
#1

Lexical AnalysisLexical Analysis

Finite AutomataFinite Automata

(Part 1 of 2)(Part 1 of 2)

Cool
Demo?

#2

Cunning Plan

• Informal Sketch of Lexical Analysis
– LA identifies tokens from input string

– lexer : (char list) → (token list)

• Issues in Lexical Analysis
– Lookahead
– Ambiguity

• Specifying Lexers
– Regular Expressions
– Examples

#3

One-Slide Summary

•Lexical analysis turns a stream
of characters into a stream of
tokens.

•Regular expressions are a way
to specify sets of strings. We
use them to describe tokens.

#4

Fold Batter Lightly ...

• fold_left f a [1;...;n] == f (... (f (f a 1) 2)) n
– fold_left (fun a e -> e :: a) [] [1;2;3]

• = [3;2;1]

– fold_left (fun a e -> a @ [e]) [] [1;2;3]
• = [1;2;3]

• fold_right f [1;...;n] b == f 1 (f 2 (... (f n b)))
– fold_right (fun a e -> e :: a) [1;2;3] []

• = [1;2;3]

– fold_right (fun e a -> a @ [e]) [1;2;3] []
• = [3;2;1]

#5

Structure of an Interpreter

Source

Lexical
Analysis

List of
Tokens

Abstract
Syntax Tree

Parsing

Optimization

Run It!

Code
Generation

Machine
Code

(Interpreter)

(Compiler)

#6

Lexical Analysis

• What do we want to do? Example:
– if (i == j)
– z = 0;
– else
– z = 1;

• The input is just a sequence of characters:
– if (i == j)\n\tz = 0;\nelse\n\tz = 1;

• Goal: partition input strings into substrings
– And classify them according to their role

#7

What's a Token?

• Output of lexical analysis is a list of tokens
• A token is a syntactic category

– In English:
• noun, verb, adjective, ...

– In a programming language:
• Identifier, Integer, Keyword, Whitespace, ...

• Parser relies on token distinctions:
– e.g., identifiers are treated differently than

keywords

#8

Tokens

• Tokens correspond to sets of strings.
•
• Identifier: strings of letters or digits, starting

with a letter
• Integer: a non-empty string of digits
• Keyword: “else” or “if” or “begin” or ...
• Whitespace: a non-empty sequence of blanks,

newlines, and/or tabs
• OpenPar: a left-parenthesis

#9

Lexical Analyzer: Build It!

• An implementation must do two things:

• Recognize substrings corresponding to tokens

• Return the value or lexeme of the token
– The lexeme is the substring

#10

Example
• Recall:

– if (i == j)\n\tz = 0;\nelse\n\tz = 1;

• Token-lexeme pairs returned by the lexer:
– <Keyword, “if”>
– <Whitespace, “ ”>
– <OpenPar, “(”>
– <Identifier, “i”>
– <Whitespace, “ ”>
– <Relation, “==”>
– <Whitespace, “ ”>
– ...

#11

Lexical Analyzer: Implementation

• The lexer usually discards “uninteresting”
tokens that don't contribute to parsing.

• Examples: Whitespace, Comments
– Exception: which language cares about whitespace?

• Question: What happens if we remove all
whitespace and comments prior to lexing?

#12

Lookahead

• The goal is to partition the string. That is
implemented by reading left-to-right,
recognizing one token at a time.

• Lookahead may be required to decide where
one token ends and the next token begins
– Even our simple example has lookahead issues
– i vs. if
– = vs. ==

#13

Still Needed

• A way to describe the lexemes of each token
– Recall: lexeme = “the substring corresponding to

the token”

• A way to resolve ambiguities
– Is if two variables i and f?
– Is == two equal signs = =?

#14

Languages

•Definition. Let Σ be a set of
characters. A language over Σ is
a set of strings of characters
drawn from Σ. Σ is called the
alphabet.

#15

Examples of Languages

• Alphabet = English Characters
• Language = English Sentences

– Note: Not every string on English characters is an
English sentence.

– Example: xayenb sbe'

• Alphabet = ASCII characters
• Language = C Programs

– Note: ASCII character set is different from English
character set.

#16

Notation

• Languages are sets of strings

• We need some notation for specifying which
sets we want
– that is, which strings are in the set

• For lexical analysis we care about regular
languages, which can be described using
regular expressions.

#17

Regular Expressions

• Each regular expression is a notation for a
regular language (a set of words)
– You'll see the exact notation in minute!

• If A is a regular expression then we write L(A)
to refer to the language denoted by A

#18

Base Regular Expression

• Single character: 'c'
– L('c') = { “c” } (for any c ∈ Σ)

• Concatenation: AB
– A and B are other regular expressions

– L(AB) = { ab | a ∈ L(A) and b ∈ L(B) }

• Example: L('i' 'f') = { “if” }
– We abbreviate 'i' 'f' as 'if'

#19

Compound Regular Expressions

• Union
– L(A | B) = { s | s ∈ L(A) or s ∈ L(B) }

• Examples:
– L('if' | 'then' | 'else') = { “if”, “then”, “else” }
– L('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9') = what?

• Fun Example:
– L(('0'|'1') ('0'|'1')) = {“00”,”01”,”10”,”11”}

#20

Starz!

• So far we have only finite languages
• Iteration: A*

– L(A*) = {“”} ∪ L(A) ∪ L(AA) ∪ L(AAA) ...

• Examples:
– L('0'*) = {“”, “0”, “00”, “000”, “0000”, ... }
– L('1''0'*) = {“1”, “10”, “100”, “1000”, ...}

• Empty: ε
– L(ε) = { “” }

Q: Events (603 / 842)

•This product was introduced on
May 8, 1985, in one of the
greatest consumer flops ever. It
was effectively shelved on July
10 of the same year when its
"red, white and you" predecessor
was re-introduced and set as the
default.

Q: Music (150 / 842)

•In this 1958 Sheb Wooley song
the pigeon-toed title character
wears short shorts and wants to
get a job in a rock'n'roll band
playing the horn, but is perhaps
best known for his skin tone and
non-standard diet.

Q: Advertising (810 / 842)

•The United States
Forest Service's ursine
mascot first appeared in
1944. Give his catch-
phrase safety message.

#24

Example: Keyword

• Keyword: “else” or “if” or “begin” or ...

'else' | 'if' | 'begin' | ...
(Recall: 'else' abbreviates 'e' 'l' 's' 'e')

#25

Example: Integers

• Integer: a non-empty string of digits

digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
number = digit digit*

Abbreviation: A+ = A A*

#26

Example: Identifier

• Identifier: string of letters or digits, starting
with a letter

letter = 'A' | ... | 'Z' | 'a' | ... | 'z'
ident = letter (letter | digit)*

Is (letter* | digit*) the same?

#27

Example: Whitespace

• Whitespace: a non-empty sequence of blanks,
newlines, and tabs

(' ' | '\t' | '\n') +
or

(' ' | '\t' | '\n' | '\r') +

#28

Example: Phone Numbers

• Regular expressions are everywhere!
• Consider: (434) 924-1021

Σ = {0, 1, 2, 3, ..., 9, (,), -}
area = digit digit digit
exch = digit digit digit
phone = digit digit digit digit
number = '(' area ')' exch '-' phone

#29

Example: Email Addresses

• Consider weimer@cs.virginia.edu

Σ = {a, b, ..., z, ., @}
name = letter+
address = name '@' name ('.' name)*

mailto:weimer@cs.virginia.edu

#30

Regexp Summary

• Regular expressions describe many useful
languages

• Next: Given a string s and a regexp R, is
s ∈ L(R)

• But a yes/no answer is not enough!
• Instead: partition the input into lexemes
• We will adapt regular expression to this goal

#31

Subsequent Outline

• Specifying lexical structure using regexps
• Finite Automata

– Deterministic Finite Automata (DFAs)
– Non-deterministic Finite Automata (NFAs)

• Implementation of Regular Expressions
– Regexp -> NFA -> DFA -> tables

#32

Lexical Specification (1)

• Select a set of tokens
– Number, Keyword, Identifier, ...

• Write a regexp for the lexemes of each token
– Number = digit+
– Keyword = 'if' | 'else' | ...
– Identifier = letter (letter | digit) *
– OpenPar = '('
– ...

#33

Lexical Specification (2)

• Construct R, matching all lexemes for all
tokens:

• R = Keyword | Identifier | Number | ...

• R = R1 | R2 | R3 | ...

• Fact: if s ∈ L(R) then s is a lexeme

– Furthermore, s ∈ L(Rj) for some j
– This j determines the token that is reported

#34

Lexical Specification (3)

• Let the input be x
1
 ... x

n

– Each x
i
 is in the alphabet Σ

• For 1 ≤ i ≤ n, check

– x
1
 ... x

i ∈ L(R)

• If so, it must be that

– x
1
 ... x

i ∈ L(Rj) for some j

• Remove x
1
 ... x

i
 from the input and

restart

#35

Lexing Example

• R = Whitespace | Integer | Identifer | Plus
• Parse “f +3 +g”

– “f” matches R, more precisely Identifier
– “ “ matches R, more precisely Whitespace
– “+” matches R, more precisely Plus
– ...
– The token-lexeme pairs are
– <Identifier, “f”>
– <Whitespace, “ “>
– <Plus, “+”> ...

In the future, we'll just
drop whitespace.

#36

Ambiguities (1)

• There are ambiguities in the algorithm
• Example:

– R = Whitespace | Integer | Identifier | Plus

• Parse “foo+3”
– “f” matches R, more precisely Identifier
– But also “fo” matches R, and “foo”, but not “foo+”

• How much input is used?
– Maximal Munch rule: Pick the longest possible

substring that matches R

#37

Ambiguities (2)

• R = Whitespace | 'new' | Integer | Identifier
• Parse “new foo”

– “new” matches R, more precisely 'new'
– but also Identifier – which one do we pick?

• In general, use the rule listed first
– No, really.

• So we must list 'new' (and other keywords)
before Identifier.

#38

Error Handling

• R = Whitespace | Integer | Identifier | '+'
• Parse “=56”

– No prefix matches R: not “=”, nor “=5”, nor “=56”

• Problem: we can't just get stuck and die
• Solution:

– Add a rule matching all “bad” strings
– Put it last

• Lexer tools allow the writing of:
– R = R1 | R2 | ... | Rn | Error

#39

Summary

• Regular expressions provide a concise notation
for string patterns

• Their use in lexical analysis requires small
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (next)
– Requiring only a single pass over the input
– And few operations per character (table lookup)

