
#1

Lexical AnalysisLexical Analysis

Finite AutomataFinite Automata

(Part 2 of 2)(Part 2 of 2)

#2

 PA0, PA1

• Although we have included
the tricky “file ends without
a newline” testcases in
previous years, students
made good cases against
them (e.g., they test I/O
and not the algorithm) so we
are dropping them from
PA1.

• You can submit new
rosetta.yada files for PA1,
so you can fix errors from
PA0.

#3

Reading Quiz!
• Are practical parsers and scanners based on deterministic or

non-deterministic automata?

• How can regular expressions be used to specify nested
constructs?

• How is a two-dimensional transition table used in table-
driven scanning?

#4

Cunning Plan

• Regular expressions provide a concise
notation for string patterns

• Use in lexical analysis requires small
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (next)
– Require only single pass over the input
– Few operations per character (table lookup)

#5

One-Slide Summary

• Finite automata are formal models of
computation that can accept regular languages
corresponding to regular expressions.

• Nondeterministic finite automata (NFA)
feature epsilon transitions and multiple
outgoing edges for the same input symbol.

• Regular expressions can be converted to NFAs.
• Tools will generate DFA-based lexer code for

you from regular expressions.

#6

Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
– An input alphabet Σ
– A set of states S
– A start state n
– A set of accepting states F µ S
– A set of transitions state → input state

#7

Finite Automata

• Transition
s1 →a s2

• Is read
In state s1 on input “a” go to state s2

• If end of input (or no transition possible)
– If in accepting state) accept
– Otherwise) reject

#8

Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
a

#9

A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can
follow transitions labeled with the characters
in the string from the start to some accepting
state

1

#10

Another Simple Example
• A finite automaton accepting any number of

1’s followed by a single 0
• Alphabet Σ = {0,1}

• Check that “1110” is accepted but “110…” is
not

0

1

#11

And Another Example
• Alphabet Σ = {0,1}
• What language does this recognize?

0

1

0

1

0

1

#12

And Another Example

• Alphabet still Σ = { 0, 1 }

• The operation of the automaton is not
completely defined by the input
– On input “11” the automaton could be in either

state

1

1

#13

Epsilon Moves

• Another kind of transition: ε-moves
ε

• Machine can move from state A to state B
without reading input

A B

#14

Deterministic and
Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– One transition per input per state
– No ε-moves

• Nondeterministic Finite Automata (NFA)
– Can have multiple transitions for one input in a

given state
– Can have ε-moves

• Finite automata have finite memory
– Need only to encode the current state

#15

Execution of Finite Automata

• A DFA can take only one path through the
state graph
– Completely determined by input

• NFAs can choose
– Whether to make ε-moves
– Which of multiple transitions for a single input to

take

#16

Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state

#17

NFA vs. DFA (1)

• NFAs and DFAs
recognize the same set
of languages (regular
languages)
– They have the same

expressive power

• DFAs are easier to
implement
– There are no choices to

consider

#18

NFA vs. DFA (2)

• For a given language the NFA can be simpler
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

#19

Regular Expressions to Finite
Automata

• High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

#20

Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp A

A

• For ε
ε

• For input a
a

#21

Regular Expressions to NFA (2)

• For AB
A B

ε

• For A | B

A

B

ε
ε

ε

ε

#22

Regular Expressions to NFA (3)

• For A*
Aε

ε

ε

#23

Example of RegExp -> NFA
Conversion

• Consider the regular expression
(1 | 0)* 1

• The NFA is

ε

1C E

0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1
I J

#24

Overarching PlanOverarching Plan

RegularRegular
expressionsexpressions

NFANFA

DFADFA

LexicalLexical
SpecificationSpecification

Table-driven Table-driven
Implementation of DFAImplementation of DFA

Thomas Cole – Evening in Arcady (1843)

#25

NFA to DFA: The Trick

• Simulate the NFA
• Each state of DFA

= a non-empty subset of states of the NFA

• Start state
= the set of NFA states reachable through ε-moves

from NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from the

states in S after seeing the input a
• considering ε-moves as well

#26

NFA ! DFA Example

1
0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

#27

NFA ! DFA: Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some
subset of those N states

• How many non-empty subsets are there?
– 2N - 1 = finitely many

#28

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”

– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip

to state Sk

– Very efficient

#29

Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10

#30

Implementation (Cont.)

• NFA ! DFA conversion is at the heart of tools
such as flex or ocamllex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed for
space in the choice of NFA and DFA
representations

#31

PA2: Lexical Analysis

• Correctness is job #1.
– And job #2 and #3!

• Tips on building large systems:
– Keep it simple
– Design systems that can be tested
– Don’t optimize prematurely
– It is easier to modify a working system than to get

a system working

#32

Lexical Analyzer Generator

• Tools like lex and flex and ocamllex will build
lexers for you!

• You will use this for PA1

• I’ll explain ocamllex; others are similar
– See PA2 documentation

Lexer Source
Code

Lexical
Analyzer
Generator

List of Regexps
with code
snippets

#33

Ocamllex “lexer.mll” file

{
(* raw preamble code

type declarations, utility functions, etc. *)
}
let re_namei = rei

rule normal_tokens = parse
re1 { token1 }

| re2 { token2 }

and specialtokens = parse

| ren { tokenn }

#34

Example “lexer.mll”

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide (* / *)
}
let digit = [‘0’ – ‘9’]
rule initial = parse

‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in

 let token_val = int_of_string token_string in
 Tok_Integer(token_val) }
| _ { Printf.printf “Error!\n”; exit 1 }

#35

Adding Winged Comments
{

type token = Tok_Integer of int (* 123 *)
| Tok_Divide (* / *)

}
let digit = [‘0’ – ‘9’]
rule initial = parse

“//” { eol_comment }
| ‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in

 let token_val = int_of_string token_string in
 Tok_Integer(token_val) }
| _ { Printf.printf “Error!\n”; exit 1 }

and eol_comment = parse
 ‘\n’ { initial lexbuf }
| _ { eol_comment lexbuf }

#36

Using Lexical Analyzer Generators

$ ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file … *)
let file_input = open_in “file.cl” in
let lexbuf = Lexing.from_channel file_input in
let token = Lexer.initial lexbuf in
match token with
| Tok_Divide -> printf “Divide Token!\n”
| Tok_Integer(x) -> printf “Integer Token = %d\n” x

#37

How Big Is PA2?

• The reference “lexer.mll” file is 88 lines
– Perhaps another 20 lines to keep track of input

line numbers
– Perhaps another 20 lines to open the file and get

a list of tokens
– Then 65 lines to serialize the output
– I’m sure it’s possible to be smaller!

• Conclusion:
– This isn’t a code slog, it’s about careful

forethought and precision.

#38

Homework
• Wednesday: PA1 due
• Thursday: Chapters 2.3 – 2.3.2

– Optional Wikipedia article

