
#1

LR ParsingLR Parsing

Table ConstructionTable Construction

#2

Outline

• Review of bottom-up parsing

• Computing the parsing DFA
– Closures, LR(1) Items, States
– Transitions

• Using parser generators
– Handling Conflicts

#3

In One Slide
• An LR(1) parsing table can be constructed

automatically from a CFG. An LR(1) item is a
pair made up of a production and a lookahead
token; it represents a possible parser context.
After we extend LR(1) items by closing them
they become LR(1) DFA states. Grammars can
have shift/reduce or reduce/reduce conflicts.
You can fix most conflicts with precedence
and associativity declarations. LALR(1) tables
are formed from LR(1) tables by merging
states with similar cores.

#4

Bottom-up Parsing (Review)

• A bottom-up parser rewrites the input string
to the start symbol

• The state of the parser is described as
α I γ

– α is a stack of terminals and non-terminals
– γ is the string of terminals not yet examined

• Initially: I x1x2 . . . xn

#5

Shift and Reduce Actions (Review)

• Recall the CFG: E ! int | E + (E)
• A bottom-up parser uses two kinds of actions:

• Shift pushes a terminal from input on the stack

E + (I int) ⇒ E + (int I)

• Reduce pops 0 or more symbols off of the stack
(production RHS) and pushes a non-terminal on
the stack (production LHS)

E + (E + (E) I) ⇒ E +(E I)

#6

Key Issue:
When to Shift or Reduce?

• Idea: use a finite automaton (DFA) to decide when
to shift or reduce
– The input is the stack
– The language consists of terminals and non-terminals

• We run the DFA on the stack and we examine the
resulting state X and the token tok after I
– If X has a transition labeled tok then shift
– If X is labeled with “A ! β on tok” then reduce

#7

LR(1) Parsing. An Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift
int I + (int) + (int)$ E ! int
E I + (int) + (int)$ shift(x3)
E + (int I) + (int)$ E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ E ! E+(E)
E I + (int)$ shift (x3)
E + (int I)$ E ! int
E + (E I)$ shift
E + (E) I $ E ! E+(E)
E I $ accept

int

E

)

#8

End of review

#9

Key Issue: How is the DFA
Constructed?

• The stack describes the context of the parse
– What non-terminal we are looking for
– What production rhs we are looking for
– What we have seen so far from the rhs

#10

LR(1) Table Construction
Three hours later, you can finally parse E ! E + E | int

#11

Parsing Contexts

• Consider the state:

– The stack is E + (I int) + (int)

• Context:
– We are looking for an E ! E + (² E)

• Have have seen E + (from the right-hand side

– We are also looking for E ! ² int or E ! ² E + (E)
• Have seen nothing from the right-hand side

• One DFA state describes several contexts

E

int++int int()()

Red dot =
where we are.

#12

LR(1) Items

• An LR(1) item is a pair:
X ! α²β, a

– X ! αβ is a production
– a is a terminal (the lookahead terminal)
– LR(1) means 1 lookahead terminal

• [X ! α²β, a] describes a context of the parser
– We are trying to find an X followed by an a, and
– We have α already on top of the stack
– Thus we need to see next a prefix derived from βa

#13

Note

• The symbol I was used before to separate the
stack from the rest of input
– α I γ, where α is the stack and γ is the

remaining string of terminals

• In LR(1) items ² is used to mark a prefix of a
production rhs:

X ! α²β, a
– Here β might contain non-terminals as well

• In both case the stack is on the left

#14

Convention

• We add to our grammar a fresh new start
symbol S and a production S ! E
– Where E is the old start symbol
– No need to do this if E had only one production

• The initial parsing context contains:
S ! ² E, $

– Trying to find an S as a string derived from E$
– The stack is empty

#15

LR(1) Items (Cont.)

• In context containing
 E ! E + ² (E), +
– If (follows then we can perform a shift to context

containing

 E ! E + (² E), +
• In context containing

 E ! E + (E) ², +
– We can perform a reduction with E ! E + (E)
– But only if a + follows

#16

LR(1) Items (Cont.)

• Consider a context with the item
E ! E + (² E) , +

• We expect next a string derived from E) +
• There are two productions for E

 E ! int and E ! E + (E)

• We describe this by extending the context
with two more items:
 E ! ² int,)

 E ! ² E + (E) ,)

#17

The Closure Operation

• The operation of extending the context with
items is called the closure operation

Closure(Items) =
 repeat

 for each [X ! α²Yβ, a] in Items
 for each production Y ! γ

 for each b 2 First(βa)

 add [Y ! ²γ, b] to Items
 until Items is unchanged

#18

Constructing the Parsing DFA (1)

• Construct the start context:
Closure({S ! ²E, $}) = S ! ²E, $

E ! ²E+(E), $
E ! ²int, $
E ! ²E+(E), +
E ! ²int, +

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

• We abbreviate as:

#19

#20

Constructing the Parsing DFA (2)

• An LR(1) DFA state is a closed set of LR(1)
items
– This means that we performed Closure

• The start state contains [S ! ²E, $]

• A state that contains [X ! α², b] is labeled
with “reduce with X ! α on b”

• And now the transitions …

#21

The DFA Transitions

• A state “State” that contains [X ! α²yβ, b]
has a transition labeled y to a state that
contains the items “Transition(State, y)”
– y can be a terminal or a non-terminal

Transition(State, y) =
 Items Ã ;

 for each [X ! α²yβ, b] 2 State

 add [X ! αy²β, b] to Items
 return Closure(Items)

#22

LR(1) DFA Construction Example

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

#23

LR(1) DFA Construction Example

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0 1

2

int

E

#24

LR(1) DFA Construction Example

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0
E ! int², $/+

1

2

int

E

#25

LR(1) DFA Construction Example

E ! int
on $, +

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0
E ! int², $/+

1

2

int

E

#26

LR(1) DFA Construction Example

E ! int
on $, +

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0
E ! int², $/+

1

S ! E², $
E ! E²+(E), $/+

2

int

E

#27

LR(1) DFA Construction Example

E ! int
on $, +

accept
on $

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0
E ! int², $/+

1

S ! E², $
E ! E²+(E), $/+

2

int

E +

#28

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +

#29

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

#30

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

#31

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

E

int

#32

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

E ! int²,)/+

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

5

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

E

int

#33

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

E ! int²,)/+ E ! int
on), +

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

5

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

E

int

#34

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

E ! int²,)/+ E ! int
on), +

E ! E+(E²), $/+
E ! E²+(E),)/+

and so on…

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

56

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

E

int

Q: Movie Music (420 / 842)

•In a 1995 Disney movie that has
been uncharitably referred to as
"Hokey-Hontas", the Stephen
Schwartz lyrics "what I love most
about rivers is: / you can't step
in the same river twice" refer to
the ideas of which Greek
philosopher?

Q: Games (522 / 842)

•In this 1982 arcade game
features lance-wielding knights
mounted on giant flying birds
and dueling over a pit of lava.
Destroying an enemy knight
required ramming it such that
your lance was higher than the
enemy's.

#37

LR Parsing Tables. Notes

• Parsing tables (= the DFA) can be constructed
automatically for a CFG
– “The tables which cannot be constructed are

constructed automatically in response to a CFG
input. You asked for a miracle, Theo. I give you
the L-R-1.” – Hans Gruber, Die Hard

• But we still need to understand the
construction to work with parser generators
– e.g., they report errors in terms of sets of items

• What kind of errors can we expect?

#38

#39

Shift/Reduce Conflicts

• If a DFA state contains both
 [X ! α²aβ, b] and [Y ! γ², a]

• Then on input “a” we could either
– Shift into state [X ! αa²β, b], or
– Reduce with Y ! γ

• This is called a shift-reduce conflict

#40

Shift/Reduce Conflicts

• Typically due to ambiguities in the grammar
• Classic example: the dangling else

S ! if E then S | if E then S else S | OTHER

• Will have DFA state containing
 [S ! if E then S², else]

 [S ! if E then S² else S, x]

• If else follows then we can shift or reduce
• Default (bison, CUP, etc.) is to shift

– Default behavior is as needed in this case

#41

More Shift/Reduce Conflicts

• Consider the ambiguous grammar
E ! E + E | E * E | int

• We will have the states containing
[E ! E * ² E, +] [E ! E * E², +]

[E ! ² E + E, +] ⇒E [E ! E ² + E, +]
 … …

• Again we have a shift/reduce on input +
– We need to reduce (* binds more tightly than +)
– Solution: declare the precedence of * and +

#42

More Shift/Reduce Conflicts
• In bison declare precedence and associativity:

 %left +
 %left * // high precedence

• Precedence of a rule = that of its last terminal
– See bison manual for ways to override this default

• Resolve shift/reduce conflict with a shift if:
– no precedence declared for either rule or terminal
– input terminal has higher precedence than the rule
– the precedences are the same and right associative

#43

Using Precedence
to Solve S/R Conflicts

• Back to our example:
[E ! E * ² E, +] [E ! E * E², +]
[E ! ² E + E, +] ⇒E [E ! E ² + E, +]

 … …

• Will choose reduce on input + because
precedence of rule E ! E * E is higher than of
terminal +

#44

Using Precedence
to Solve S/R Conflicts

• Same grammar as before
E ! E + E | E * E | int

• We will also have the states
 [E ! E + ² E, +] [E ! E + E², +]

 [E ! ² E + E, +] ⇒E [E ! E ² + E, +]
 … …

• Now we also have a shift/reduce on input +
– We choose reduce because E ! E + E and + have

the same precedence and + is left-associative

#45

Using Precedence
to Solve S/R Conflicts

• Back to our dangling else example
 [S ! if E then S², else]

 [S ! if E then S² else S, x]

• Can eliminate conflict by declaring else with
higher precedence than then
– Or just rely on the default shift action

• But this starts to look like “hacking the parser”
• Avoid overuse of precedence declarations or you’ll

end with unexpected parse trees
– The kiss of death …

#46

Reduce/Reduce Conflicts

• If a DFA state contains both
 [X ! α², a] and [Y ! β², a]
– Then on input “a” we don’t know which

production to reduce

• This is called a reduce/reduce conflict

#47

Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the grammar
• Example: a sequence of identifiers

 S ! ε | id | id S

• There are two parse trees for the string id
 S ! id

 S ! id S ! id

• How does this confuse the parser?

#48

More on Reduce/Reduce Conflicts

• Consider the states [S ! id ², $]

 [S’ ! ² S, $] [S ! id ² S, $]
 [S ! ², $] ⇒ id [S ! ², $]

 [S ! ² id, $] [S ! ² id, $]
 [S ! ² id S, $] [S ! ² id S, $]

• Reduce/reduce conflict on input $
 S’ ! S ! id
 S’ ! S ! id S ! id
• Better rewrite the grammar: S ! ε | id S

#49

Can’s someone learn this for me?

#50

Using Parser Generators
• Parser generators construct the parsing DFA

given a CFG
– Use precedence declarations and default

conventions to resolve conflicts
– The parser algorithm is the same for all

grammars (and is provided as a library function)

• But most parser generators do not construct
the DFA as described before
– Why might that be?

#51

Using Parser Generators
• Parser generators construct the parsing DFA

given a CFG
– Use precedence declarations and default

conventions to resolve conflicts
– The parser algorithm is the same for all

grammars (and is provided as a library function)

• But most parser generators do not construct
the DFA as described before
– Because the LR(1) parsing DFA has 1000s of states

even for a simple language

#52

LR(1) Parsing Tables are Big

• But many states are similar, e.g.

 and

• Idea: merge the DFA states whose items
differ only in the lookahead tokens
– We say that such states have the same core

• We obtain

E ! int
on $, +E ! int², $/+ E ! int²,)/+ E ! int

on), +

51

E ! int
on $, +,)E ! int², $/+)

1’

#53

The Core of a Set of LR Items

• Definition: The core of a set of LR items is
the set of first components
– Without the lookahead terminals

• Example: the core of
 { [X ! α²β, b], [Y ! γ²δ, d]}
 is

 {X ! α²β, Y ! γ²δ}

#54

LALR States
• Consider for example the LR(1) states
 {[X ! α², a], [Y ! β², c]}
 {[X ! α², b], [Y ! β², d]}
• They have the same core and can be merged
• And the merged state contains:
 {[X ! α², a/b], [Y ! β², c/d]}
• These are called LALR(1) states

– Stands for LookAhead LR
– Typically 10x fewer LALR(1) states than LR(1)

#55

LALR(1) DFA

• Repeat until all states have distinct core
– Choose two distinct states with same core
– Merge the states by creating a new one with the

union of all the items
– Point edges from predecessors to new state
– New state points to all the previous successors

A

ED

CB

F

A
BE

D

C

F

#56

Example LALR(1) to LR(1)
int

E ! int
on $, +

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(
int

E

)

accept
on $

int
E ! int
on $, +,)

E ! E + (E)
on $, +,)

(

E
int

0 1,5

2 3,8 4,9

6,107,11

+

+

)

E

accept
on $

#57

The LALR Parser
Can Have Conflicts

• Consider for example the LR(1) states
 {[X ! α², a], [Y ! β², b]}
 {[X ! α², b], [Y ! β², a]}
• And the merged LALR(1) state

 {[X ! α², a/b], [Y ! β², a/b]}
• Has a new reduce-reduce conflict

• In practice such cases are rare

#58

LALR vs. LR Parsing

• LALR languages are not natural
– They are an efficiency hack on LR languages

• Any “reasonable” programming language has
a LALR(1) grammar

• LALR(1) has become a standard for
programming languages and for parser
generators

#59

A Hierarchy of Grammar Classes

From Andrew Appel,
“Modern Compiler
Implementation in Java”

#60

Notes on Parsing

• Parsing
– A solid foundation: context-free grammars
– A simple parser: LL(1)
– A more powerful parser: LR(1)
– An efficiency hack: LALR(1)
– LALR(1) parser generators

• Now we move on to semantic analysis

#61

Take a bow, you survived!

#62

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
Due to LALR Conversion
(from the bison manual)

#63

Strange Reduce/Reduce Conflicts

• Consider the grammar
 S ! P R , NL ! N | N , NL
 P ! T | NL : T R ! T | N : T

 N ! id T ! id
• P - parameters specification
• R - result specification
• N - a parameter or result name
• T - a type name
• NL - a list of names

#64

Strange Reduce/Reduce Conflicts

• In P an id is a
– N when followed by , or :
– T when followed by id

• In R an id is a
– N when followed by :
– T when followed by ,

• This is an LR(1) grammar.
• But it is not LALR(1). Why?

– For obscure reasons

#65

A Few LR(1) States
P → ² T id

P → ² NL : T id

NL → ² N :

NL → ² N , NL :

N → ² id :

N → ² id ,

T → ² id id

1

R → ² T ,

R → ² N : T ,

T → ² id ,

N → ² id :

2

T → id ² id

N → id ² :

N → id ² ,
 id

3

T → id ² ,

N → id ² :
 id 4

T → id ² id/,

N → id ² :/,
 LALR merge

 LALR reduce/reduce
conflict on “,”

#66

What Happened?

• Two distinct states were confused because
they have the same core

• Fix: add dummy productions to distinguish the
two confused states

• E.g., add
 R ! id bogus

– bogus is a terminal not used by the lexer
– This production will never be used during parsing
– But it distinguishes R from P

#67

A Few LR(1) States After Fix
P → ² T id

P → ² NL : T id

NL → ² N :

NL → ² N , NL :

N → ² id :

N → ² id ,

T → ² id id

R → . T ,

R → . N : T ,

R → . id bogus ,

T → . id ,

N → . id :

T → id ² id

N → id ² :

N → id ² ,

T → id ² ,

N → id ² :

R → id ² bogus ,

 id

 id

1

2

3

4

 Different cores ⇒ no LALR merging

#68

Homework
• Today: WA2 Was Due
• Thursday: Chapter 3.1 – 3.6

– Optional Wikipedia Article

• Tuesday February 26: WA3 due
• Wednesday February 27: PA3 due

– Parsing!

• Thursday Feb 28 – Midterm 1 in Class

