ACM Trivia Bowl

Today
e« /pm OLS 011
e Snacks and drinks provided
o All are welcome! | will be there.
- email eas2h with team or just show up

e |If you are in one of the top three teams, |
will give you one point of extra credit (as
if you had found a bug in Cool).

#1

LLLLLLL

“Wizard is about to die.” [EEEEES

e PA5 is due Wednesday April 23 - that's about
three weeks from now.

| have only one auto-tester submission as lunch
time today.
- | am predicting that you haven't started PA5 yet.

e You will have second midterms in this class
(and others!) between then and now.

e If you can't interpret hello-world.cl by the end
of this weekend, | forsee regret, remorse and
lack of sleep in your future.

#2

Error Deleting File or Folder

https';’ {horizon.ouac.on.ca @ Cannok delete FilePicker: There is nok enough free disk space.

Delete one or mote files ko free disk space, and then by again.

The 'Mailing Address' you entered is not in the |
expected format.

1 K
Suggested Format: 18 Redwood Ave | P S i i SR |

Current Format: 18 Redwood Ave

If you wish to use the suggested version click "OK"
otherwise click "Cancel” to use your original version.

(Cancel) € 0K)
Exceptions

NO! - Bad Useri! x|

You've been warned 3 times that this file does nat exist,
! Mo wou've made us cakch this waorthless exception and we're upset,

Do nok do this again.

‘ CIE, I

One-Slide Summary

e Real-world programs must have error-
handling code. Errors can be handled where
they are detected or the error can be
propagated to a caller.

e Passing special error return codes is itself
error-prone.

e Exceptions are a formal and automated way
of reporting and handling errors. Exceptions
can be implemented efficiently and described
formally.

#4

Language System Structure
 We looked at each stage in

i
Lexer turn

1l

Parser

Iyl e A new language feature
Type checker affects many stages

[

Q « We will add exceptions
Run it!

Runtime System

Lecture Summary

 Why exceptions ?

e Syntax and informal semantics

e Semantic analysis (i.e. type checking rules)
e Operational semantics

e Code generation

e Runtime system support

#6

Exceptional Motivation

o “Classroom” programs are written with optimistic
assumptions

e Real-world programs must consider “exceptional”

situations:
- Resource exhaustion (disk full, out of memory, network
packet collision, ...)

- Invalid input
- Errors in the program (null pointer dereference)
e |t is usual for code to contain 1-5% error handling
code (figures for modern Java open source code)
- With 3-46% of the program text transitively reachable

#7

Why do we care?

e Are there any implications if software makes
mistakes?

LOOK. AT WHAT THIS
PUME ToasTER DID

w
1z,

IT DIDNT COOK (T ENOUGH
THE F/RST TIME, oI
PUSHED |T DOWN AGAIN
AND NOW ONE SIDE'S
BURNED AND THE OTHERS
HARDLY SINGED. THAT
TOASTER RUINED WY
TOrRST/

AD NET
«SOMEHOW..
LIFE GOES

= /
s%’ :
% .o@ :

BENEATH THAT
LARGER PERSPECTIVE
1S A GUY WHO DOESNT
WANT TO SPRING FOR

A NEW TOASTER.
[
=

I
s =
:)

. b — —-.

Approaches To Error Handling

Two ways of dealing with errors:

 Handle them where you detect them
o e.g., null pointer dereference — stop execution

e Let the caller handle the errors:

e The caller has more contextual information
e.g. an error when opening a file:
b) In the context of opening /etc/passwd
c) In the context of opening a log file

« But we must tell the caller about the error!

#9

Error Return Codes

e The callee can signal the error by returning a
special return value or error code:

- Must not be one of the valid inputs
- Must be agreed upon beforehand (i.e., in API)
« What's an example?
e The caller promises to check the error return
and either:
- Correct the error, or
- Pass it on to its own caller

#10

Error Return Codes

e It is sometimes hard to select return codes

- What is a good error code for:
e divide(num: Double, denom: Double) : Double { ... }

« How many of you always check errors for:
- malloc(int) ?
- open(char *) ?
- close(int) ?
- time(struct time_t *) ?
e Easy to forget to check error return codes

#11

Example:

Automated Grade Assignment
float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {
dbset(gradesdb, sid, grade);

}
void extraCredit(int sid) {

setGrade(sid, 0.33 + getGrade(sid));
3

void grade_inflator() {
while(gpa() < 3.0) { extraCredit(random()); }

3
 What errors are we ignoring here?

#12

Example: Automated Grade

Assignment

float getGrade(int sid) {
float res; int err = dbget(gradesdb, sid, &res);
if(err < 0) { return -1.0;}
return res;

}

int extraCredit(int sid) {
int err; float g = getGrade(sid);
if(g < 0.0) { return 1; }
err = setGrade(sid, 0.33 + g));
return (err < 0);

#13

Example: Automated Grade

ASS]gnment A lot of extra

float getGrade(int sid) { code
float res; int err = dbget(gradesdb, sid, &res);
if(err < 0) { return -1.0;}
return res;

}

int extraCredit(int sid) {
int err; float g = getGrade(sid);
if(g < 0.0) { return 1; }
err = setGrade(sid, 0.33 + g));
return (err < 0);

#14

Example: Automated Grade

ASS]gnment A lot of extra

float getGrade(int sid) { code
float res; int err = dbget(gradesdb, sid, 8)r,es);
if(err < 0) { return -1.0;}

Some functions
return res;

change their type

}

int extraCredit(int si
int err; flo = getGrade(sid);
if(g < 0.0) { return 1; }
err = setGrade(sid, 0.33 + g));
return (err < 0);

#15

Example: Automated Grade

ASS]gnment A lot of extra

float getGrade(int sid) { code
float res; int err = dbget(gradesdb, sid, 8)r,es);
if(err <Q) { return_-1.0;}
return res;

Some functions
change their type

}

int extraCredit(int si
int err; flo
if(g < 0.0) { return 1
err = setGrade(sid,
return (err < 0);

Error codes are
sometimes arbitrary

#16

Exceptions

« Exceptions are a language mechanism
designed to allow:

- Deferral of error handling to a caller
- Without (explicit) error codes

- And without (explicit) error return code checking

#17

Adding Exceptions to Cool

 We extend the language of expressions:
e:..=throwe | tryecatchx: T=¢€’

e (Informal) semantics of throw e
- Signals an exception

- Interrupts the current evaluation and searches for
an exception handler up the activation tree

- The value of e is an exception parameter and can
be used to communicate details about the

exception
#18

Adding Exceptions to Cool

(Informal) semantics of try e catchx : T = e,

e is evaluated first

If e’s evaluation terminates normally with v
then v is the result of the entire expression

Else (e’s evaluation terminates exceptionally)

If the exception parameter is of type < T then
- Evaluate e, with x bound to the exception parameter

- The (normal or exceptional) result of ev
- aluating e, becomes the result of the entire expression

Else
- The entire expression terminates exceptionally
#19

Example:

Automated Grade Assignment
float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {
if(grade < 0.0 | | grade > 4.0) { throw (new NaG); }
dbset(gradesdb, sid, grade); }

void extraCredit(int sid) {
setGrade(sid, 0.33 + getGrade(sid)) }

void grade_inflator() {
while(gpa < 3.0) {
try extraCredit(random())
catch x : Object = print “Aie!?\n”; }

}

#20

Example Notes

e Only error handling code remains

e But no error propagation code
- The compiler handles the error propagation
- No way to forget about it
- And also much more efficient (we’ll see)

e Two kinds of evaluation outcomes:

- Normal return (with a return value)

- Exceptional “return” (with an exception
parameter)

- No way to get confused which is which

#21

Where do exceptions come from?

Windows Crasher

5(Windows Crasher

Version 2.02

General -I‘ II

¢a Start Page

Windows Crash _ @ 5_.'
w Widows Explorer

@ Media Player

ﬁ Internet Explorer

3 Crash Wizard

b Restore Wizard

Time Untill Next Crash: 15 Minutes

w v Crash Failure @ Help -

Welcome

to Windows Crasher
You can use this program to crash Windows in just a few cliks!. Nearly every
windows application can be crashed. You could avoid work and take frequent
coffee breaks with this application.

All changes can be reset to windows defaults or undome with
WindowCrasher Rescue Center.

Select a task:

Quick Crash Widows Explorer , Internet Explorer and Media Player
Select an installed application to crash

Make applications to stop resplonding to user inputs

8 €

Customise Windows Crasher settings,
Administrator options, Make the crash untrackable

Boot and Login Screen Crashes

Customise and send a batch reports to microsoft
about crash experiences

A& &

| ** Rescue Center Active -

#22

Overview

v"Why exceptions ?
v'Syntax and informal semantics

e Semantic analysis (i.e. type checking rules)
e Operational semantics
e Code generation

e Runtime system support

#23

Typing Exceptions

 We must extend the Cool typing judgment
OOMCle:T
- Type T refers to the normal return value!

e We’ll start with the rule for try:
- Parameter “x” is bound in the catch expression
- try is like a conditional

O,MCFe: T O[T/x], M, CF¢e’ : T,
O,M,Cktryecatchx: T=¢€ :T,UT,

#24

Typing Exceptions

What is the type of “throw e” ?

The type of an expression:
- Is a description of the possible return values, and

- |s used to decide in what contexts we can use the
expression

“throw” does not return to its immediate context
but directly to the exception handler!

The same “throw e” is valid in any context:
if throw e then (throw e) + 1 else (throw e).foo()

As if “throw e” has any type!

#25

Typing Exceptions

O,MCHe:T,
O,M,CHthrowe: T,

e As long as “e” is well typed, “throw e” is well
typed with any type needed in the context

- T, is unbound!

e This is convenient because we want to be
able to signal errors from any context

#26

Overview
v"Why exceptions ?
v'Syntax and informal semantics
v’ Semantic analysis (i.e. type checking rules)
e Operational semantics
e Code generation

e Runtime system support

#27

Operational Semantics of
Exceptions

e Several ways to model the behavior of
exceptions

e A generalized value is
- Either a normal termination value, or
- An exception with a parameter value
g ::= Norm(v) | Exc(v)
e Thus given a generalized value we can:
- Tell if it is normal or exceptional return, and

- Extract the return value or the exception

parameter
#28

Operational Semantics of
Exceptions (1)
e The existing rules change to use Norm(v) :

so, E, S+ e, : Norm(Int(n,)), S,
so, E, S, + e, : Norm(Int(n,)), S,
so, E,SFke, +e,: Norm(Int(n, + n,)), S,

E(id) = |,
S(ly) = v

so, E, SF id : Norm(v), S

so, E, SF self : Norm(so), S

#29

Operational Semantics of
Exceptions (2)
e “throw” returns exceptionally:

so,E,SrFe:v, 5
so, E, S+ throw e : Exc(v), S

e The rule above is not well formed! Why?

#30

Operational Semantics of
Exceptions (2)
e “throw” returns exceptionally:

so,E,SrFe:v, 5
so, E, S+ throw e : Exc(v), S,

e The rule above is not well formed! Why?

so, E,SFe:Norm(v), S,
so, E, S+ throw e : Exc(v), S,

#31

Operational Semantics of
Exceptions (3)
e “throw e” always returns exceptionally:
so, E,SFe:Norm(v), S,

so, E, S+ throw e : Exc(v), S,

« What if the evaluation of e itself throws an
exception?
e e.g. “throw (1 + (throw 2))” is like “throw 2”
e Formally:

so, E,SFe: Exc(v), S,
so, E, S+ throw e : Exc(v), S,

#32

Operational Semantics of
Exceptions (4)

o All existing rules are changed to propagate
the exception:

so, E, S+ e, : Exc(v), S;
so, E,Ske, +e,:Exc(v), S,

« Note: the evaluation of e, is aborted

so, E, S+ e, : Norm(Int(n,)), S,
so, E, S, ke, : Exc(v), S,
so, E,Ske, +e,: Exc(v), S,

#33

Operational Semantics of
Exceptions (5)

e The rules for “try” expressions:
- Multiple rules (just like for a conditional)

so, E, S+ e: Norm(v), S,
so, E, Sk tryecatchx : T=e": Norm(v), S,

« What if e terminates exceptionally?

« We must check whether it terminates with an
exception parameter of type T or not

#34

Operational Semantics for
Exceptions (6)
e If e does not throw the expected exception
so, E, S+ e: Exc(v), S,

v = X(...)
not (X<T)

so, E, SI-tryecatchx: T= e’ : Exc(v), S,
e If e does throw the expected exception
so, E, S+ e: Exc(v), S,
v = X(...)
X<T
| .., = newloc(S,)

new

so, E[l .. /x],S,[v/l . J+FHe :gS,
so,E,S-tryecatchx: T=>e":g,S,

#35

Operational Semantics of
Exceptions. Notes

e Our semantics is precise

e But is not very clean
- It has two or more versions of each original rule

e It is not a good recipe for implementation

- It models exceptions as “compiler-inserted
propagation of error return codes”

- There are much better ways of implementing
exceptions

e There are other semantics that are cleaner
and model better implementations

#36

Overview
v"Why exceptions ?
v'Syntax and informal semantics
v’ Semantic analysis (i.e. type checking rules)
v'Operational semantics
e Code generation

e Runtime system support

#37

Code Generation for Exceptions

One method is suggested by the operational
semantics

Simple to implement

But not very good
- We pay a cost at each call/return (i.e., often)
- Even though exceptions are rare (i.e., exceptional)
A good engineering principle:
- Don’t pay often for something that you use rarely!
o What is Amdahl’s Law?

- Optimize the common case!

#38

o
g
C

2

el

=
O
N

Long Jumps

e A long jump is a non-local goto:

- In one shot you can jump back to a function in the caller
chain (bypassing many intermediate frames)

- A long jump can “return” from many frames at once

e Long jumps are a commonly used implementation
scheme for exceptions

- Take a compilers class for details

e Disadvantage:
- (Minor) performance penalty at each try

#40

Implementing Exceptions with
Tables (1)

 We do not want to pay for exceptions when
executing a “try”
- Only when executing a “throw”

cgen(try e catch e’) =
cgen(e) ; Code for the try block
goto end_try
L_catch:
cgen(e’) ; Code for the catch block
end_try:

cgen(throw) =
jr runtime_throw ; <- this is the trick!

#41

Implementing Exceptions with
Tables (2)

e The normal execution proceeds at full speed

e When a throw is executed we use a runtime
function that finds the right catch block

e For this to be possible the compiler produces
a table saying for each catch block to which
instructions it corresponds

#42

Implementing Exceptions with
Tables. Notes

e runtime_throw looks at the table and figures
which catch handler to invoke

e Advantage:
- No cost, except if an exception is thrown

e Disadvantage:
- Tables take space (even 30% of binary size)
- But at least they can be placed out of the way

e Java Virtual Machine uses this scheme

#43

try ... finally ...

e Another exception-related construct:
try e, finally e,
- After the evaluation of e, terminates (either normally
or exceptionally) it evaluates e,

- The whole expression then terminates like e,

e Used for cleanup code:
try
f = fopen(“treasure.directions”, “w”);
... compute ... fprintf(f, “Go %d paces to the west”, paces); ...

finally
fclose(f)

#44

Try-Finally Semantics

e Typing rule:
O,MCHe T, O,M,Cke,:T,
O,M,CHtrye, finallye,: T,
e Operational semantics:

so, E, S+ e, : Norm(v), S,
so, E,S;Fe, :qg,S,

so, E, Sk trye, finallye,:g,5S,
so, E, S+ e, : Exc(v,), S,
so, E, S, F e, : Norm(v,), S,
so, E, S+ try e, finally e, : Exc(v,), S,

#45

Psycho Corner Case

e Operational Semantics

so, E, Stk e, : Exc(v,), S,
so, E, S;F e, : Exc(v,), S,

so, E, Sk try e, finally e, : 22?2, S,

e Difficulty in understanding try-finally is one
reason why Java programmers tend to make
at least 200 exception handling mistakes per
million lines of code

#46

14.20.2 Execution of try-catch-finally

A tLy statement with a finally block is executed by first executing the try block. Then there is
a choice:

If execution of the try block completes normally, then the finally block is executed, and then
there is a choice:

- If the finally block completes normally, then the try statement completes normally.

- If the fiSnally block completes abruptly for reason S, then the try statement completes abruptly for
reason S.

If er>1<e.cution of the try block completes abruptly because of a throw of a value V, then there is
a choice:

- If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then
the first (leftmost) such catch clause is selected. The value V is assiﬁned to the parameter of the
selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

« If the catch block completes normally, then the finally block is executed. Then there is a choice:
If the finally block completes normally, then the try statement completes normally.
If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.

» If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
If the finally block completes normally, then the try statement completes abruptly for reason R.

Ic}‘_the cfjincij\)lly block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is
iscarded).

If the run-time type of V is not assignable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:

. I\i the finally block completes normally, then the try statement completes abruptly because of a throw of the value

« If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and
the throw of value V is discarded and forgotten).

If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:

- If the finally block completes normally, then the try statement completes abruptly for reason R.

- If the finally block completes abruptly for reason S, then the try statement completes abruptly for
reason S (and reason R is discarded).

#47

Avoiding Code Duplication for
try ... finally

e The Java Virtual
Machine
designers wanted
to avoid this code
duplication

Avoiding Code Duplication for
try ... finally

e The Java Virtual Machine designers wanted to
avoid this code duplication

e 50 they invented a new notion of subroutine
- Executes within the stack frame of a method
- Has access to and can modify local variables
- One of the few true innovations in the JVM

#49

JVML Subroutines Are

Complicated
e Subroutines are the most difficult part of the JVML

e And account for the several bugs and
inconsistencies in the bytecode verifier

- And are used in practice for code obfuscation!

e Complicate the formal proof of correctness:
- 14 or 26 proof invariants due to subroutines
- 50 of 120 lemmas due to subroutines
- 70 of 150 pages of proof due to subroutines

#50

Are JVML Subroutines
Worth the Trouble ?

 Subroutines save space?

- About 200 subroutines in 650,000 lines of Java
(mostly in JDK)

- No subroutines calling other subroutines
- Subroutines save 2427bytes of 8.7 Mbytes (0.02%)!

e Changing the name of the language from Java
back to Oak would save 13 times more space !

#51

Exceptions. Conclusion

e Exceptions are a very useful construct

e A good programming language solution to an
important software engineering problem

e But exceptions are complicated:
- Hard to implement
- Complicate the optimizer

- Very hard to debug the implementation
(exceptions are exceptionally rare in code)

#52

Homework

e WA7 due Tuesday
e For Tuesday - Read Graham paper on gprof
e Midterm 2 - Tue Apr 15 (12 days)

- Covers Lectures 11 - 21 and all reading, WAs and
PAs done during that time

#53

