
#1

ScopingScoping
andand

Type Type
CheckingChecking

#2

First, WA2

• Pick it up! Even if you got a passing grade
you’ll want to see what we marked up.

• The midterm is not pass/fail.
• Derivations and parse trees are closely

related, but if we ask you to draw a parse
tree you must draw the parse tree.

• WA2#4 was in the book (Fig 2.34; you just had
to substitute in k=3):

#3

0 10 20 30 40 50 60

0

2

4

6

8

10

12

0 10 20 30 40 50 60

0

2

4

6

8

10

12

Second,
PA2

Avg = 46.1

Avg = 41.6

of Testcases

of Students

Raw PA2 Testcase Performance (out of 51)

of Students

Final PA2 Grade (out of 50)

PA2 Overall Student Performance

#4

PA2 Problems

• -5: completely bizarre and partially incorrect
error messages (2x)

• -5: outputting partially lexed file on error (3x)
• -5: outputting to STDOUT (2x)
• -10: Claire having to fix code to get it to

compile

• Don't do these things on PA3, PA4 or PA5!
– We only become harsher as time goes by.

#5

Next. Midterm Fever: Catch it!

#6

Administration
• Midterm 1

– Thursday, February 28, in class
– Be here on time (we start at 2:05, end at 3:15)
– Everything up to parsing, no semantic analysis
– We will vote (right now) for one of these:

• Open note, open book
• 1 cheat sheet, (two sides: front and back), written or printed

– In any event, no electronic devices or computers
• Midterm review session

– You have until midnight Friday to list preferences in the
midterm review session thread. Currently we won’t be
having one. Hint: sign up right after class.

#7

In One Slide

• Scoping rules match identifier uses with
identifier definitions.

• A type is a set of values coupled with a
set of operations on those values.

• A type system specifies which operations
are valid for which types.

• Type checking can be done statically (at
compile time) or dynamically (at run
time).

#8

Lecture Outline

• The role of semantic analysis in a compiler
– A laundry list of tasks

• Scope
• Types

#9

The Compiler/Interpreter So Far

• Lexical analysis
– Detects inputs with illegal tokens

• Parsing
– Detects inputs with ill-formed parse trees

• Semantic analysis
– Last “front end” phase
– Catches more errors

#10

What’s Wrong?

• Example 1

let y: Int in x + 3

• Example 2

let y: String Ã
“abc” in y + 3

#11

Why a Separate Semantic
Analysis?

• Parsing cannot catch some errors

• Some language constructs are not context-
free
– Example: All used variables must have been

declared (i.e. scoping)
– Example: A method must be invoked with

arguments of proper type (i.e. typing)

#12

What Does Semantic Analysis Do?

• Many kinds of checks . . . cool checks:
1. All identifiers are declared
2. Static Types
3. Inheritance relationships
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
And others . . .

• The requirements depend on the language
– Which of these are checked by Ruby? Python?

#13

Scope

• Scoping rules match identifier uses with
identifier declarations
– Important semantic analysis step in most

languages
– Including COOL!

#14

Scope (Cont.)

• The scope of an identifier is the portion of a
program in which that identifier is accessible

• The same identifier may refer to different
things in different parts of the program
– Different scopes for same name don’t overlap

• An identifier may have restricted scope

#15

Static vs. Dynamic Scope

• Most languages have static scope
– Scope depends only on the program text, not run-

time behavior
– Cool has static scope

• A few languages are dynamically scoped
– Lisp, SNOBOL, Tex
– Lisp has changed to mostly static scoping
– Scope depends on execution of the program

#16

Static Scoping Example

let x: Int <- 0 in
{

x;
{ let x: Int <- 1 in

x; } ;
x;

}

#17

Static Scoping Example (Cont.)

let x: Int <- 0 in
{

x;
{ let x: Int <- 1 in

x; } ;
x;

}
Uses of x refer to closest enclosing definition

#18

Scope in Cool

• Cool identifier bindings are introduced by
– Class declarations (introduce class names)
– Method definitions (introduce method names)
– Let expressions (introduce object id’s)
– Formal parameters (introduce object id’s)
– Attribute definitions in a class (introduce object

id’s)
– Case expressions (introduce object id’s)

#19

Implementing the Implementing the
Most-Closely Nested RuleMost-Closely Nested Rule

• Much of semantic analysis can be expressed as Much of semantic analysis can be expressed as
a a recursive descentrecursive descent of an AST of an AST
– Process an AST node Process an AST node nn
– Process the children of Process the children of nn
– Finish processing the AST node Finish processing the AST node nn

#20

Implementing . . . (Cont.)

• Example: the scope of let bindings is one
subtree

 let x: Int Ã 0 in e

• x can be used in subtree e

#21

Symbol Tables
• Consider again: let x: Int Ã 0 in e

• Idea:
– Before processing e, add definition of x to current

definitions, overriding any other definition of x
– After processing e, remove definition of x and restore old

definition of x

• A symbol table is a data structure that tracks the
current bindings of identifiers
– You’ll need to make one for PA4
– OCaml’s Hashtbl is designed to be a symbol table, so if

you saved OCaml … no, wait …

#22

Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-
closely nested rule

• For example, class definitions in Cool
– Cannot be nested
– Are globally visible throughout the program

• In other words, a class name can be used
before it is defined

#23

Example: Use Before Definition

Class Foo {
. . . let y: Test in . . .

};

Class Test {
. . .

};

#24

More Scope in Cool

Attribute names are global within the class in
which they are defined

Class Foo {
f(): Int { tm };
tm: Int Ã 0;

}

#25

More Scope (Cont.)

• Method and attribute names have complex
rules

• A method need not be defined in the class in
which it is used, but in some parent class
– This is standard inheritance!

• Methods may also be redefined (overridden)

#26

Class Definitions
• Class names can be used before being defined
• We can’t check this property

– using a symbol table
– or even in one pass :-(

• Solution
– Pass 1: Collect all class names
– Pass 2: Do the checking
– ?
– Pass 4: Profit!

• Semantic analysis requires multiple passes
– Probably more than two

Q: Music (210 / 842)

•Give the eight-word title of the
1960 Brian Hyland #1 hit
describing a very small colored-
and-patterned two-piece
bathing suit "that she wore for
the first time today".

Q: Advertising (832 / 842)

• Translate the last line in this French
M&Ms jingle: Nous sommes les
M&Ms / Nous sommes les M&Ms /
Des belles coleurs en choix / Des
belles coleurs en choix / Tout le
monde nous aime / C'est nous, les
M&Ms / M&Ms fondent dans la
bouche, pas dans la main.

Q: Games (575 / 842)

•This line of female dolls with
fruit-dessert names was initially
introduced in 1980 and included
sidekicks Blueberry Muffin and
Crepe Suzette to help fight
against Sour Grapes.

#30

Types

• What is a type?
– The notion varies from language to language

• Consensus
– A set of values
– A set of operations on those values

• Classes are one instantiation of the modern
notion of type

#31

Why Do We Need Type Systems?

Consider the assembly language fragment

addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

#32

Types and Operations

• Certain operations are legal or valid for
values of each type

– It doesn’t make sense to add a function pointer
and an integer in C

– It does make sense to add two integers

– But both have the same assembly language
implementation!

#33

Type Systems

• A language’s type system specifies which
operations are valid for which types

• The goal of type checking is to ensure that
operations are used with the correct types
– Enforces intended interpretation of values,

because nothing else will!
• Our last, best hope … for victory!

• Type systems provide a concise formalization
of the semantic checking rules

#34

What Can Types do For Us?

• Can detect certain kinds of errors
• Memory errors:

– Reading from an invalid pointer, etc.
• Violation of abstraction boundaries:

class FileSystem {
 open(x : String) : File {
 …
 }
…
}

class Client {
 f(fs : FileSystem) {
 File fdesc <- fs.open(“foo”)
 …
 } -- f cannot see inside fdesc !
}

#35

Type Checking Overview

• Three kinds of languages:
– Statically typed: All or almost all checking of

types is done as part of compilation (C, Java,
Cool)

– Dynamically typed: Almost all checking of types
is done as part of program execution (Scheme,
Ruby, Python, …)

– Untyped: No type checking (machine code)

#36

The Type Wars
• Competing views on static vs. dynamic typing
• Static typing proponents say:

– Static checking catches many programming errors
at compile time

– Avoids overhead of runtime type checks

• Dynamic typing proponents say:
– Static type systems are restrictive
– Rapid prototyping easier in a dynamic type system

#37

The Type Wars (Cont.)

• In practice, most code is
written in statically typed
languages with an “escape”
mechanism
– Unsafe casts in C, native

methods in Java, unsafe
modules in Modula-3

• Dynamic typing (sometimes
called “duck typing”) is big in
the scripting / glue world

#38

Cool Types

• The types are:
– Class names
– SELF_TYPE

• There are no unboxed base types (int in Java)

• The user declares types for all identifiers

• The compiler infers types for expressions
– Infers a type for every expression

#39

Type Checking and Type Inference

• Type Checking is the process of verifying
fully typed programs

• Type Inference is the process of filling in
missing type information

• The two are different, but are often used
interchangeably

#40

Rules of Inference

• We have seen two examples of formal
notation specifying parts of a compiler
– Regular expressions (for the lexer)
– Context-free grammars (for the parser)

• The appropriate formalism for type checking
is logical rules of inference

#41

Why Rules of Inference?

• Inference rules have the form
If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning
If E1 and E2 have certain types,

then E3 has a certain type

• Rules of inference are a compact notation
for “If-Then” statements

#42

From English to an Inference Rule

• The notation is easy to read (with practice)

• Start with a simplified system and gradually
add features

• Building blocks
– Symbol Æ is “and”

– Symbol ⇒ is “if-then”

– x:T is “x has type T”

#43

English to Inference Rules (2)

If e1 has type Int and e2 has type Int,
then e1 + e2 has type Int

(e1 has type Int Æ e2 has type Int) ⇒
e1 + e2 has type Int

(e1: Int Æ e2: Int) ⇒ e1 + e2: Int

#44

English to Inference Rules (3)

The statement

(e1: Int Æ e2: Int) ⇒ e1 + e2: Int

is a special case of

(Hypothesis1 Æ . . . Æ Hypothesisn) ⇒
Conclusion

This is an inference rule

#45

Notation for Inference Rules

• By tradition inference rules are written

• Cool type rules have hypotheses and
conclusions of the form:

 ` e : T
• ` means “we can prove that . . .”

` Conclusion

` Hypothesis1 … ` Hypothesisn

#46

Two Rules

` i : Int
[Int]

` e1 + e2 : Int

` e1 : Int

` e2 : Int
[Add]

(i is an integer)

#47

Two Rules (Cont.)

• These rules give templates describing how to
type integers and + expressions

• By filling in the templates, we can produce
complete typings for expressions

• We can fill the template with ANY expression!

` true + false : Int
` true : Int ` false : Int

#48

Example: 1 + 2

` 1 : Int
` 1 + 2 : Int

` 2 : Int

#49

Homework
• Tuesday: Reading!
• Tuesday: WA3 due
• Wednesday February 27: PA3 due

– Parsing!

• Thursday Feb 28 – Midterm 1 in Class

