How To Survive CS 415

- PA3-PbrSer

PA Ya Type Checker
Checkpoint

- PA5 - Interpreter
- W/itten Assignments
- Midierms
- Cheat Sheet
- Finail Exam.

The more things change...

LR Parsing

Bottom-Up Parsing

Outline

- No Stopping The Parsing!
- LL(1) Construction
- Bottom-Up Parsing
- LR Parsing
- Shift and Reduce
- LR(1) Parsing Algorithm
- LR(1) Parsing Tables

In One Slide

- If the LL(1) table for a grammar G has multiple entries, then G is not $\operatorname{LL}(1)$!
- An LR(1) parser reads tokens from left to right and constructs a bottom-up rightmost derivation. LR(1) parsers shift terminals and reduce the input by application productions in reverse. LR(1) parsing is fast and easy, and uses a finite automaton with a stack. LR(1) works fine if the grammar is left-recursive, or not left-factored.

Constructing LL(1) Parsing Tables

- Here is how to construct a parsing table T for context-free grammar G
- For each production $\mathrm{A} \rightarrow \alpha$ in G do:
- For each terminal $b \in \operatorname{First}(\alpha)$ do
-T[A, b] = α
- If $\alpha \rightarrow{ }^{*} \varepsilon$, for each $b \in \operatorname{Follow}(A)$ do
-T[A, b] = α

LL(1) Table Construction Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Where in the row of Y do we put $\mathrm{Y} \rightarrow{ }^{*} \mathrm{~T}$?
- In the columns of First(*T) = \{*\}

	int	$*$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		$* \mathrm{~T}$	ε		ε	ε

LL(1) Table Construction Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Where in the row of Y we put $Y \rightarrow \varepsilon$?
- In the columns of $\operatorname{Follow}(\mathrm{Y})=\{\$,+$,) $\}$

	int	$*$	+	$($	$)$	$\$$
T	$\operatorname{int} \mathrm{Y}$			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Avoid Multiple Definitions!

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well
- Most programming language grammars are not LL(1) (e.g., Java, Ruby, C++, OCaml, Cool, Perl, ...)
- There are tools that build LL(1) tables

Top-Down Parsing Strategies

- Recursive Descent Parsing
- But backtracking is too annoying, etc.
- Predictive Parsing, aka. LL(k)
- Predict production from k tokens of lookahead
- Build LL(1) table
- Parsing using the table is fast and easy
- But many grammars are not LL(1) (or even LL(k))
- Next: a more powerful parsing strategy for grammars that are not LL(1)

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
- And just as efficient
- Builds on ideas in top-down parsing
- Preferred method in practice
- Also called LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation

An Introductory Example

- LR parsers don't need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

$$
E \rightarrow E+(E) \mid \text { int }
$$

- Why is this not LL(1)? (Guess before I show you!)
- Consider the string: int + (int) + (int)

The Idea

- LR parsing reduces a string to the start symbol by inverting productions:
str \leftarrow input string of terminals repeat

- Identify β in str such that $A \rightarrow \beta$ is a production (i.e., str $=\alpha \beta \gamma$)
- Replace β by A in str (i.e., str becomes $\alpha \mathrm{A} \gamma$)
until str = S

A Bottom-up Parse in Detail (1)

 int + (int) + (int)
int $+($ int $)+($ int $)$

A Bottom-up Parse in Detail (2)

```
int + (int) + (int)
E + (int) + (int)
```


A Bottom-up Parse in Detail (3)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) + (int) } \\
& \text { E + (E) + (int) }
\end{aligned}
$$

A Bottom-up Parse in Detail (4)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) }+ \text { (int) } \\
& \text { E + (E) } \text { (int) } \\
& \text { E + (int) }
\end{aligned}
$$

A Bottom-up Parse in Detail (5)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) }+ \text { (int) } \\
& \text { E + (E) }+ \text { int }) \\
& \text { E + (int) } \\
& \text { E + (E) }
\end{aligned}
$$

A Bottom-up Parse in Detail (6)

$$
\left\lvert\, \begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) }+(\mathrm{int}) \\
& \mathrm{E}+(\mathrm{E})+(\mathrm{int}) \\
& \mathrm{E}+(\mathrm{int}) \\
& \mathrm{E}+(\mathrm{E}) \\
& \mathrm{E}
\end{aligned}\right.
$$

A rightmost derivation in reverse

Important Fact

Important Fact \#1 about bottom-up parsing:
An LR parser traces a rightmost derivation in reverse.

Where Do Reductions Happen

Important Fact \#1 has an Interesting
Consequence:

- Let $\alpha \beta \gamma$ be a step of a bottom-up parse
- Assume the next reduction is by $\mathrm{A} \rightarrow \beta$
- Then γ is a string of terminals!

Why? Because $\alpha \mathrm{A} \gamma \rightarrow \alpha \beta \gamma$ is a step in a rightmost derivation

Notation

- Idea: Split the string into two substrings
- Right substring (a string of terminals) is as yet unexamined by parser
- Left substring has terminals and non-terminals
- The dividing point is marked by a
- The \triangleright is not part of the string
- Initially, all input is new: $\stackrel{x_{1}}{ } x_{2} \ldots x_{n}$

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

Shift: Move - one place to the right

- Shifts a terminal to the left string

$$
\begin{gathered}
E+(\triangleright \text { int }) \\
\Rightarrow \\
E+(\text { int } \triangleright)
\end{gathered}
$$

Reduce

Reduce: Apply an inverse production at the right end of the left string
 - If $T \rightarrow E+(E)$ is a production, then

Q: Movies (268 / 842)

- In the 1986 movie Stand By Me, what do the kids journey to see?

Q: Books (769 / 842)

- Who wrote the 1978 book entitled What is the Name of this Book?, obliquely referenced here by critic Andrew Maizels:
- In fact, between SG\&E and the Illuminatus! trilogy, I was sufficiently intrigued that I went out and bought a copy of Ayn Rand's What is the Name of this Book?. No, sorry, Atlas Shrugged, that's the one. Of course, I haven't actually read it; every so often I pick it up, and say to myself: "it's a lovely day today, I think I shall go for a walk". This book has improved my life immensely.
Q: Movies (287 / 842)
-This 1995 Pixar animated film featured "Forrest Gump" and "Tim The Tool-Man Taylor". Initially jealous and resentful, the two eventually work together.

Shift-Reduce Example

- int + (int) + (int)\$ shift

int + (int) + (int)
\uparrow

Shift-Reduce Example

\author{

- int + (int) + (int)\$ shift
 int -+ (int) + (int)\$ red. $E \rightarrow$ int
}

Shift-Reduce Example

```
- int + (int) + (int)\$ shift
int -+ (int) + (int)\$ red. \(E \rightarrow\) int
\(\mathrm{E} \boldsymbol{\square}+\) (int) + (int) \(\$\) shift 3 times
```


Shift-Reduce Example

```
- int + (int) + (int)$ shift
int > + (int) + (int)$ red. E }->\mathrm{ int
E + + (int) + (int)$ shift 3 times
E + (int > ) + (int)$ red. E }->\mathrm{ int
```


Shift-Reduce Example

```
- int + (int) + (int)$ shift
int > + (int) + (int)$ red. E }->\mathrm{ int
E + + (int) + (int)$ shift 3 times
E + (int > ) + (int)$ red. E -> int
E + (E\triangleright ) + (int)$ shift
```


Shift-Reduce Example

```
- int + (int) + (int)$ shift
int > + (int) + (int)$ red. E }->\mathrm{ int
E + + (int) + (int)$ shift 3 times
E + (int> ) + (int)$ red. E }->\mathrm{ int
E + (E| ) + (int)$ shift
E + (E) + (int)$ red. E }->\textrm{E}+(\textrm{E}
```


Shift-Reduce Example

- int + (int) + (int)\$ shift
int -+ (int) + (int) $\$$ red. $E \rightarrow$ int
$E \triangleright+$ (int) + (int) $\$$ shift 3 times
$\mathrm{E}+$ (int $>$) + (int) $\$$ red. $\mathrm{E} \rightarrow$ int
$E+(E \subset)+(i n t) \$$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+$ (int) $\$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E -+ (int) $\$$ shift 3 times

\uparrow

Shift-Reduce Example

- int + (int) + (int)\$ shift
int $\downarrow+$ (int) + (int)\$ red. $E \rightarrow$ int
$E _+$(int) + (int) $\$$ shift 3 times
$E+$ (int \downarrow) + (int)\$ red. $E \rightarrow$ int
E + (E \downarrow) + (int)\$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+($ int $) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E $\downarrow+$ (int) $\$$ shift 3 times
E + (int \downarrow) $\$ \quad$ red. $E \rightarrow$ int

Shift-Reduce Example

- int + (int) + (int)\$ shift
int -+ (int) + (int) $\$$ red. $E \rightarrow$ int
$E _+$(int) + (int) $\$$ shift 3 times
$\mathrm{E}+$ (int \triangleright) + (int)\$ red. $\mathrm{E} \rightarrow$ int
E + (E \downarrow) + (int)\$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+($ int $) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E $\downarrow+$ (int) $\$$ shift 3 times
E + (int \downarrow) $\$ \quad$ red. $E \rightarrow$ int
$E+(E \triangleright) \$ \quad$ shift

Shift-Reduce Example

- int + (int) + (int) \$ shift
int -+ (int) + (int) $\$$ red. $E \rightarrow$ int
$E _+$(int) + (int) $\$$ shift 3 times
$\mathrm{E}+$ (int \triangleright) + (int)\$ red. $\mathrm{E} \rightarrow$ int
E + (E \downarrow) + (int)\$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+($ int $) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E $\downarrow+($ int $) \$$ shift 3 times
E + (int \downarrow) $\$ \quad$ red. $E \rightarrow$ int
E + (E \downarrow) \$ shift
$E+(E)-\$$
red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$

Shift-Reduce Example

- int + (int) + (int) \$ shift
int -+ (int) + (int) $\$$ red. $E \rightarrow$ int
$E _+$(int) + (int) $\$$ shift 3 times
$E+($ int $\triangleright)+$ (int) $\$$ red. $E \rightarrow$ int
E + (E \downarrow) + (int)\$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+($ int $) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
$E \downarrow+$ (int) $\$ \quad$ shift 3 times
$\mathrm{E}+$ (int $\triangleright) \$$ red. $\mathrm{E} \rightarrow$ int
E + E -) $\$ \quad$ shift
$E+(E) \triangleright \$$
red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E \downarrow

The Stack

- Left string can be implemented as a stack
- Top of the stack is the
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols from the stack (production RHS) and pushes a nonterminal on the stack (production LHS)

Key Issue:

When to Shift or Reduce?

- Decide based on the left string (the stack)
- Idea: use a finite automaton (DFA) to decide when to shift or reduce
- The DFA input is the stack
- DFA language consists of terminals and nonterminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after \downarrow
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

LR(1) Parsing Example

Representing the DFA

- Parsers represent the DFA as a 2D table
- Recall table-driven lexical analysis
- Lines (rows) correspond to DFA states
- Columns correspond to terminals and nonterminals
- Typically columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table

Representing the DFA. Example

- The table for a fragment of our DFA:

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
- This is wasteful, since most of the work is repeated
- Optimization: remember for each stack element to which state it brings the DFA
- LR parser maintains a stack

$$
<\operatorname{sym}_{1}, \text { state }_{1}>\ldots . .<\operatorname{sym}_{n}, \text { state }_{n}>
$$

state $_{\mathrm{k}}$ is the final state of the DFA on $\operatorname{sym}_{1} \ldots \mathrm{sym}_{\mathrm{k}}$

The LR Parsing Algorithm

Let $S=w \$$ be initial input
Let $\mathrm{j}=0$
Let DFA state 0 be the start state
Let stack = < dummy, 0 >

repeat

match action[top_state(stack), S[j]] with
| shift k: push < S[j++], k >
\mid reduce $X \rightarrow \alpha$:
pop $|\alpha|$ pairs,
push < X, Goto[top_state(stack), X] >
| accept: halt normally
| error: halt and report error

LR Parsing Notes

- Can be used to parse more grammars than LL
- Most PL grammars are LR
- Can be described as a simple table
- There are tools for building the table
- Often called "yacc" or "bison"
- How is the table constructed? Next time!

Homework

- Tuesday: WA2 due
- Tuesday: Read 2.3.4-2.3.5, 2.4.2-2.4.3
- Wednesday Feb 27: PA3 due
- Parsing!
- When should I start? Early or late?

