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One-Slide Summary

• Typing rules formalize the semantics checks 
necessary to validate a program. Well-typed 
programs do not go wrong. 

• Subtyping relations (·) and least-upper-bounds 
(lub) are powerful tools for type-checking dynamic 
dispatch. 

• We will use SELF_TYPEC for “C or any subtype of C”. 
It will show off the subtlety of type systems and 
allow us to check methods that return self objects. 
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Lecture Outline

• Typing Rules

• Dispatch Rules
– Static
– Dynamic

• SELF_TYPE
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Assignment

What is this thing? What’s `? O? ·? 

[Assign]
O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0
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Initialized Attributes
• Let OC(x) = T for all attributes x:T in class C

– OC represents the class-wide scope
• we “preload” the environment O with all attributes

• Attribute initialization is similar to let, except 
for the scope of names

[Attr-Init]
OC ` id : T0 Ã e1 ;

OC(id) = T0

OC ` e1 : T1

T1 · T0
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If-Then-Else
• Consider: if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The dynamic type is either e1’s or e2’s type

• The best we can do statically is the smallest 
supertype larger than the type of e1 and e2
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If-Then-Else example

• Consider the class hierarchy

• … and the expression
if … then new A else new B fi

• Its type should allow for the dynamic type to 
be both A or B
– Smallest supertype is P

      

P

A B



#8

Least Upper Bounds

• Define: lub(X,Y) to be the least upper bound 
of X and Y. lub(X,Y) is Z if
– X · Z Æ Y · Z

Z is an upper bound

– X · Z’ Æ Y · Z’ ⇒ Z · Z’
Z is least among upper bounds

• In Cool, the least upper bound of two types is 
their least common ancestor in the 
inheritance tree
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If-Then-Else Revisited

[If-Then-Else]

O ` if e0 then e1 else e2 fi : lub(T1, T2)

O ` e0 : Bool

O ` e1 : T1

O ` e2 : T2
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Case

• The rule for case expressions takes a lub over 
all branches

[Case]
O ` case e0 of x1:T1 ) e1; 

       …; xn : Tn ) en; esac : lub(T1’,…,Tn’)

O ` e0 : T0

O[T1/x1] ` e1 : T1’

…

O[Tn/xn] ` en : Tn’
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Method Dispatch

• There is a problem with type checking 
method calls:

• We need information about the formal 
parameters and return type of f

[Dispatch]

O ` e0.f(e1,…,en) : ?

O ` e0 : T0

O ` e1 : T1

…

O ` en : Tn
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Notes on Dispatch

• In Cool, method and object identifiers live in 
different name spaces
– A method foo and an object foo can coexist in 

the same scope

• In the type rules, this is reflected by a 
separate mapping M for method signatures:

M(C,f) = (T1,. . .Tn,Tn+1)

means in class C there is a method f
f(x1:T1,. . .,xn:Tn): Tn+1
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An Extended Typing Judgment

• Now we have two environments: O and M

• The form of the typing judgment is
                    O, M ` e : T

read as: “with the assumption that the object 
identifiers have types as given by O and the 
method identifiers have signatures as given by 
M, the expression e has type T” 
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The Method Environment
• The method environment must be added to 

all rules
• In most cases, M is passed down but not 

actually used
– Example of a rule that does not use M:

– Only the dispatch rules uses M

[Add]
O, M ` e1 + e2 : Int

O, M ` e1 : T1

O, M ` e2 : T2
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The Dispatch Rule Revisited

[Dispatch]
O, M ` e0.f(e1,…,en) : Tn+1’

O, M ` e0 : T0

O, M ` e1 : T1

…
O, M ` en : Tn

M(T0, f) = (T1’,…,Tn’, Tn+1’)

Ti · Ti’     (for 1 · i · n)

Check actual
arguments

Look up formal
argument types Ti’

Check receiver
object e0
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Static Dispatch

• Static dispatch is a variation on normal 
dispatch

• The method is found in the class explicitly 
named by the programmer (not via e0)

• The inferred type of the dispatch expression 
must conform to the specified type
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Static Dispatch (Cont.)

[StaticDispatch]
O, M ` e0@T.f(e1,…,en) : Tn+1’

O, M ` e0 : T0

O, M ` e1 : T1

…
O, M ` en : Tn

T0 · T

M(T, f) = (T1’,…,Tn’, Tn+1’)

Ti · Ti’     (for 1 · i · n)
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How should
we handle

 SELF_TYPE ?
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Flexibility vs. Soundness

• Recall that type systems have two conflicting 
goals:
– Give flexibility to the programmer

– Prevent valid programs from “going wrong”
• Milner, 1981: “Well-typed programs do not go wrong”

• An active line of research is in the area of 
inventing more flexible type systems while 
preserving soundness



#20

Dynamic And Static Types

• The dynamic type of an object is ?
• The static type of an expression is ?
• You tell me!
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Dynamic And Static Types

• The dynamic type of an object is the class C 
that is used in the “new C” expression that 
created it
– A run-time notion
– Even languages that are not statically typed have 

the notion of dynamic type

• The static type of an expression is a notation 
that captures all possible dynamic types the 
expression could take
– A compile-time notion
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Soundness

Soundness theorem for the Cool type system:
       ∀ E.   dynamic_type(E)  ·  static_type(E) 

Why is this OK?
– All operations that can be used on an object of type C 

can also be used on an object of type C’ · C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with same type!
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An Example
class Count {
   i : int ← 0;
   inc () : Count {
        {
            i ← i + 1;
            self;
        }
    };
};  

• Class Count 
incorporates a counter

• The inc method works 
for any subclass

• But there is 
disaster lurking in 
the type system!
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Continuing Example

• Consider a subclass Stock of Count
class Stock inherits Count { 
   name() : String { …}; -- name of item
};

class Main {
  a : Stock ← (new Stock).inc (); 
  …  a.name() …
};

• And the following use of Stock:

Type checking 
error !
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Post-Mortem

•  (new Stock).inc()  has dynamic type Stock
• So it is legitimate to write 

         a : Stock Ã (new Stock).inc ()

• But this is not well-typed
     (new Stock).inc()  has static type Count

• The type checker “loses” type information
• This makes inheriting inc useless

– So, we must redefine inc for each of the subclasses, 
with a specialized return type
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We’ve been pwned!
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I Need A Hero!

Type Systems
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SELF_TYPE to the Rescue 

• We will extend the type system
• Insight:

– inc returns “self”
– Therefore the return value has same type as “self” 
– Which could be Count or any subtype of Count!
– In the case of (new Stock).inc() the type is Stock

• We introduce the keyword SELF_TYPE to use for the 
return value of such functions
– We will also modify the typing rules to handle SELF_TYPE
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SELF_TYPE to the Rescue (2)

• SELF_TYPE allows the return type of inc to 
change when inc is inherited

• Modify the declaration of inc to read
                   inc() : SELF_TYPE  { … }
• The type checker can now prove:
        O, M  ` (new Count).inc() : Count
        O, M ` (new Stock).inc() : Stock

• The program from before is now well typed
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SELF_TYPE: Binford Tools

• SELF_TYPE is not a dynamic type
• SELF_TYPE is a static type

• It helps the type checker to keep better track 
of types

• It enables the type checker to accept more 
correct programs

• In short, having SELF_TYPE increases the 
expressive power of the type system
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SELF_TYPE and Dynamic Types 
(Example)

• What can be the dynamic type of the object 
returned by inc?
– Answer: whatever could be the type of “self”

class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { } ;

– Answer: Count or any subtype of Count

           (inc could be invoked through any of these classes)
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SELF_TYPE and Dynamic Types 
(Example)

• In general, if SELF_TYPE appears textually in 
the class C as the declared type of E then it 
denotes the dynamic type of the “self” 
expression:

dynamic_type(E) = dynamic_type(self) · C

• Note: The meaning of SELF_TYPE depends on 
where it appears
– We write SELF_TYPEC to refer to an occurrence 

of SELF_TYPE in the body of C
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Type Checking
• This suggests a typing rule:
                  SELF_TYPEC · C                      

• This rule has an important consequence:
– In type checking it is always safe to replace 

SELF_TYPEC by C

• This suggests one way to handle SELF_TYPE :
– Replace all occurrences of SELF_TYPEC by C

• This would be correct but it is like not having 
SELF_TYPE at all (whoops!)
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Operations on SELF_TYPE

• Recall the operations on types
– T1 · T2        T1 is a subtype of T2

– lub(T1,T2) the least-upper bound of T1 and T2

• We must extend these operations to handle 
SELF_TYPE

• Might take some time ...



Q:  Games  (503 / 842) 

• This 1983 adventure game designed 
by Roberta Williams described Sir 
Graham's attempts to recover the 
three magical treasures of Daventry 
and become the next king. It 
featured a parser for simple textual 
commands (e.g., "get carrot") and 
spawned numerous sequels.  



Q:  Movies  (316 / 842) 

•Name the star and the 1990 
holiday film that features Joe 
Pesci and Daniel Stern as the 
"Wet Bandits" and a child, too 
young to shave, who defends a 
house.  



Q:  Books  (745 / 842) 

• Name the 1965 Frank Herbert sci-
novel that features sandworms, the 
house Harkonnen, and the quote 
"What's in the box? / Pain." It won 
the Hugo and Nebula awards and 
usually considered the best-selling 
sci-fi novel of all time.  



Q:  Movies  (292 / 842) 

•From the 1981 movie Raiders of 
the Lost Ark, give either the 
protagonist's phobia or composer 
of the musical score.  
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Extending ·
Let T and T’ be any types except SELF_TYPE
There are four cases in the definition of ·
• SELF_TYPEC · T  if C · T

• SELF_TYPEC can be any subtype of C

• This includes C itself 
• Thus this is the most flexible rule we can allow

• SELF_TYPEC · SELF_TYPEC

• SELF_TYPEC is the type of the “self” expression 

• In Cool we never need to compare SELF_TYPEs 
coming from different classes
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Extending · (Cont.)

• T · SELF_TYPEC always false

Note: SELF_TYPEC can denote any subtype of C. 

• T · T’ (according to the rules from before)

Based on these rules we can extend lub …
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Extending lub(T,T’)
Let T and T’ be any types except SELF_TYPE
Again there are four cases:
• lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC

• lub(SELF_TYPEC, T) = lub(C, T)

This is the best we can do because SELF_TYPEC · C

• lub(T, SELF_TYPEC) = lub(C, T)

• lub(T, T’) defined as before
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Where Can SELF_TYPE 
Appear in COOL? 

• The parser checks that SELF_TYPE appears 
only where a type is expected

• But SELF_TYPE is not allowed everywhere a 
type can appear:

• class T inherits T’  {…}  
• T, T’ cannot be SELF_TYPE
• Because SELF_TYPE is never a dynamic type

• x : T                                  
• T can be SELF_TYPE
• An attribute whose type is SELF_TYPEC
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Where Can SELF_TYPE 
Appear in COOL?

1. let x : T in E
• T can be SELF_TYPE

• x has type SELF_TYPEC

2. new T
• T can be SELF_TYPE
• Creates an object of the same type as self

• m@T(E1,…,En)
• T cannot be SELF_TYPE



#44

Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on 
the enclosing class we need to carry more 
context during type checking

• New form of the typing judgment:

                 O,M,C ` e : T

   (An expression e occurring in the body of C 
has static type T given a variable type 
environment O and method signatures M)
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Type Checking Rules

• The next step is to design type rules using 
SELF_TYPE for each language construct

• Most of the rules remain the same except 
that · and lub are the new ones

• Example: 

O,M,C ` id Ã e1 : T1

O(id) = T0

O,M,C ` e1 : T1

T1 · T0
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What’s Different?

• Recall the old rule for dispatch

O,M,C ` e0.f(e1,…,en) : Tn+1’

O,M,C ` e0 : T0

…

O,M,C ` en : Tn 

M(T0, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ ≠ SELF_TYPE

Ti · Ti’          1 · i · n
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What’s Different?
• If the return type of the method is SELF_TYPE 

then the type of the dispatch is the type of 
the dispatch expression:

O,M,C ` e0.f(e1,…,en) : T0

O,M,C ` e0 : T0

          …

O,M,C ` en : Tn 

M(T0, f) = (T1’,…,Tn’, SELF_TYPE)

Ti · Ti’          1 · i · n
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What’s Different?

• Note this rule handles the Stock example
• Formal parameters cannot be SELF_TYPE
• Actual arguments can be SELF_TYPE

– The extended · relation handles this case

• The type T0 of the dispatch expression could 
be SELF_TYPE
– Which class is used to find the declaration of f?
– Answer: it is safe to use the class where the 

dispatch appears
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Static Dispatch
• Recall the original rule for static dispatch

O,M,C ` e0@T.f(e1,…,en) : Tn+1’

O,M,C ` e0 : T0

…

O,M,C ` en : Tn 

T0 · T

M(T, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ ≠ SELF_TYPE

Ti · Ti’          1 · i · n
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Static Dispatch
• If the return type of the method is SELF_TYPE 

we have:

O,M,C ` e0@T.f(e1,…,en) : T0

O,M,C ` e0 : T0

  …

O,M,C ` en : Tn 

T0 · T

M(T, f) = (T1’,…,Tn’,SELF_TYPE)

Ti · Ti’          1 · i · n
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Static Dispatch
• Why is this rule correct?
• If we dispatch a method returning SELF_TYPE 

in class T, don’t we get back a T?

• No. SELF_TYPE is the type of the self 
parameter, which may be a subtype of the 
class in which the method body appears
– Not the class in which the call appears!

• The static dispatch class cannot be SELF_TYPE
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New Rules

• There are two new rules using SELF_TYPE

• There are a number of other places where 
SELF_TYPE is used

O,M,C ` self : SELF_TYPEC

O,M,C ` new SELF_TYPE : SELF_TYPEC
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Where is SELF_TYPE
Illegal in COOL?

m(x : T) : T’ { … }               
• Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?
class A {  comp(x : SELF_TYPE) : Bool  {…};  };
class B inherits A { 
     b() : int { … }; 
     comp(y : SELF_TYPE) : Bool { … y.b() …};  };
…
  let x : A ← new B in  … x.comp(new A); …
…
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Summary of SELF_TYPE
• The extended · and lub operations can do a 

lot of the work. Implement them to handle 
SELF_TYPE

• SELF_TYPE can be used only in a few places. 
Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any 
subtype in the current class
– The exception is the type checking of dispatch.  
– SELF_TYPE as the return type in an invoked 

method might have nothing to do with the current 
class
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Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea
– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important
– except for the project

• Rather, SELF_TYPE is meant to illustrate that 
type checking can be quite subtle

• In practice, there should be a balance 
between the complexity of the type system 
and its expressiveness
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Type Systems

• The rules in these lecture were Cool-specific
– Other languages have very different rules
– We’ll survey a few more type systems later

• General themes
– Type rules are defined on the structure of expressions
– Types of variables are modeled by an environment

• Types are a play between flexibility and safety
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Homework
• No WA due this week 
• No PA due this week 
• PA4/WA4 Checkpoint Due Wed Mar 19
• For Next Time: Read Chapters 8.1-8.3

– Optional Grant & Smith


