A Γ ∫ M : A

Γ ∫ Ref A Γ ∫ ref M : Ref A

(Val Deref) (Val Assign)

Γ ∫ M : Ref A Γ ∫ M : Ref A Γ ∫ N : A

Γ ∫ deref M : A Γ ∫ M := N : Unit

Array(A) @ Array type
Nat × (Nat→Ref(A)) a bound plus a map from indices

less than the bound to refs

arrayA(N,M) @ Array constructor (for N refs initialized to M)
let cell0 : Ref(A) = ref(M) and ... and cellN-1 : Ref(A) = ref(M)
in ÜN, λx:Nat. if x=0 then cell0 else if ... else if x=N-1 then cellN-1 else errorRef(A)á

bound(M) @ Array bound
first M

M[N]A @ Array indexing
if N < first M
then deref ((second M)(N))
else errorA

M[N] := P @ Array update
if N < first M
then ((second M)(N)) := P
else errorUnit

21

More interestingly, arrays and array operations can be modeled as in Table 14,
where Array(A) is the type of arrays of elements of type A of some length. (The code
uses some arithmetic primitives and local let declarations.) The code in Table 14 is of
course an inefficient implementation of arrays, but it illustrates a point: the type rules
for more complex constructions can be derived from the type rule for simpler construc-
tions. The typing rules for array operations shown in Table 15 can be easily derived
from Table 14, according to the rules for products, functions, and refs.

Table 15. Array Types (derived rule)

In most programming language, types can be defined recursively. Recursive types
are important, since they make all of the other type constructions more useful. They are
often introduced implicitly, or without precise explanation, and their characteristics
are rather subtle. Hence, their formalization deserves particular care.

The treatment of recursive types requires a rather fundamental addition to F1: en-
vironments are extended to include type variables X. These type variables are used in
recursive types of the form µX.A (Table 16), which intuitively denote solutions to re-
cursive equations of the form X=A where X may occur in A. The operations unfold and
fold are explicit coercions that map between a recursive type µX.A and its unfolding
[µX.A/X]A (where [B/X]A is the substitution of B for all free occurrences of X in A),
and vice versa. These coercions do not have any run time effect (in the sense that un-
fold(fold(M))=M and fold(unfold(M’))=M’). They are usually omitted from the syntax of
practical programming languages, but their existence makes formal treatment easier.

Table 16. Recursive Types

(Type Array)

Γ ∫ A

Γ ∫ Array(A)

(Val Array) (Val Array Bound)

Γ ∫ N : Nat Γ ∫ M : A Γ ∫ M : Array(A)

Γ ∫ array(N,M) : Array(A) Γ ∫ bound M : Nat

(Val Array Index) (Val Array Update)

Γ ∫ N : Nat Γ ∫ M: Array(A) Γ ∫ N : Nat Γ ∫ M : Array(A) Γ ∫ P : A

Γ ∫ M[N] : A Γ ∫ M[N] := P : Unit

(Env X) (Type X) (Type Rec)

Γ ∫ Q XÌdom(Γ) Γ’, X, Γ” ∫ Q Γ, X ∫ A

Γ, X ∫ Q Γ’, X, Γ” ∫ X Γ ∫ µX.A

22

A standard application of recursive types is in defining types of lists and trees, in
conjunction with products and union types. The type ListA of lists of elements of type
A is defined in Table 17, together with the list constructors nil and cons, and the list an-
alyzer listCase.

Table 17. List Types

Recursive types can be used together with record and variant types, to define com-
plex tree structures such as abstract syntax trees. The case and with statements can then
be used to analyze these trees conveniently.

When used in conjunction with function types, recursive types are surprisingly ex-
pressive. Via clever encodings, one can show that recursion at the value level is already
implicit in recursive types: there is no need to introduce recursion as a separate con-
struct. Moreover, in the presence of recursive types, untyped programming can be car-
ried out within typed languages. More precisely, Table 18 shows how to define, for any
type A, a divergent element ®A of that type, and a fixpoint operator íA for that type.
Table 19 shows how to encode the untyped λ-calculus within typed calculi. (These en-
coding are for call-by-name; they take slightly different forms in call-by-value.)

Table 18. Encoding of Divergence and Recursion via Recursive Types

Table 19. Encoding the Untyped λ-calculus via Recursive Types

(Val Fold) (Val Unfold)

Γ ∫ M : [µX.A/X]A Γ ∫ M : µX.A

Γ ∫ foldµX.A M : µX.A Γ ∫ unfoldµX.A M : [µX.A/X]A

ListA @ µX.Unit+(A×X)

nilA : ListA @ fold(inLeft unit)

consA : A→ListA→ListA @ λhd:A. λtl:ListA. fold(inRight Ühd,tlá)

listCaseA,B : ListA→B→(A×ListA→B)→B @

λl:ListA. λn:B. λc:A×ListA→B.
case (unfold l) of unit:Unit then n | p:A×ListA then c p

®A : A @ (λx:B. (unfoldB x) x) (foldB (λx:B. (unfoldB x) x))

íA : (A→A)→A @ λ f:A→A. (λx:B. f ((unfoldB x) x)) (foldB (λx:B. f ((unfoldB x) x)))

where B 7 µX.X→A, for an arbitrary A

V @ µX.X→X the type of untyped λ-terms

äxã @ x translation ä-ã from untyped λ-terms to V elements
äλx.Mã @ foldV (λx:V.äMã)
äM Nã @ (unfoldV äMã) äNã

23

Type equivalence becomes particularly interesting in the presence of recursive
types. We have sidestepped several problems here by not dealing with type defini-
tions, by requiring explicit fold unfold coercions between a recursive type and its un-
folding, and by not assuming any identifications between recursive types except for
renaming of bound variables. In the current formulation we do not need to define a for-
mal judgment for type equivalence: two recursive types are equivalent simply if they
are structurally identical (up to renaming of bound variables). This simplified ap-
proach can be extended to include type definitions and type equivalence up to unfold-
ing of recursive types [2].

4 First-order Type Systems for Imperative Languages
Imperative languages have a slightly different style of type systems, mostly because
they distinguish commands, which do not produce values, from expressions, which do
produce values. (It is quite possible to reduce commands to expressions by giving them
type Unit, but we prefer to remain faithful to the natural distinction.)

As an example of a type system for an imperative language, we consider the un-
typed imperative language of Chapter 141 extended with variable declarations. This
language permits us to study type rules for declarations, which we have not considered
so far. The treatment of procedures and data types is very rudimentary in this lan-
guage, but the rules for functions and data described in section 3 can be easily adapted.

The meaning of the features of the imperative language should be self-evident. If
not, the reader is advised to skip section 4, and come back to it after reading a portion
of Chapter 141.

Table 20. Syntax of the imperative language

A ::=
Bool
Nat
Proc

types
boolean type
natural numbers type
procedure type (no arguments, no result)

D ::=
proc I = C
var I : A = E

declarations
procedure declaration
variable declaration

C ::=
I := E
C1; C2

begin D in C end
call I
while E do C end

commands
assignment
sequential composition
block
procedure call
while loop

24

The judgments for our imperative language are listed in Table 21. The judgments
Γ ∫ C and Γ ∫ E : A correspond to the single judgment Γ ∫ M : A of F1, since we now
have a distinction between commands C and expressions E. The judgment Γ ∫ D a S
assigns a signature S to a declaration D; a signature is essentially the type of a declara-
tion. In this simple language a signature consists of a single component, for example x
: Nat, and a matching declaration could be var x : Nat = 3. In general, signatures would
consist of lists of such components, and would look very similar or identical to envi-
ronments Γ.

Table 21. Judgments for the imperative language

Table 22 lists the type rules for the imperative language.

Table 22. Type rules for the imperative language

E ::=
I
N
E1 + E2

E1 not= E2

expressions
identifier
numeral
sum of two numbers
inequality of two numbers

Γ ∫ Q

Γ ∫ A
Γ ∫ C
Γ ∫ E : A
Γ ∫ D a S

Γ is a well-formed environment
A is a well-formed type in Γ
C is a well-formed command in Γ
E is a well-formed expression of type A in Γ
D is a well-formed declaration of signature S in Γ

(Env) (Env I)

Γ ∫ A IÌdom(Γ)

 ∫ Q Γ, I:A ∫ Q

(Type Bool) (Type Nat) (Type Proc)

Γ ∫ Q Γ ∫ Q Γ ∫ Q

Γ ∫ Bool Γ ∫ Nat Γ ∫ Proc

(Decl Proc) (Decl Var)

Γ ∫ C Γ ∫ E : A AÏ{Bool,Nat}

Γ ∫ (proc I = C) a (I : Proc) Γ ∫ (var I : A = E) a (I : A)

(Comm Assign) (Comm Sequence)

Γ ∫ I : A Γ ∫ E : A Γ ∫ C1 Γ ∫ C2

Γ ∫ I := E Γ ∫ C1 ; C2

25

The rules (Env ...), (Type ...), and (Expr ...) are straightforward variations on the
rules we have seen for F1. The rules (Decl ...) handle the typing of declarations. The
rules (Comm ...) handle commands; notice how (Comm Block) converts a signature to
a piece of an environment when checking the body of a block.

5 Second-order Type Systems
Many modern languages include constructs for type parameters, type abstraction, or
both. Type parameters can be found in the module system of several languages, where
a generic module or interface is parameterized by a type to be supplied later. Polymor-
phic languages such as ML use type parameters more pervasively, at the function level.
Type abstraction can similarly be found in conjunction with modules, where it appears
as opaque types in interfaces. Languages such as CLU use type abstraction at the data
level, to obtain abstract data types. These advanced features can be modeled by so-
called second-order type systems.

Second-order type systems extend first-order type systems with the notion of type
parameters. A new kind of term, written λX.M, indicates a program M that is parame-
terized with respect to a type variable X that stands for an arbitrary type. For example,
the identity function for a fixed type A, written λx:A.x, can be turned into a parametric
identity function by abstracting over A and writing id @ λX.λx:X.x. One can then instan-
tiate such a parametric function to any given type A by a type instantiation id A, which
produces back λx:A.x.

Corresponding to the new terms λX.M we need new universally quantified types.
The type of a term such as λX.M is written ÓX.A, meaning that forall X, the body M has
type A (here M and A may contain occurrences of X). For example, the type of the para-
metric identity is id : ÓX.X→X.

The pure second-order system F2 (Table 23) is based exclusively on type variables,
function types, and quantified types. Note that we are dropping the basic types K, since
we can now use type variables as the basic case. It turns out that virtually any basic
type of interest can be encoded within F2 [4]. Similarly, product types, sum types, exis-

(Comm Block) (Comm Call) (Comm While)

Γ ∫ D a (I : A) Γ, I:A ∫ C Γ ∫ I : Proc Γ ∫ E : Bool Γ ∫ C

Γ ∫ begin D in C end Γ ∫ call I Γ ∫ while E do C end

(Expr Identifier) (Expr Numeral)

Γ1, I:A, Γ2 ∫ Q Γ ∫ Q

Γ1, I:A, Γ2 ∫ I : A Γ ∫ N : Nat

(Expr Plus) (Expr NotEq)

Γ ∫ E1 : Nat Γ ∫ E2 : Nat Γ ∫ E1 : Nat Γ ∫ E2 : Nat

Γ ∫ E1 + E2 : Nat Γ ∫ E1 not= E2 : Bool

26

tential types, and some recursive types, can be encoded within F2: polymorphism has
an amazing expressive power. Thus there is little need, technically, to deal with these
type constructions directly.

Table 23. Syntax of F2

Free variables for F2 types and terms can be defined in the usual fashion; suffice it
to say that ÓX.A binds X in A and λX.M binds X in M. An interesting aspect of F2 is the
substitution of a type for a type variable that is carried out in the type rule for type in-
stantiation, (Val Appl2).

Table 24. Judgments for F2

Table 25. Rules for F2

A,B ::=
X
A→B
ÓX.A

types
type variable
function type
universally quantified type

M,N ::=
x
λx:A.M
M N
λX.M
M A

terms
variable
function
application
polymorphic abstraction
type instantiation

Γ ∫ Q

Γ ∫ A
Γ ∫ M : A

Γ is a well-formed environment
A is a well-formed type in Γ
M is a well-formed term of type A in Γ

(Env) (Env x) (Env X)

Γ ∫ A xÌdom(Γ) Γ ∫ Q XÌdom(Γ)

 ∫ Q Γ, x:A ∫ Q Γ, X ∫ Q

(Type X) (Type Arrow) (Type Forall)

Γ’, X, Γ” ∫ Q Γ ∫ A Γ ∫ B Γ, X ∫ A

Γ’, X, Γ” ∫ X Γ ∫ A→B Γ ∫ ÓX.A

(Val x) (Val Fun) (Val Appl)

Γ’, x:A, Γ” ∫ Q Γ,x:A ∫ M : B Γ ∫ M : A→B Γ ∫ N : A

Γ’, x:A, Γ” ∫ x:A Γ ∫ λx:A.M : A→B Γ ∫ M N : B

27

The judgments for F2 (Table 24) are the same ones as for F1, but the environments
are richer. With respect to F1, the new rules (Table 25), are: (Env X), which adds a type
variable to the environment; (Type Forall), which constructs a quantified type ÓX.A
from a type variable X and a type A where X may occur; (Val Fun2), which builds a
polymorphic abstraction; and (Val Appl2), which instantiates a polymorphic abstrac-
tion to a given type, where [B/X]A is the substitution of B for all the free occurrences
of X in A. For example, if id has type ÓX.X→X and A is a type, then by (Val Appl2) we
have that id A has type [A/X](X→X) 7 A→A. As a simple but instructive exercise, the
reader may want to build the derivation for id(ÓX.X→X)(id).

As extensions of F2 we could adopt all the first-order constructions that we already
discussed for F1. A more interesting extension to consider is existentially quantified
types, also known as type abstractions:

Table 26. Existential types

To illustrate the use of existentials, we consider an abstract type for booleans. As
we said earlier, booleans can be represented as the type Unit+Unit. We can now show
how to hide this representation detail from a client who does not care how booleans are
implemented, but who wants to make use of true, false and cond (conditional). We first
define an interface for such a client to use,

This interface declares that there exists a type Bool (without revealing its identity) that
supports the operations true, false and cond of appropriate types. The conditional is pa-
rameterized with respect to its result type Y, which may vary depending of the context
of usage.

Next we define a particular implementation of this interface; one that represents
Bool as Unit+Unit, and that implements the conditional via a case statement. The bool-
ean representation type and the related boolean operations are packaged together by
the pack construct.

(Val Fun2) (Val Appl2)

Γ, X ∫ M : A Γ ∫ M : ÓX.A Γ ∫ B

Γ ∫ λX.M : ÓX.A Γ ∫ M B : [B/X]A

(Type Exists) (Val Pack)

Γ, X ∫ A Γ ∫ [B/X]M : [B/X]A

Γ ∫ ÔX.A Γ ∫ (packÔX.A X=B with M) : ÔX.A

(Val Open)

Γ ∫ M : ÔX.A Γ, X, x:A ∫ N : B Γ ∫ B

Γ ∫ (openB M as X, x:A in N) : B

BoolInterface @ ÔBool. Record(true: Bool, false: Bool, cond: ÓY. Bool→Y→Y→Y)

28

Finally, a client could make use of this module by opening it, and thus getting ac-
cess to an abstract name Bool for the boolean type, and a name boolOp for the record of
boolean operations. These names are used in the next example for a simple computa-
tion that returns a natural number. (The computation following in is, essentially, if bool-
Op.true then 1 else 0.)

The reader should verify that these examples typecheck according to the rules previ-
ously given. Note the critical third assumption of (Val Open) that forbids writing, for
example, boolOp.true as the body of open in the preceeding example. Because of that as-
sumption, the abstract name of the representation type (Bool) cannot escape the scope
of open, and therefore values having the representation type cannot escape either. A re-
striction of this kind is necessary, otherwise the representation type might become
known to clients.

6 Subtyping
Typed object-oriented languages have particularly interesting and complex type sys-
tems. There is little consensus about what characterizes these languages, but at least
one feature is almost universally present: subtyping. Subtyping captures the intuitive
notion of inclusion between types, where types are seen as collections of values. An el-
ement of a type can be considered also as an element of any of its supertypes, thus al-
lowing a value (object) to be used flexibly in many different typed contexts.

When considering a subtyping relation, such as the one found in object-oriented
programming languages, it is customary to add a new judgment Γ ∫ A <: B stating that
A is a subtype of B. The intuition is that any element of A is an element of B or, more
appropriately, any program of type A is also a program of type B.

One of the simplest type systems with subtyping is an extension of F1 called F1<:.
The syntax of F1 is unchanged, except for the addition of a type Top that is a supertype
of all types. The existing type rules are also unchanged. The subtyping judgment is in-
dependently axiomatized, and a single type rule, called subsumption, is added to con-
nect the typing judgment to the subtyping judgment.

boolModule : BoolInterface @
packBoolInterface Bool=Unit+Unit
with record(

true = inLeft(unit),
false = inRight(unit),
cond = λY. λx:Bool. λy1:Y. λy2:Y.

caseY x of x1:Unit then y1 | x2:Unit then y2)

openNat boolModule
as Bool, boolOp:Record(true: Bool, false: Bool, cond: ÓY. Bool→Y→Y→Y)
in boolOp.cond(Nat)(boolOp.true)(1)(0)

29

Table 27. Judgments for type systems with subtyping

The subsumption rule states that if a term has type A, and A is a subtype of B, then
the term also has type B. That is, subtyping behaves very much like set inclusion, when
type membership is seen as set membership.

The subtyping relation in Table 28 is defined as a reflexive and transitive relation
with a maximal element called Top, which is therefore interpreted as the type of all well
typed terms.

The subtype relation for function types says that A→B is a subtype of A’→B’ if A’
is a subtype of A, and B is a subtype of B’. Note that the inclusion is inverted (contra-
variant) for function arguments, while it goes in the same direction (covariant) for
function results. Simple-minded reasoning reveals that this is the only sensible rule. A
function M of type A→B accepts elements of type A; obviously it also accepts elements
of any subtype A’ of A. The same function M returns elements of type B; obviously it
returns elements that belong to any supertype B’ of B. Therefore, any function M of
type A→B, by virtue of accepting arguments of type A’ and returning results of type B’,
has also type A’→B’. The latter is compatible with saying that A→B is a subtype of
A’→B’.

In general, we say that a type variable occurs contravariantly within another type
of F1, if it always occurs on the left of an odd number of arrows (double contravariance
equals covariance). For example, X→Unit and (Unit→X)→Unit are contravariant in X,
whereas Unit→X and (X→Unit)→X are covariant in X.

Table 28. Additional rules for F1<:

Ad hoc subtyping rules can be added on basic types, such as Nat <: Int [19].
All of the structured types we considered as extensions of F1 admit simple subtyp-

ing rules; therefore, these structured types can be added to F1<: as well (Table 29). Typ-
ically, we need to add a single subtyping rule for each type constructor, taking care that
the subtyping rule is sound in conjunction with subsumption. The subtyping rules for
products and unions work componentwise. The subtyping rules for records and vari-

Γ ∫ Q

Γ ∫ A
Γ ∫ A <: B
Γ ∫ M : A

Γ is a well-formed environment
A is a well-formed type in Γ
A is a subtype of B in Γ
M is a well-formed term of type A in Γ

(Sub Refl) (Sub Trans) (Val Subsumption)

Γ ∫ A Γ ∫ A <: B Γ ∫ B <: C Γ ∫ a : A Γ ∫ A <: B

Γ ∫ A <: A Γ ∫ A <: C Γ ∫ a : B

(Type Top) (Sub Top) (Sub Arrow)

Γ ∫ Q Γ ∫ A Γ ∫ A’ <: A Γ ∫ B <: B’

Γ ∫ Top Γ ∫ A <: Top Γ ∫ A→B <: A’→B’

30

ants operate also lengthwise: a longer record type is a subtype of a shorter record type
(additional fields can be forgotten by subtyping), whereas a shorter variant type is a
subtype of a longer variant type (additional cases can be introduced by subtyping). For
example,

Then,

Reference types do not have any subtyping rule: Ref(A) <: Ref(B) holds only if A=B
(in which case Ref(A) <: Ref(B) follows from reflexivity). This strict rule is necessary be-
cause references can be both read and written, and hence behave both covariantly and
contravariantly. For the same reason, array types have no additional subtyping rules.

Table 29. Additional rules for extensions of F1<:

As was the case for F1, a change to the structure of environments is necessary when
considering recursive types. This time, we must add bounded variables to environments
(Table 30). Variables bound by Top correspond to our old unconstrained variables. The
soundness of the subtyping rule (Sub Rec) for recursive types (Table 31) is not obvious,
but the intuition is fairly straightforward. To check whether µX.A <: µY.B we assume
X<:Y and we check A <: B; the assumption helps us when finding matching occurrenc-
es of X and Y in A and B, as long as they are in covariant contexts. A simpler rule asserts
that µX.A <: µX.B whenever A <: B for any X, but this rule is unsound when X occurs
in contravariant contexts (e.g., immediately on the left of an arrow).

WorkingAge @ Variant(student: Unit, adult: Unit)
Age @ Variant(child: Unit, student: Unit, adult: Unit, senior: Unit)
Worker @ Record(name: String, age: WorkingAge, profession: String)
Person @ Record(name: String, age: Age)

WorkingAge <: Age
Worker <: Person

(Sub Product) (Sub Union)

Γ ∫ A1 <: B1 Γ ∫ A2 <: B2 Γ ∫ A1 <: B1 Γ ∫ A2 <: B2

Γ ∫ A1×A2 <: B1×B2 Γ ∫ A1+A2 <: B1+B2

(Sub Record) (li distinct)

Γ ∫ A1 <: B1 ... Γ ∫ An <: Bn Γ ∫ An+1 ... Γ ∫ An+m

Γ ∫ Record(l1:A1, ..., ln+m:An+m) <: Record(l1:B1, ..., ln:Bn)

(Sub Variant) (li distinct)

Γ ∫ A1 <: B1 ... Γ ∫ An <: Bn Γ ∫ Bn+1 ... Γ ∫ Bn+m

Γ ∫ Variant(l1:A1, ..., ln:An) <: Variant(l1:B1, ..., ln+m:Bn+m)

31

Table 30. Environments with bounded variables

Table 31. Subtyping recursive types

The bounded variables in environments are also the basis for the extension of F2

with subtyping, which gives a system called F2<:. In this system the term λX<:A.M in-
dicates a program M parameterized with respect to a type variable X that stands for an
arbitrary subtype of A. This is a generalization of F2, since the F2 term λX.M can be rep-
resented as λX<:Top.M. Corresponding to the terms λX<:A.M, we have bounded type
quantifiers of the form ÓX<:A.B.

Table 32. Syntax of F2<:

Scoping for F2<: types and terms is defined similarly to F2, except that ÓX<:A.B
binds X in B but not in A, and λX<:A.M binds X in M but not in A.

The type rules for F2<: consist of most of the type rules for F1<: (namely, (Env),
(Env x), (Type Top), (Type Arrow), (Sub Refl), (Sub Trans), (Sub Top), (Sub Arrow),
(Val Subsumption), (Val x), (Val Fun), and (Val Appl)), plus the rules for bounded vari-
ables (namely, (Env X<:), (Type X<:), and (Sub X<:)), and the ones listed in Table 33 for
bounded polymorphism.

(Env X<:) (Type X<:) (Sub X<:)

Γ ∫ A XÌdom(Γ) Γ’, X<:A, Γ” ∫ Q Γ’, X<:A, Γ” ∫ Q

Γ, X<:A ∫ Q Γ’, X<:A, Γ” ∫ X Γ’, X<:A, Γ” ∫ X<:A

(Type Rec) (Sub Rec)

Γ, X<:Top ∫ A Γ ∫ µX.A Γ ∫ µY.B Γ, Y<:Top, X<:Y ∫ A <: B

Γ ∫ µX.A Γ ∫ µX.A <: µY.B

A,B ::=
X
Top
A→B
ÓX<:A.B

types
type variable
the biggest type
function type
bounded universally quantified type

M,N ::=
x
λx:A.M
M N
λX<:A.M
M A

terms
variable
function
application
bounded polymorphic abstraction
type instantiation

32

Table 33. Rules for bounded universal quantifiers

As for F2, we do not need to add other type constructions to F2<:, since all of the
common ones can be expressed within it (except for recursion). Moreover, it turns out
that the encodings used for F2 satisfy the expected subtyping rules. For example, it is
possible to encode bounded existential types so that the rules described in Table 34 are
satisfied. The type ÔX<:A.B represents a partially abstract type, whose representation
type X is not completely known, but is known to be a subtype of A. This kind of partial
abstraction occurs in some languages based on subtyping (e.g., in Modula-3).

Table 34. Rules for bounded existential quantifiers (derivable)

Some nontrivial work is needed to obtain encodings of record and variant types in
F2<: that satisfy the expected subtyping rules, but even those can be found [6].

7 Equivalence
For simplicity, we have avoided describing certain judgments that are necessary when
type systems become complex and when one wishes to capture the semantics of pro-
grams in addition to their typing. We briefly discuss some of these judgments.

A type equivalence judgment, of the form Γ ∫ A = B, can be used when type equiva-
lence is nontrivial and requires precise description. For example, some type systems
identify a recursive type and its unfolding, in which case we would have Γ ∫ µX.A =

(Type Forall<:) (Sub Forall<:)
Γ, X<:A ∫ B Γ ∫ A’ <: A Γ, X<:A’ ∫ B <: B’

Γ ∫ ÓX<:A.B Γ ∫ (ÓX<:A.B) <: (ÓX<:A’.B’)

(Val Fun2<:) (Val Appl2<:)

Γ, X<:A ∫ M : B Γ ∫ M : ÓX<:A.B Γ ∫ A’ <: A

Γ ∫ λX<:A.M : ÓX<:A.B Γ ∫ M A’ : [A’/X]B

(Type Exists<:) (Sub Exists<:)
Γ, X<:A ∫ B Γ ∫ A <: A’ Γ, X<:A ∫ B <: B’

Γ ∫ ÔX<:A.B Γ ∫ (ÔX<:A.B) <: (ÔX<:A’.B’)

(Val Pack<:)

Γ ∫ C <: A Γ ∫ [C/X]M : [C/X]B

Γ ∫ (packÔX<:A.B X<:A=C with M) : ÔX<:A.B

(Val Open<:)

Γ ∫ M : ÔX<:A.B Γ ∫ D Γ, X<:A, x:B ∫ N : D

Γ ∫ (openD M as X<:A, x:B in N) : D

33

[µX.A/X]A whenever Γ ∫ µX.A. As another example, type systems with type operators
λX.A (functions from types to types) have a reduction rule for operator application of
the form Γ ∫ (λX.A) B = [A/X]B. The type equivalence judgment is usually employed
in a retyping rule stating that if Γ ∫ M : A and Γ ∫ A = B then Γ ∫ M : B.

A term equivalence judgment determines which programs are equivalent with re-
spect to a common type. It has the form Γ ∫ M = N : A. For example, with appropriate
rules we could determine that Γ ∫ 2+1 = 3 : Int. The term equivalence judgment can be
used to give a typed semantics to programs: if N is an irreducible expression, then we
can consider N as the resulting value of the program M.

8 Type inference
Type inference is the problem of finding a type for a term within a given type system,
if any type exists. In the type systems we have considered earlier, programs have abun-
dant type annotations. Thus, the type inference problem often amounts to little more
than checking the mutual consistency of the annotations. The problem is not always
trivial but, as in the case of F1, simple typechecking algorithms may exist.

A harder problem, called typability or type reconstruction, consists in starting with
an untyped program M, and finding an environment Γ, a type-annotated version M’ of
M, and a type A such that A is a type for M’ with respect to Γ. (A type-annotated pro-
gram M’ is simply one that stripped of all type annotations reduces back to M.) The
type reconstruction problem for the untyped λ-calculus is solvable within F1 by the
Hindley-Milner algorithm used in ML [17]; in addition, that algorithm has the property
of producing a unique representation of all possible F1 typings of a λ-term. The type
reconstruction problem for the untyped λ-calculus, however, is not solvable within F2

[31]. Type reconstruction within systems with subtyping is still largely an open prob-
lem, although special solutions are beginning to emerge [1, 10, 13, 24].

We concentrate here on the type inference algorithms for some representative sys-
tems: F1, F2, and F2<:. The first two systems have the unique type property: if a term has
a type it has only one type. In F2<: there are no unique types, simply because the sub-
sumption rule assigns all of the supertypes of a type to any term that has that type.
However, a minimum type property holds: if a term has a collection of types, that col-
lection has a least element in the subtype order [8]. The minimum type property holds
for many common extensions of F2<: and of F1<: but may fail in the presence of ad-hoc
subtypings on basic types.

The type inference problem

In a given type system, given an environment Γ and a term M is there a type A such
that Γ ∫ M : A is valid? The following are examples:

• In F1, given M 7 λx:K.x and any well-formed Γ we have that Γ ∫ M : K→K.

• In F1, given M 7 λx:K.y(x) and Γ 7 Γ’, y:K→K we have that Γ ∫ M : K→K.

• In F1, there is no typing for λx:B.x(x), for any type B.

34

• However, in F1<: there is the typing Γ ∫ λx:Top→B.x(x) : (Top→B)→B, for any
type B, since x can also be given type Top.

• Moreover, in F1 with recursive types, there is the typing Γ ∫ λx:B.(unfoldB x)(x) :
B→B, for B 7 µX.X→X, since unfoldB x has type B→B.

• Finally, in F2 there is the typing Γ ∫ λx:B. x(B)(x) : B→B, for B 7 ÓX.X→X, since
x(B) has type B→B.

(An alternative formulation of the type inference problem requires Γ to be found, in-
stead of given. However, in programming practice one is interested only in type infer-
ence for programs embedded in a complete programming context, where Γ is therefore
given.)

We begin with the type inference algorithm for pure F1, given in Table 35. The al-
gorithm can be extended in straightforward ways to all of the first-order type struc-
tures studied earlier. This is the basis of the typechecking algorithms used in Pascal and
all similar procedural languages.

The main routine Type(Γ, M), takes an environment Γ and a term M and produces
the unique type of M, if any. The instruction fail causes a global failure of the algorithm:
it indicates a typing error. In this algorithm, as in the ones that follow, we assume that
the initial environment parameter Γ is well formed so as to rule out the possibility of
feeding invalid environments to internal calls. (For example, we may start with the
empty environment when checking a full program.) In any case, it is easy to write a
subroutine that checks the well formedness of an environment, from the code we pro-
vide. The case for λx:A.M should have a restriction requiring that x Ì dom(Γ), since x is
used to extend Γ. However, this restriction can be easily sidestepped by renaming, e.g.,
by making all binders unique before running the algorithm. We omit this kind of re-
strictions from Tables 35, 36, and 37.

Table 35. Type inference algorithm for F1

As an example, let us consider the type inference problem for term λz:K.y(z) in the
environment , y:K→K, for which we gave a full F1 derivation in section 3. The algo-
rithm proceeds as follows:

Type(Γ, x) @

if x:A Ï Γ for some A then A else fail
Type(Γ, λx:A.M) @

A→Type((Γ, x:A), M)
Type(Γ, M N) @

if Type(Γ, M) 7 Type(Γ, N)→B for some B then B else fail

Type((, y:K→K), λz:K.y(z))
= K→Type((, y:K→K, z:K), y(z))
= K→(if Type((, y:K→K, z:K), y) 7 Type((, y:K→K, z:K), z)→B for some B

then B else fail)

35

The type inference algorithm for F2 (Table 36) is not much harder than the one for
F1, but it requires a subroutine Good(Γ, A) to verify that the types encountered in the
source program are well formed. This check is necessary because types in F2 contain
type variables that might be unbound. A substitution subroutine must also be used in
the type instantiation case, M A.

Table 36. Type inference algorithm for F2

The type inference algorithm for F2<:, given in Table 37, is more subtle. The subrou-
tine Subtype(Γ, A, B) attempts to decide whether A is a subtype of B in Γ, and is at first
sight straightforward. It has been shown, though, that Subtype is only a semialgorithm:
it may diverge on certain pairs A,B that are not in subtype relation. That is, the
typechecker for F2<: may diverge on ill typed programs, although it will still converge
and produce a minimum type for well typed programs. More generally, there is no de-
cision procedure for subtyping: the type system for F2<: is undecidable [25]. Several at-
tempts have been made to cut F2<: down to a decidable subset; the simplest solution at
the moment consists in requiring equal quantifiers bounds in (Sub Forall<:). In any
case, the bad pairs A,B are extremely unlikely to arise in practice. The algorithm is still
sound in the usual sense: if it finds a type, the program will not go wrong. The only
troublesome case is in the subtyping of quantifiers; the restriction of the algorithm to
F1<: is decidable and produces minimum types.

Table 37. Type inference algorithm for F2<:

= K→(if K→K 7 K→B for some B then B else fail) (taking B7K)
= K→K

Good(Γ, X) @ X Ï dom(Γ)
Good(Γ, A→B) @ Good(Γ, A) and Good(Γ, B)
Good(Γ, ÓX. A) @ Good((Γ, X), A)

Type(Γ, x) @

if x:A Ï Γ for some A then A else fail
Type(Γ, λx:A.M) @

if Good(Γ, A) then A→Type((Γ, x:A), M) else fail
Type(Γ, M N) @

if Type(Γ, M) 7 Type(Γ, N)→B for some B then B else fail
Type(Γ, λX.M) @

ÓX. Type((Γ, X), M)
Type(Γ, M A) @

if Type(Γ, M) 7 ÓX.B for some X,B and Good(Γ, A) then [A/X]B else fail

Good(Γ, X) @ X Ï dom(Γ)
Good(Γ, Top) @ true
Good(Γ, A→B) @ Good(Γ, A) and Good(Γ, B)
Good(Γ, ÓX<:A. B) @ Good(Γ, A) and Good((Γ, X<:A), B)

36

F2<: provides an interesting example of the anomalies one may encounter in type
inference. The type inference algorithm given above is theoretically undecidable but is
practically applicable. It is convergent and efficient on virtually all programs one may
encounter; it diverges only on some ill typed programs, which should be rejected any-
way. Therefore, F2<: sits close to the boundary between acceptable and unacceptable
type systems, according to the criteria enunciated in the introduction.

9 Summary and Research Issues

What we learned

Natural questions for a beginner programmer are: What is an error? What is type safe-
ty? What is type soundness? (perhaps phrased, respectively, as Which errors will the
computer tell me about? Why did my program crash? Why does the computer refuse
to run my program?). The answers, even informal ones, are surprisingly intricate. We
have paid particular attention to the distinction between type safety and type sound-

Subtype(Γ, A, Top) @ true
Subtype(Γ, X, X) @ true
Subtype(Γ, X, A) @ for A=X,Top

if X<:B Ï Γ for some B then Subtype(Γ, B, A) else false
Subtype(Γ, A→B, A’→B’) @

Subtype(Γ, A’, A) and Subtype(Γ, B, B’)
Subtype(Γ, ÓX<:A. B, ÓX’<:A’. B’) @

Subtype(Γ, A’, A) and Subtype((Γ, X’<:A’), [X’/X]B, B’)
Subtype(Γ, A, B) @ false otherwise

Expose(Γ, X) @ if X<:A Ï Γ for some A then Expose(Γ, A) else fail
Expose(Γ, A) @ A otherwise

Type(Γ, x) @

if x:A Ï Γ for some A then A else fail
Type(Γ, λx:A.M) @

if Good(Γ, A) then A→Type((Γ, x:A), M) else fail
Type(Γ, M N) @

if Expose(Γ, Type(Γ, M)) 7 A→B for some A,B
and Subtype(Γ, Type(Γ, N), A) then B else fail

Type(Γ, λX<:A.M) @
if Good(Γ, A) then ÓX<:A.Type((Γ, X<:A), M) else fail

Type(Γ, M A) @
if Expose(Γ, Type(Γ, M)) 7 ÓX<:A’.B for some X,A’,B

and Good(Γ, A) and Subtype(Γ, A, A’) then [A/X]B else fail

37

ness, and we have reviewed the varieties of static checking, dynamic checking, and ab-
sence of checking for program errors in various kinds of languages.

The most important lesson to remember from this chapter is the general frame-
work for formalizing type systems. Understanding type systems, in general terms, is
as fundamental as understanding BNF (Backus-Naur Form): it is hard to discuss the
typing of programs without the precise language of type systems, just as it is hard to
discuss the syntax of programs without the precise language of BNF. In both cases, the
existence of a formalism has clear benefits for language design, compiler construction,
language learning, and program understanding. We described the formalism of type
systems, and how it captures the notions of type soundness and type errors.

Armed with formal type systems, we embarked on the description of an extensive
list of program constructions and of their type rules. Many of these constructions are
slightly abstracted versions of familiar features, whereas others apply only to obscure
corners of common languages. In both cases, our collection of typing constructions is
meant as a key for interpreting the typing features of programming languages. Such an
interpretation may be nontrivial, particularly because most language definitions do not
come with a type system, but we hope to have provided sufficient background for in-
dependent study. Some of the advanced type constructions will appear, we expect,
more fully, cleanly, and explicitly in future languages.

In the latter part of the chapter, we reviewed some fundamental type inference al-
gorithms: for simple languages, for polymorphic languages, and for languages with
subtyping. These algorithms are very simple and general, but are mostly of an illustra-
tive nature. For a host of pragmatic reasons, type inference for real languages becomes
much more complex. It is interesting, though, to be able to describe concisely the core
of the type inference problem and some of its solutions.

Future directions

The formalization of type systems for programming languages, as described in this
chapter, evolved as an application of type theory. Type theory is a branch of formal log-
ic. It aims to replace predicate logics and set theory (which are untyped) with typed
logics, as a foundation for mathematics.

One of the motivations for these logical type theories, and one of their more excit-
ing applications, is in the mechanization of mathematics via proof checkers and theo-
rem provers. Typing is useful in theorem provers for exactly the same reasons it is
useful in programming. The mechanization of proofs reveals striking similarities be-
tween proofs and programs: the structuring problems found in proof construction are
analogous to the ones found in program construction. Many of the arguments that
demonstrate the need for typed programming languages also demonstrate the need for
typed logics.

Comparisons between the type structures developed in type theory and in pro-
gramming are, thus, very instructive. Function types, product types, (disjoint) union
types, and quantified types occur in both disciplines, with similar intents. This is in

38

contrast, for example, to structures used in set theory, such as unrestricted unions and
intersections of sets, and the encoding of functions as sets of pairs, that have no corre-
spondence in the type systems of common programming languages.

Beyond the simplest correspondences between type theory and programming, it
turns out that the structures developed in type theory are far more expressive than the
ones commonly used in programming. Therefore type theory provides a rich environ-
ment for future progress in programming languages.

Conversely, the size of systems that programmers build is vastly greater than the
size of proofs that mathematicians usually handle. The management of large programs,
and in particular the type structures needed to manage large programs, is relevant to
the management of mechanical proofs. Certain type theories developed in program-
ming, for example, for object-orientation and for modularization, go beyond the nor-
mal practices found in mathematics, and should have something to contribute to the
mechanization of proofs.

Therefore, the cross fertilization between logic and programming will continue,
within the common area of type theory. At the moment, some advanced constructions
used in programming escape proper type-theoretical formalization. This could be hap-
pening either because the programming constructions are ill conceived, or because our
type theories are not yet sufficiently expressive: only the future will tell. Examples of
active research areas are the typing of advanced object-orientation and modularization
constructs and the typing of concurrency and distribution.

Defining Terms
Abstract type: A data type whose nature is kept hidden, in such a way that only a pre-

determined collection of operations can operate on it.
Contravariant: A type that varies in the inverse direction from one of its parts with re-

spect to subtyping. The main example is the contravariance of function types in
their domain. For example, assume A<:B and vary X from A to B in X→C; we ob-
tain A→C :> B→C. Thus X→C varies in the inverse direction of X.

Covariant: A type that varies in the same direction as one of its parts with respect to
subtyping. For example, assume A<:B and vary X from A to B in D→X; we obtain
D→A <: D→B. Thus D→X varies in the same direction as X.

Derivation: A tree of judgments obtained by applying the rules of a type system.
Dynamic checking. A collection of run time tests aimed at detecting and preventing

forbidden errors.
Dynamically checked language: A language where good behavior is enforced during

execution.
Explicitly typed language: A typed language where types are part of the syntax.
First-order type system: One that does not include quantification over type variables.
Forbidden error: The occurrence of one of a predetermined class of execution errors;

typically the improper application of an operation to a value, such as not(3).
Good behavior: Same as being well behaved.

39

Ill typed: A program fragment that does not comply with the rules of a given type sys-
tem.

Implicitly typed language: A typed language where types are not part of the syntax.
Judgment: A formal assertion relating entities such as terms, types, and environments.

Type systems prescribe how to produce valid judgments from other valid judge-
ments.

Polymorphism: The ability of a program fragment to have multiple types (opposite of
monomorphism).

Safe language: A language where no untrapped errors can occur.
Second-order type system: One that includes quantification over type variables, either

universal or existential.
Static checking. A collection of compile time tests, mostly consisting of typechecking.
Statically checked language: A language where good behavior is determined before

execution.
Strongly checked language: A language where no forbidden errors can occur at run

time (depending on the definition of forbidden error).
Subsumption: A fundamental rule of subtyping, asserting that if a term has a type A,

which is a subtype of a type B, then the term also has type B.
Subtyping: A reflexive and transitive binary relation over types that satisfies sub-

sumption; it asserts the inclusion of collections of values.
Trapped error: An execution error that immediately results in a fault.
Type: A collection of values. An estimate of the collection of values that a program

fragment can assume during program execution.
Type inference: The process of finding a type for a program within a given type sys-

tem.
Type reconstruction: The process of finding a type for a program where type informa-

tion has been omitted, within a given type system.
Type rule: A component of a type system. A rule stating the conditions under which a

particular program construct will not cause forbidden errors.
Type safety: The property stating that programs do not cause untrapped errors.
Type soundness: The property stating that programs do not cause forbidden errors.
Type system: A collection of type rules for a typed programming language. Same as

static type system.
Typechecker: The part of a compiler or interpreter that performs typechecking.
Typechecking: The process of checking a program before execution to establish its

compliance with a given type system and therefore to prevent the occurrence of
forbidden errors.

Typed language: A language with an associated (static) type system, whether or not
types are part of the syntax.

Typing error: An error reported by a typechecker to warn against possible execution
errors.

Untrapped error: An execution error that does not immediately result in a fault.
Untyped language: A language that does not have a (static) type system, or whose

40

type system has a single type that contains all values.
Valid judgment: A judgment obtained from a derivation in a given type system.
Weakly checked language: A language that is statically checked but provides no clear

guarantee of absence of execution errors.
Well behaved: A program fragment that will not produce forbidden errors at run time.
Well formed: Properly constructed according to formal rules.
Well-typed program: A program (fragment) that complies with the rules of a given

type system.

References
[1] Aiken, A. and E.L. Wimmers, Type inclusion constraints and type inference, Proc.

ACM Conference on Functional Programming and Computer Architecture, 31-41. 1993.
[2] Amadio, R.M. and L. Cardelli, Subtyping recursive types. ACM Transactions on Pro-

gramming Languages and Systems 15(4), 575-631. 1993.
[3] Birtwistle, G.M., O.-J. Dahl, B. Myhrhaug, and K. Nygaard, Simula Begin. Studentlit-

teratur. 1979.
[4] Böhm, C. and A. Berarducci, Automatic synthesis of typed λ-programs on term alge-

bras. Theoretical Computer Science 39, 135-154. 1985.
[5] Cardelli, L., Basic polymorphic typechecking. Science of Computer Programming 8(2).

1987.
[6] Cardelli, L., Extensible records in a pure calculus of subtyping. In Theoretical Aspects

of Object-Oriented Programming, C.A. Gunter and J.C. Mitchell, ed. MIT Press. 373-425.
1994.

[7] Cardelli, L. and P. Wegner, On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys 17(4), 471-522. 1985.

[8] Curien, P.-L. and G. Ghelli, Coherence of subsumption, minimum typing and type-
checking in F≤. Mathematical Structures in Computer Science 2(1), 55-91. 1992.

[9] Dahl, O.-J., E.W. Dijkstra, and C.A.R. Hoare, Structured programming. Academic
Press, 1972.

[10] Eifrig, J., S. Smith, and V. Trifonov, Sound polymorphic type inference for objects.
Proc. OOPSLA’95, 169-184. 1995.

[11] Gunter, C.A., Semantics of programming languages: structures and techniques.
Foundations of computing, M. Garey and A. Meyer ed. MIT Press. 1992.

[12] Girard, J.-Y., Y. Lafont, and P. Taylor, Proofs and types. Cambridge University Press.
1989.

[13] Gunter, C.A. and J.C. Mitchell, ed., Theoretical Aspects of Object-Oriented Program-
ming. MIT Press. 1994.

[14] Huet, G. ed., Logical foundations of functional programming. Addison-Wesley.
1990.

[15] Jensen, K., Pascal user manual and report, second edition. Springer Verlag, 1978.
[16] Liskov, B.H., CLU Reference Manual. Lecture Notes in Computer Science 114.

Springer-Verlag. 1981.
[17] Milner, R., A theory of type polymorphism in programming. Journal of Computer and

41

System Sciences 17, 348-375. 1978.
[18] Milner, R., M. Tofte, and R. Harper, The definition of Standard ML. MIT Press. 1989.
[19] Mitchell, J.C., Coercion and type inference. Proc. 11th Annual ACM Symposium on

Principles of Programming Languages, 175-185. 1984.
[20] Mitchell, J.C., Type systems for programming languages. In Handbook of Theoretical

Computer Science, J. van Leeuwen, ed. North Holland. 365-458. 1990.
[21] Mitchell, J.C.: Foundations for programming languages. MIT Press, 1996.
[22] Mitchell, J.C. and G.D. Plotkin, Abstract types have existential type. Proc. 12th Annual

ACM Symposium on Principles of Programming Languages. 1985.
[23] Nordström, B., K. Petersson, and J.M. Smith, Programming in Martin-Löf’s type the-

ory. Oxford Science Publications. 1990.
[24] Palsberg, J., Efficient inference for object types. Proc. 9th Annual IEEE Symposium on

Logic in Computer Science, 186-195. 1994. (To appear in Information and Computation.)
[25] Pierce, B.C., Bounded quantification is undecidable. Proc. 19th Annual ACM Sympo-

sium on Principles of Programming Languages. 1992.
[26] Reynolds, J.C., Towards a theory of type structure. Proc. Colloquium sur la programma-

tion, 408-423. Lecture Notes in Computer Science 19. Springer-Verlag. 1974.
[27] Reynolds, J.C., Types, abstraction, and parametric polymorphism. In Information Pro-

cessing, R.E.A. Mason, ed. North Holland. 513-523. 1983.
[28] Schmidt, D.A., The structure of typed programming languages. MIT Press. 1994.
[29] Spencer, H., The ten commandments for C programmers (annotated edition). Avail-

able on the World Wide Web.
[30] Tofte, M., Type inference for polymorphic references. Information and Computation 89,

1-34. 1990.
[31] Wells, J.B., Typability and type checking in the second-order λ-calculus are equiva-

lent and undecidable. Proc. 9th Annual IEEE Symposium on Logic in Computer Science,
176-185. 1994.

[32] Wijngaarden, V., ed. Revised report on the algorithmic language Algol68. 1976.
[33] Wright, A.K. and M. Felleisen, A syntactic approach to type soundness. Information

and Computation 115(1), 38-94. 1994.

Further Information
For a complete background on type systems one should read (1) some material on type
theory, which is usually rather hard, (2) some material connecting type theory to com-
puting, and (3) some material about programming languages with advanced type sys-
tems.

The book edited by Huet [14] covers a variety of topics in type theory, including
several tutorial articles. The book edited by Gunter and Mitchell [13] contains a collec-
tion of papers on object-oriented type theory. The book by Nordström, Petersson, and
Smith [23] is a recent summary of Martin-Löf’s work. Martin-Löf proposed type theory
as a general logic that is firmly grounded in computation. He introduced the systematic
notation for judgments and type rules used in this chapter. Girard and Reynolds [12,

42

26] developed the polymorphic λ-calculus (F2), which inspired much of the work cov-
ered in this chapter.

A modern exposition of technical issues that arise from the study of type systems
can be found in Gunter’s book [11], in Mitchell’s article in the Handbook of Theoretical
Computer Science [20], in Mitchell’s book [21], and in the paper by Wright and Felleisen
[33].

Closer to programming languages, rich type systems were pioneered in the period
between the development of Algol and the establishment of structured programming
[9], and were developed into a new generation of richly-typed languages, including
Pascal [15], Algol68 [32], Simula [3], CLU [16], and ML [18]. Reynolds gave type-theo-
retical explanations for polymorphism and data abstraction [26, 27]. (On that topic, see
also [7, 22].) The book by Schmidt [28] covers several issues discussed in this chapter,
and provides more details on common language constructions.

Milner’s paper on type inference for ML [17] brought the study of type systems
and type inference to a new level. It includes an algorithm for polymorphic type infer-
ence, and the first proof of type soundness for a (simplified) programming language,
based on a denotational technique. A more accessible exposition of the algorithm de-
scribed in that paper can be found in [5]. Proofs of type soundness are now often based
on operational techniques [30, 33]. Currently, Standard ML is the only widely used pro-
gramming language with a formally specified type system [18].

