
#1

Local Local
OptimizationsOptimizations

#2

One-Slide Summary
• An optimization changes a program so that it

computes the same answer in less time (or
using less of some other resource).

• We represent the program using a special
intermediate form.

• Each method is viewed as a control flow
graph where the nodes as basic blocks of
instructions with known entry and exit points.
The instructions have been changed so that a
single assignment defines each variable.

#3

Lecture Outline

• Intermediate code

• Local optimizations

• Next time: larger-

scale program analyses

#4

Why Optimize?

• What's the point?
• Do we care about this in real life?

#5

When To Optimize?
• When to perform optimizations

– On AST (just like type checking)
• Pro: Machine independent
• Cons: Too high level

– On assembly language (compilers only)
• Pro: Exposes optimization opportunities
• Cons: Machine dependent
• Cons: Must reimplement optimizations when retargetting

– On an intermediate language
• Pro: Machine independent
• Pro: Exposes optimization opportunities
• Cons: One more language to worry about

You do not
have to know

assembly
language.

#6

Intermediate Languages

• Each compiler uses its own intermediate
language
– IL design is still an active area of research

• Intermediate language = high-level assembly
language
– Uses register names, but has an unlimited number
– Uses control structures like assembly language
– Uses opcodes but some are higher level

• e.g., push translates to several assembly instructions
• Most opcodes correspond directly to assembly opcodes

#7

Three-Address Intermediate Code

• Each instruction is of the form
 x := y op z

– y and z can be only registers, variables or
constants

• Common form of intermediate code
• The AST expression x + y * z is translated as

 t1 := y * z

 t2 := x + t1

– Each subexpression lives in a temporary

#8

Generating Intermediate Code

• igen(e, t) function generates code to compute
the value of e in register t

• Example:
igen(e1 + e2, t) =

 igen(e1, t1) (t1 is a fresh register)

 igen(e2, t2) (t2 is a fresh register)

 t := t1 + t2

• Unlimited number of registers
 ⇒ simple code generation

#9

An Intermediate Language

P ! S P | ε
S ! id := id op id
 | id := op id
 | id := id
 | push id
 | id := pop
 | if id relop id goto L
 | L:
 | jump L

• id’s are register names

• Constants can replace id’s

• Typical operators: +, -, *

#10

Basic Blocks

• A basic block is a maximal sequence of
instructions with:
– no labels (except at the first instruction), and
– no jumps (except in the last instruction)

• Idea:
– Cannot jump into a basic block (except at

beginning)
– Cannot jump out of a basic block (except at end)
– Each instruction in a basic block is executed after

all the preceding instructions have been executed

#11

Basic Block Example

• Consider the basic block
1. L1:
2. t := 2 * x

3. w := t + x
4. if w > 0 goto L2

• No way for (3) to be executed without (2)
having been executed right before

#12

Basic Block Example

• Consider the basic block
1. L1:
2. t := 2 * x

3. w := t + x
4. if w > 0 goto L2

• No way for (3) to be executed without (2)
having been executed right before
– We can change (3) to w := 3 * x

#13

Basic Block Example

• Consider the basic block
1. L1:
2. t := 2 * x

3. w := t + x
4. if w > 0 goto L2

• No way for (3) to be executed without (2)
having been executed right before
– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?

#14

Control-Flow Graphs

• A control-flow graph is a directed graph:
– Basic blocks as nodes
– An edge from block A to block B if the execution

can flow from the last instruction in A to the first
instruction in B

– e.g., the last instruction in A is jump LB

– e.g., the execution can fall-through from block A
to block B

• Frequently abbreviated as CFG

#15

Control-Flow Graphs. Example.

• The body of a method (or
procedure) can be
represented as a control-
flow graph

• There is one initial node
– The “start node”

• All “return” nodes are
terminal

x := 1
i := 1

L:
 x := x * x
 i := i + 1
 if i < 10 goto L

#16

CFG
'

Flow
Chart

#17

Optimization Overview

• Optimization seeks to improve a program’s
utilization of some resource
– Execution time (most often)
– Code size
– Network messages sent
– Battery power used, etc.

• Optimization should not alter what the
program computes
– The answer must still be the same

#18

A Classification of Optimizations

• For languages like C and Cool there are three
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation

2. Global optimizations
• Apply to a control-flow graph (method body) in isolation

3. Inter-procedural optimizations
• Apply across method boundaries

• Most compilers do (1), many do (2) and very few do
(3)

• Some interpreters do (1), few do (2), basically none
do (3)

#19

Cost of Optimizations

• In practice, a conscious decision is made not
to implement the fanciest optimization known

• Why?

#20

Cost of Optimizations

• In practice, a conscious decision is made not
to implement the fanciest optimization known

• Why?
– Some optimizations are hard to implement
– Some optimizations are costly in terms of

compilation/interpretation time
– The fancy optimizations are both hard and costly

• The goal: maximum improvement with
minimum of cost

Q: Movies (363 / 842)
• This 1993 comedy film also starring

Andie MacDowell "begins" with the
following radio banter: "Rise and shine,
campers, and don't forget your booties
'cause it's cooooold out there today. /
It's cold out there every day. What is
this, Miami Beach? / Not hardly. So the
big question on everybody's lips / -- On
their chapped lips -- / their chapped
lips is, does Phil feel lucky?"

Q: Cartoons (674 / 842)

•This 1953 Warner Brothers'
cartoon mouse is known for his
cry of "Arriba! Arriba! Andele!"

#23

CFG

• This CFG stuff
sounds
complicated ...

• Can't we skip it
for now?

#24

Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure body

– Just the basic block in question

• Example:
– algebraic simplification
– constant folding
– Python 2.5+ does stuff like this if you say “–O”

#25

Algebraic Simplification

• Some statements can be deleted
x := x + 0
x := x * 1

• Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y

 x := x * 8 ⇒ x := x << 3
 x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on
all!)

#26

Constant Folding

• Operations on constants can be computed
before the code executes

• In general, if there is a statement
 x := y op z
– And y and z are constants
– Then y op z can be computed early

• Example: x := 2 + 2 ⇒ x := 4
• Example: if 2 < 0 jump L can be deleted
• When might constant folding be dangerous?

#27

Flow of Control Optimizations

• Eliminating unreachable code:
– Code that is unreachable in the control-flow graph
– Basic blocks that are not the target of any jump or “fall

through” from a conditional
– Such basic blocks can be eliminated

• Why would such basic blocks occur?
• Removing unreachable code makes the program

smaller
– And sometimes also faster

• Due to memory cache effects (increased spatial locality)

#28

Single Assignment Form

• Most optimizations are simplified if each
assignment is to a temporary that has not
appeared already in the basic block

• Intermediate code can be rewritten to be in
single assignment form
x := a + y x := a + y
a := x ⇒ a1 := x

x := a * x x1 := a1 * x

b := x + a b := x1 + a1

 (x1 and a1 are fresh temporaries)

#29

Single Assignment vs.
Functional Programming

• In functional programming variable values
do not change

• Instead you make a new variable with a
similar name

• Single assignment form is just like that!
x := a + y let x = a + y in
a1 := x ' let a1 = x in

x1 := a1 * x let x1 = a
1
 * x in

b := x1 + a1 let b = x1 + a1 in

#30

Common Subexpression
Elimination

• Assume:
– Basic block is in single assignment form

• Then all assignments with same rhs compute
the same value (why?)

• Example:
x := y + z x := y + z
… ⇒ …

w := y + z w := x

• Why is single assignment important here?

#31

Copy Propagation

• If w := x appears in a block, all subsequent uses of w
can be replaced with uses of x

• Example:
 b := z + y b := z + y

 a := b ⇒ a := b
 x := 2 * a x := 2 * b

• This does not make the program smaller or faster
but might enable other optimizations
– Constant folding
– Dead code elimination (we’ll see this in a bit!)

• Again, single assignment is important here.

#32

Copy Propagation and
Constant Folding

• Example:

a := 5 a := 5
x := 2 * a ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

#33

Dead Code Elimination

If
w := rhs appears in a basic block

w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
x := z + y b := z + y b := z + y
a := x ⇒ a := b ⇒ x := 2 * b
x := 2 * a x := 2 * b

#34

Applying Local Optimizations

• Each local optimization does very little by
itself

• Typically optimizations interact
– Performing one optimizations enables other opts

• Typical optimizing compilers repeatedly
perform optimizations until no improvement
is possible

• Interpreters and JITs must be fast!
– The optimizer can also be stopped at any time to

limit the compilation time

#35

An Example

• Initial code:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

#36

An Example

• Algebraic optimization:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

#37

An Example

• Algebraic optimization:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b + b
 f := a + d
 g := e * f

#38

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b + b
 f := a + d
 g := e * f

#39

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 + 3
 f := a + d
 g := e * f

#40

An Example

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 + 3
 f := a + d
 g := e * f

#41

An Example

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

#42

An Example

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

#43

An Example

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

#44

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

#45

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

#46

An Example

• Dead code elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

#47

An Example

• Dead code elimination:
 a := x * x

 f := a + a
 g := 6 * f

• This is the final form

#48

Cool and Intermediate Form

• Cool does not have goto
• Cool does not have break
• Cool does not have exceptions
• How would you make basic blocks from a Cool

AST?

#49

Local Optimization Notes

• Intermediate code is helpful for many
optimizations
– Basic Blocks: known entry and exit
– Single Assignment: one definition per variable

• “Program optimization” is grossly misnamed
– Code produced by “optimizers” is not optimal in

any reasonable sense
– “Program improvement” is a more appropriate

term

• Next: larger-scale program changes

#50

Homework
• PA4 due tomorrow

– Use spiffy auto-testing feature

• Reading for Thursday (basic blocks, etc.)
• Midterm 2 – Tuesday April 15 (19 days)

