
#1

Internet SecurityInternet Security



#2

One-Slide Summary

• Physical security and operating system 
security are of critical importance and 
must be understood.

• Key issues in internet security, including 
buffer overruns, virus detection, spam 
filtering, SQL code-injection attacks, 
and cross-site scripting can all be 
understood in terms of lexing and 
parsing.



#3

High-Level Lecture Today!



#4

Lecture Outline

• Physical Security
• Operating System Security

– Privileges

• Viruses and Scanning
• Side Channel and Non-Control Data Attacks
• Spam and Filtering
• SQL Injection Attacks



#5

Physical Security

• It is generally accepted that anyone with 
physical access to a machine (i.e., anyone who 
can open the case) can compromise that 
entire machine. 

• Given physical access ...
– How would I read your personal files?
– How would I leave a backdoor (rootkit) for myself?
– How would I log in as you?

• Ignore networked filesystems for now ...



#6

• Them: Important user, NT box, lost admin password, sad, sad, sad.

• Me: No problem, change password with magic linux disk, offline NT password editor.

• Them: No, no, no. Never work. NT secure. Get real.

• Me: Watch. (reboot)

• Them: Gasp! This floppy is dangerous! Where did you get it?

• Me: Internet. Been around forever.

• Them: How do we keep students from using this?

• Me: Can't. Migrate. Linux. Mac.

• Them: No, no, no. Just make NT safe.

• Me: Can't. NT inherently unsafe.

• Them: Must be safe. NT good. We have never seen problems.

• Me: You just saw one now.

• Them: No, no, no. NT good. Win2k better.

• Me: Win2k is NT. Same thing. Should I give this floppy to a student?

• Them: No, no, no. Give here.

• Me: Whatever. What do you want me to do?

• Them: Change admin password.

• Me: Fine. To what?

• Them: "p-a-s-s-w-o-r-d"

• Me: No, no, no.



#7

A Fairy Tale? Not Quite.



#8

Hey You! Get Off Of My Lawn!

• Must keep people out 
of the server room ...

• Heavy-weight physical 
security measures are 
often skipped entirely 

• They are “not worth 
it” to the people 
involved

• Social engineering



#9

Corporate Espionage
• In 1999, Fortune 1000 companies lost more 

than $45 billion to corporate espionage
• Office card keys (“no drafting”) and dumpster-

diving prevention are two Top Five ways to 
defeat espionage

• Social engineering 
awareness is much 
more important, 
however!



#10

Death By Heat Lamps?

• Sophisticated physical attacks are possible
– S. Govindavajhala and A. Appel: Using Memory 

Errors to Attack a Virtual Machine. IEEE Symposium 
on Security and Privacy, 2003

• They write a Java program that can break out 
of the Java Virtual Machine if a single bit error 
occurs in memory ...
– Shine lamp on memory!

• For the rest of this talk I'll 
   assume physical security.



#11

Is Unix Any Better?
• No; if you have physical access to a unix 

machine you can get root access. 
– Linux example: reboot, wait for GRUB/LILO, ask 

for the bootloader prompt, and type:
      linux init=/bin/bash

• One solution: store important files on 
encrypted (sub-)filesystem
– Either requires frequent password entry or stores 

password in memory
– This is only secure if no malicious programs run
– Thus: we still need operating system security!



#12

Unix Security Model

• All files in Unix filesystems have permissions
– -rwxr-xr-x 1 root root 735004 2008-01-15 09:29 /bin/bash

• Three levels: user, group, others
• Exception: a special root user can change the 

permissions on any file (and thus do anything)
• Passwords must be stored for login to work
• Password file stores hashes:

– smt6k:SETBehbzDTZE4:510:511:Sean Talts:/home/smt6k:/bin/bash

– eas2h:pqr98124zmne:511:513:Elizabeth Soechting:/home/eas2h:/bin/bash

– dsn9m:awel;itSDLGJdn348:512:514:David Noble:/home/dsn9m:/bin/bash



#13

Trojan Horses
• root is convenient ... but also dangerous!
• Suppose you are running out of disk space and 

are hunting around for files to remove
– Evil user makes evil files called “ls” and “dir”
– These trojan horses email your password to 

Microsoft and then list the files
– You may never know you've been tricked!

• This single concept accounts for the vast 
majority of windows vulnerabilities
– Pre-Vista you were always “root”, so if I could get 

you to click on some evil program I send over the 
network, I could take over your computer. 



#14

Detecting Malicious Programs
• So we need to detect viruses / trojans / worms
• This is done by lexing (no, really)
• A virus or trojan typically leaves most of the 

program unchanged (to avoid suspicion) and 
tacks on a special payload for dirty work

• Make one regular expression for each payload
– Called the virus signature

• Scan (lex) programs with union of regexps
– A virus database file is basically just a .lex file and 

each new version has some new “tokens”



#15

Escalation

• One key problem with this approach is that you 
must constantly update your database of virus 
signatures in response to new virus inventions



#16

Does This Work?

• Assume we've solved the update problem.
• What could go wrong with searching for exact 

code sequences?



#17

Stealth
• Any change to the virus defeats the signature
• Beware: self-modifying virus!
• Encryption with a new key per file

– payload = decrypt module + encrypted virus code

• Polymorphic Virus: new decrypt per file
– payload = unique decrypt + encrypted virus code

• Metamorphic Virus: rewrite each time
– Basically: insert no-ops, “optimize” virus, etc. 
– Win32/Smile is >14000 lines of ASM, 90% of which is 

metamorphic engine ... and was out in 2002



#18

Virus Scanners In Practice

• Offline: unix servers scan win32 attachments
– Basically just like PA2

• Online: scan every file before it is executed
– Requires OS support: register a callback whenever 

a program or DLL is loaded (why require OS support?)

– Or whenever a file is opened in general
– This is very slow (cf. games)

• Viruses need privileges (e.g., read and write 
other files), so one defense is to not have 
those privileges ...



#19



#20

My Secret Identity
• If you know another user's password, you can 

become that user (i.e., substitute its userid for 
yours --- like logging in as that person)

• The su and sudo programs implements this
Using a root account is rather like being 
Superman; an administrator's regular user is 
more like Clark Kent. Clark Kent becomes 
Superman for only as long as necessary, in 
order to save people. He then reverts to his 
"disguise". Root access should be used in the 
same fashion. The Clark Kent disguise doesn't 
really restrict him though, as he is still able to 
use his super powers. This is analogous to 
using the sudo program.



#21

A Sendmail Dilemma

• Some programs, such as sendmail, must run as 
root to do useful work
– Mail programs must be able to append incoming 

mail to the end of a given user's mailbox file

• These programs also do less-critical work
– Mail programs may run a user-specified “vacation” 

program that responds to mail with “I'm away for 
two weeks”-style messages

• Any possible problems?



#22

Dropping Privileges

• Important system tasks that must run as root 
try to drop those privileges as quickly as 
possible
– Sendmail appends incoming mail to your inbox, 

then throws away its super powers, then runs your 
vacation program

• However, if you have a buffer overrun (or 
somesuch) I may be able to trick you into doing 
something before you drop privileges



#23

Setuid Demystified
• Dropping privileges correctly is tricky, but 

that's another story ... [Chen, Wagner, Dean. Usenix '02]



#24

Leaking Information
• Consider this version of login

let name = recv_from_network () in

let pword = recv_from_network () in
let file = open_in (“/etc/passwd”) in 
while not end_of_file(file) do
  let name', pword' = read_from (file) in

  if name = name' then return (pword = pword')
done ;
return FALSE



#25

Side-Channel Attacks
• Imagine it takes t microseconds to read in the 

entire password file
– Then it takes t microseconds to return false for a 

made-up username
– But t/2 microseconds (on average) to return false 

for a real username with a bad password

• A side-channel attack is any attack based on 
information gained from the implementation of 
a cryptosystem, not from a theoretical 
weakness
– Examples: timing info, power consumption, 

electromagnetic leaks (TEMPEST), ...



#26

Server Design Mockup
remote_cmd(socket) {
  bool auth = false;
  char name[1024], pword[1024], cmd[1024]; 
  recv(socket, name);
  recv(socket, pword);
  if (matches(name,pword)) auth = true;
  if (!auth) then return false; 
  recv(socket, cmd);
  if (auth) exec(cmd);
} 



#27

Non-Control Data Attacks
remote_cmd(socket) {
  bool auth = false;
  char name[1024], pword[1024], cmd[1024]; 
  recv(socket, name);
  recv(socket, pword);
  if (matches(name,pword)) auth = true;
  recv(socket, cmd);
  if (auth) exec(cmd);
} 
• Buffer Overrun 2 (Electric Buffaloo) – why?



#28

spam bacon sausage ...

• Not everyone is running a server that I can exploit ... how 
can I get a payload to you?

• Spamming is abusing an electronic messaging system (i.e., 
email) to send unsolicited bulk messages.

• Started in the mid-1990s, spam now accounts for 80-85% of 
all email in the world (conservative) to as much as 95% of all 
world email.  
– European Union Internal Market Commission: €10 billion 

per year worldwide in '01
– CA Legislature: $13 billion alone to US companies in '07

• Today most spam is sent from zombie networks of virus-
infected machines 



#29

Why does spam work?
• Based on physical-world direct mail, bulk mail, 

targeted marketing, etc.
– Like those advertising circulars you get with 

grocery store coupons in them
– Those work because you can get huge amounts of 

statistical information just from the zip code
– ... and because people go to nearby supermarkets

• Example: in 2005, a random house in 22903 
– AGI of $67,125 and was headed by someone under 

30 (36%), 30-44 (25%), 45-60 (22%) or 61+ (15%)

• Bulk physical mail is not a shot in the dark
– Benefit (medium) exceeds cost (low)



#30

SPAM

• SPAM also works 
because of a cost-
benefit analysis
– Benefit (mico)
– Cost (none) (why?)

• Ultimately, some 
people click on 
spam.
– Not just phishing 

spam either!



#31

Harvesting

• How do I get a list of email addresses?
• Dictionary Spamming

– Guess by using a dictionary of plausible names as 
prefixes to known (registered) domain names

• Spambot Web Crawling
– Gather from web sites, newsgroups, special-

interest group postings, chat-room conversations
– Basically, regular expressions! (cf. early HW)
– Wow, it's lexing again!

• Selling email lists is a big business ...



#32

Stopping Spam

• Blacklisting – do not accept messages from 
domain X?
– Defeated by zombie botnets, remailers, ...

• How to find domain X? 
– Wait for users to report it ...
– List poisoning: subscribe fake “honeypot” email 

addresses to mailing lists, post them on web: any 
email that gets to them is spam

• Other, more technical approaches (e.g., 
greylisting), but mostly ...



#33

Filtering

• Filtering – examine the 
contents of an email 
message and try to 
predict mechanically if it 
is spam or not
– Simplest approach: block 

words (e.g., viagra)
– Easily thwarted: (v1agra)
– More complex: bayesian 

network filtering ...



#34

SPAM Solutions

• Ultimate problem is that sending email is free
– The Tragedy of the Commons (read on Wikipedia)

• SMTP, the current mail protocol, is an 
entrenched legacy problem

• Thus only incremental solutions are viable
• Training models to discriminate between spam 

and valid email is an open area of research!
• Crackpot solutions are a dime a dozen, as we 

can see by this idea rejection simple chart ...



#35

Your post advocates a

( ) technical ( ) legislative ( ) market-based ( ) vigilante

approach to fighting spam. Your idea will not work because:

( ) Spammers can easily use it to harvest email addresses

( ) Mailing lists and other legitimate email uses would be affected

( ) No one will be able to find the guy or collect the money

( ) It is defenseless against brute force attacks

( ) It will stop spam for two weeks and then we'll be stuck with it

( ) Users of email will not put up with it

( ) Microsoft will not put up with it

( ) The police will not put up with it

( ) Requires too much cooperation from spammers

( ) Requires immediate total cooperation from everybody at once

( ) Many email users cannot afford to lose business or alienate potential 
employers

( ) Spammers don't care about invalid addresses in their lists

( ) Anyone could anonymously destroy anyone else's career or business

Specifically, your plan fails to account for:

( ) Laws expressly prohibiting it

( ) Lack of centrally controlling authority for email

( ) Open relays in foreign countries

( ) Ease of searching tiny alphanumeric address space of all email addresses

( ) Asshats

( ) Jurisdictional problems

( ) Unpopularity of weird new taxes

( ) Public reluctance to accept weird new forms of money

( ) Huge existing software investment in SMTP

( ) Susceptibility of protocols other than SMTP to attack

( ) Willingness of users to install OS patches received by email

( ) Armies of worm riddled broadband-connected Windows boxes

( ) Eternal arms race involved in all filtering approaches

( ) Extreme profitability of spam

( ) Joe jobs and/or identity theft

( ) Technically illiterate politicians

( ) Extreme stupidity on the part of people who do business with spammers

( ) Dishonesty on the part of spammers themselves

( ) Bandwidth costs that are unaffected by client filtering

( ) Outlook

and the following philosophical objections may also apply:

( ) Ideas similar to yours are easy to come up with, yet none have ever been 
shown practical

( ) Any scheme based on opt-out is unacceptable

( ) SMTP headers should not be the subject of legislation

( ) Blacklists suck

( ) Whitelists suck

( ) We should be able to talk about Viagra without being censored

( ) Countermeasures should not involve wire fraud or credit card fraud

( ) Countermeasures should not involve sabotage of public networks

( ) Countermeasures must work if phased in gradually

( ) Sending email should be free

( ) Why should we have to trust you and your servers?

( ) Incompatiblity with open source or open source licenses

( ) Feel-good measures do nothing to solve the problem

( ) Temporary/one-time email addresses are cumbersome

( ) I don't want the government reading my email

( ) Killing them that way is not slow and painful enough



#36

Cat and Mouse
• Suppose I have a server (e.g., Amazon.com)
• Let's imagine that I have solved ...

– Viruses: no malicious code on machine
– Buffer overruns: no injection of evil assembly code
– Buffer overruns: no non-control data attacks
– Privileges: no running at root
– Spam: as long as I'm dreaming, I'd like a pony ...

• I can still convince the server to do the wrong 
thing with the resources it legitimately has 
access to ...



#37

Three-Tier Web Application

• This is how 
Amazon is 
structured

• Query is a 
SQL 
database 
command 
generated 
by program 
logic



 

#38

The Problem In The Logic Tier
$userid = read_from_network();

if (!eregi('[0-9]+', $userid)) {
  unp_msg('You entered an invalid user ID.');
  exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
                   “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
   unp_msg('You entered an invalid user ID.');
   exit;
}



 

#39

$userid = read_from_network();

if (!eregi('[0-9]+', $userid)) {
  unp_msg('You entered an invalid user ID.');
  exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
                   “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
   unp_msg('You entered an invalid user ID.');
   exit;
}

The Problem

Matches any string that 
contains a sequence of 

digits...



 

#40

The Bad Place
// $userid == “1'; DROP TABLE unp_user; --” 

if (!eregi('[0-9]+', $userid)) {
  unp_msg('You entered an invalid user ID.');
  exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
                   “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
   unp_msg('You entered an invalid user ID.');
   exit;
}



 

#41

The Bad Place: Destroying Data
// $userid == “1'; DROP TABLE unp_user; --” 

if (!eregi('[0-9]+', $userid)) {
  unp_msg('You entered an invalid user ID.');
  exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
                   “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
   unp_msg('You entered an invalid user ID.');
   exit;
}

SELECT * FROM `unp_user`      
           WHERE userid='1';
DROP TABLE unp_user;
--'



 

#42

Also A Bad Place: Viewing Data
// $userid == “1' OR 1 = 1 --” 

if (!eregi('[0-9]+', $userid)) {
  unp_msg('You entered an invalid user ID.');
  exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
                   “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
   unp_msg('You entered an invalid user ID.');
   exit;
}

SELECT * FROM `unp_user`      
           WHERE userid='1'
           OR 1 = 1
--'



#43

SQL Code-Injection Vulnerabilities

• A SQL injection attack exploits a vulnerability 
in the database layer of an application 
whereby user input is incorrectly filtered for 
string literal escape characters or otherwise 
unexpected executed.

• Most common types of vulnerability in 2006:
– 25.1% Cross-Site Scripting 
– 14% SQL Command Injection
– 7.9% Buffer Overruns

• Attacks are easy and expose valuable data



#44

Exploits Of A Mom

• The essence of SQL injection:



#45

SQL Injection
• Note that it's basically a parsing problem
• We have a string constant in PHP plus a string 

constant from the user, and when combined 
they must make a valid SQL program

• One Solution: Dynamic Taint Analysis
– Propagate a “taint” bit with every string

• One Solution: Dynamic Grammar Analysis
– Partially parse PHP string fragment
– If PHP string fragment + user string fragment 

parses to something with a different top-level 
structure, bail!



#46

Parse Trees To The Rescue!
• Do the user input strings contribute to 

something “too high” on the parse tree?

Su & Wassermann, POPL '06



#47

Cross-Site Scripting

• Cross-Site Scripting (XSS) has the same flavor
• Evil X posts a message with evil JavaScript in it 

(e.g., send passwords to me) to Blog B
– Blog B can also be a forum, etc. 

• Later, Luser browses Blog B
• Blog B sends over data, including Evil X's 

Message
• Luser thinks it is from Blog B (misplaced trust)
• Luser renders and interprets it



#48

Stopping Evil Posts

• Evil network-crawling robots try to post evil 
JavaScript to every forum they can find

• Let's require a real human when posting
• Increases cost
• CAPTCHA

– Complete Automated
– Public Turing test 
– to tell Computers 
– and Humans Apart



#49

Have We Won Yet?

• CAPTCHAs fail in theory and in practice
• The overarching problem is exactly the same:

– The server takes input from an untrusted user
– That input may be interpreted by another parser 

later
• In SQL-CIVs, by the database's SQL parser
• In XSS, by a user's JavaScript parser

– So all of the same techniques apply for XSS



#50

Homework

• PA5 Due Wednesday
• Final Exam Soon ...


