
#1

Security AnalysesSecurity Analyses
For The Lazy SuperheroFor The Lazy Superhero

#2

One-Slide Summary
• We can statically detect buffer overruns in

programs by modeling the space allocated for
a buffer and the space used for a buffer. We
cannot be right all the time.

• SQL injection and cross-site scripting attacks
occur when evil user input is used (parsed) as
part of another important language (e.g.,
HTML or SQL).

• Program analyses are expensive; recent
research can randomize them to save time.

#3

Lecture Outline

• Static Analyses to Detect Buffer Overruns
– Strings
– Alloc, Used
– Constraints

• SQL Injection Attacks
– Untrusted User Strings
– Interpreted as valid SQL

• Randomized Dataflow Analysis
– Random Join

#4

Static Analysis to
Detect Buffer Overruns

• Detecting buffer overruns before distributing
code would be better

• Idea: Build a tool similar to a type checker to
detect buffer overruns

• This is a popular research area; we’ll present
one idea at random [Wagner, Aiken, …]
– You’ll see more in later lectures

#5

Focus on Strings

• Most important buffer overrun exploits are
through string buffers
– Reading an untrusted string from the network,

keyboard, etc.

• Focus the tool only on arrays of characters

#6

Idea 1: Strings as an
Abstract Data Type

• A problem: Pointer operations and array
dereferences are very difficult to analyze
statically
– Where does *ptr point?
– What does buf[j] refer to?

• Idea: Model effect of string library functions
directly
– Hard code effect of strcpy, strcat, etc.

#7

Idea 2: The Abstraction

• Model buffers as pairs of integer ranges
– Alloc min allocated size of the buffer in bytes
– Used max number of bytes actually in use

• Use integer ranges
– [x,y] = { x, x+1, …, y-1, y }
– Alloc and used cannot be computed exactly

#8

The Strategy

• For each program expression, write
constraints capturing the alloc and used of its
string subexpressions

• Solve the constraints for the entire program

• Check for each string variable s
used(s) · alloc(s)

#9

The Constraints
char s[n]; n = alloc(s)

strcpy(dst,src) used(src) · used(dst)

p = strdup(s) used(s) · used(p) &

alloc(s) · alloc(p)

p[n] = ‘\0’ min(used(p),n+1)) ·
 used(p)

#10

Constraint Solving

• Solving the constraints is akin to solving
dataflow equations
– Remember liveness? Constant prop?

• Build a graph
– Nodes are len(s), alloc(s)
– Edges are constraints len(s) · len(t)

• Propagate information forward through the
graph
– Special handling of loops in the graph

#11

Results

• This technique found new buffer overruns in
sendmail
– Which is like shooting fish in a barrel …

• Found new exploitable overruns in Linux
nettools package

• Both widely used
• Previously hand-audited packages

#12

Limitations

• Tool produces many false positives (why?)
– 1 out of 10 warnings is a real bug

• Tool has false negatives (why?)
– Unsound: may miss some overruns

• But still productive to use
• So let's pretend we used it ...

#13

Cat and Mouse
• Suppose I have a server (e.g., Amazon.com)
• Let's imagine that I have solved ...

– Viruses: no malicious code on machine
– Buffer overruns: no injection of evil assembly code
– Buffer overruns: no non-control data attacks
– Privileges: no running at root
– Spam: as long as I'm dreaming, I'd like a pony ...

• I can still convince the server to do the wrong
thing with the resources it legitimately has
access to ...

#14

Three-Tier Web Application

• This is how
Amazon is
structured

• Query is a
SQL
database
command
generated
by program
logic

#15

The Problem In The Logic Tier
$userid = read_from_network();

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

#16

$userid = read_from_network();

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

The Problem

Matches any string that
contains a sequence of

digits...

#17

The Bad Place
// $userid == “1'; DROP TABLE unp_user; --”

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

#18

The Bad Place: Destroying Data
// $userid == “1'; DROP TABLE unp_user; --”

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

SELECT * FROM `unp_user`
 WHERE userid='1';
DROP TABLE unp_user;
--'

#19

Also A Bad Place: Viewing Data
// $userid == “1' OR 1 = 1 --”

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

SELECT * FROM `unp_user`
 WHERE userid='1'
 OR 1 = 1
--'

#20

SQL Code-Injection Vulnerabilities

• A SQL injection attack exploits a vulnerability
in the database layer of an application
whereby user input is incorrectly filtered for
string literal escape characters or otherwise
unexpected executed.

• Most common types of vulnerability in 2006:
– 25.1% Cross-Site Scripting
– 14% SQL Command Injection
– 7.9% Buffer Overruns

• Attacks are easy and expose valuable data

#21

Exploits Of A Mom

• The essence of SQL injection:

#22

SQL Injection
• Note that it's basically a parsing problem
• We have a string constant in PHP plus a string

constant from the user, and when combined
they must make a valid SQL program

• One Solution: Dynamic Taint Analysis
– Propagate a “taint” bit with every string

• One Solution: Dynamic Grammar Analysis
– Partially parse PHP string fragment
– If PHP string fragment + user string fragment

parses to something with a different top-level
structure, bail!

#23

Parse Trees To The Rescue!
• Do the user input strings contribute to

something “too high” on the parse tree?

Su & Wassermann, POPL '06

#24

Cross-Site Scripting

• Cross-Site Scripting (XSS) has the same flavor
• Evil User X posts a message with JavaScript in

it (e.g., send passwords to me) to Blog B
– Blog B can also be a forum, etc.

• Later, Luser browses Blog B
• Blog B sends over page data, including Evil X's

Message
• Luser thinks it is from Blog B (misplaced trust)
• Luser renders and interprets it

#25

Stopping Evil Posts

• Evil network-crawling robots try to post evil
JavaScript to every forum they can find

• Let's require a real human when posting
• Increases cost
• CAPTCHA

– Complete Automated
– Public Turing test
– to tell Computers
– and Humans Apart

#26

Have We Won Yet?

• CAPTCHAs fail in theory and in practice
• The overarching problem is exactly the same:

– The server takes input from an untrusted user
– That input may be interpreted by another parser

later
• In SQL-CIVs, by the database's SQL parser
• In XSS, by a user's JavaScript parser

– So all of the same techniques apply for XSS

#27

Random InterpretationRandom Interpretation
Sumit Gulwani Sumit Gulwani && George Necula George Necula

#28

Probabilistically Sound
Program Analysis!

• Sound program analysis is hard (Rice’s Theorem)
• PL researchers usually pay in terms of

– Loss of completeness or precision
– Complicated algorithms
– Long running times

• Can we pay in terms of soundness instead?
– Basically, soundness = correctness
– Judgments are unsound with low probability
– We can predict and control the probability of error
– Can gain simplicity and efficiency

#29

Discovering Affine Equalities
• Given a program (control-flow graph) …
• Discover equalities of the form 2y + 3z = 7

– Compiler Optimizations
– Loop Invariants
– Translation Validation

• There exist polynomial time deterministic
algorithms [Karr 76]
– involving expensive operations - O(n4)

• We present a randomized algorithm
– as complete as the deterministic algorithms
– but faster - O(n2)
– and simpler (almost as simple as an interpreter)

#30

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b;
d := b – 2;

T

T F

F

Example 1

•Random testing will have
to exercise all the 4 paths to
verify the assertions

•Our algorithm is similar to
random testing

• However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

#31

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b;
d := b – 2;

T

T F

F

Example 1

•Random testing will have
to exercise all the 4 paths to
verify the assertions

•Our algorithm is similar to
random testing

• However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

#32

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b;
d := b – 2;

T

T F

F

Example 1

•Random testing will have
to exercise all the 4 paths to
verify the assertions

•Our algorithm is similar to
random testing

• However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

•Exponential work, linear
time! (P=NP?)

#33

Idea #1: Affine Join Operation
• Execute both the branches
• Combine the values of the variables at joins

using the affine join operation ©w for some
randomly chosen w

v1 ©w v2 = w £ v1 + (1-w) £ v2

a := 2; b := 3; a := 4; b := 1;

a = 2 ©7 4 = -10
b = 3 ©7 1 = 15

(w = 7)

#34

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b;
d := b – 2;

a = 1, b = 0a = 0, b = 1

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for
each join independently.

• All choices of random
weights verify the first
assertion

• Almost all choices
contradict the second
assertion.

#35

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

c := 2a + b;
d := b – 2;

a = 1, b = 0a = 0, b = 1

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for
each join independently.

• All choices of random
weights verify the first
assertion

• Almost all choices
contradict the second
assertion.

#36

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

c := 2a + b;
d := b – 2;

a = 1, b = 0a = 0, b = 1

a = -4, b = 5
c = -3, d = 3

a = -4, b = 5
c = 9, d = -9

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for
each join independently.

• All choices of random
weights verify the first
assertion

• Almost all choices
contradict the second
assertion.

#37

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

a = -4, b = 5
c = -39, d = 39

c := 2a + b;
d := b – 2;

a = 1, b = 0a = 0, b = 1

a = -4, b = 5
c = -3, d = 3

a = -4, b = 5
c = 9, d = -9

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for
each join independently.

• All choices of random
weights verify the first
assertion

• Almost all choices
contradict the second
assertion.

#38

Geometric Interpretation of the
Affine Join operation

x

y

x + y = 1

x = 2

(x = 0, y = 1)

(x = 1, y = 0)

: State before the join

: State after the join

 satisfies all the affine
relationships that are
satisfied by both
(e.g. x + y = 1, z = 0)

Given any relationship
that is not satisfied by
any of (e.g. x=2),
also does not satisfy
it with high probability

#39

Example 2

a := x + y

 b := a b := 2x

assert (b = 2x)

T F
if (x = y)

•Idea #1 is not
enough

•We need to make
use of the
conditional x=y on
the true branch

#40

Idea #2: Adjust Operation
• Execute multiple runs of the program in parallel

• “Sample” = Collection of states at each program
point

• “Adjust” the sample before a conditional (by
taking affine joins of the states in the sample)
such that
– Adjustment preserves original relationships
– Adjustment satisfies the equality in the conditional

• Use adjusted sample on the true branch

#41

Geometric Interpretation of the
Adjust Operation

Original Point

Conditional
(e2=0) Adjusted Point

(lies on e1=0)

(lies on e1=0 Å e2=0)

(examples show

“x=0” for simplicity)

#42

The Randomized Interpreter R

x := e

S

S’

e = 0 ?True False
S’

S1 S2

S1 S2

S

S1 = Adjust(S’,e)

S2 = S’

 Si = S1
i ©wi S2

i
Si = S’i[x Ã e]

#43

 Completeness and soundness of R

• We compare the randomized interpreter R
with a suitable actual interpreter A
– Actual Interpreter A would be too slow (etc.) to

use in real life!

• R mimics A with high probability
– R is as complete as A
– R is sound with high probability

#44

Soundness Theorem
• If A) g = 0, then with high probability

R ² g = 0

• Error probability ·
– b: number of branches
– j: number of joins
– d: size of the field
– r: number of points in the sample

• If j = b = 10, r = 15, d ¼ 232, then
 error probability ·

#45

Conclusions, Wessy Summary

• Randomization can help achieve simplicity
and efficiency at the expense of making
soundness probabilistic

• Has been extended to handle uninterpreted
function symbols, interprocedural analyses,
randomized decision procedures for theorem
proving, combined abstract interpreters, …

• May help with complicated security analyses
• Go to grad school!

#46

Homework

• Final Exam Soon ...

