
#1

History of Programming LanguagesHistory of Programming Languages

Functional ProgrammingFunctional Programming

#2

Cunning Plan
• History Lesson
• Functional Programming

– OCaml
– Types
– Pattern Matching
– Higher-Order Functions

• Basic Syntax
• Data Structures
• Higher-Order Functions

– Fold

#3

Gone In Sixty Seconds

• Imperative: change state, assignments
• Structured: if/block/routine control

flow
• Object-Oriented: message passing (=

dynamic dispatch), inheritance
• Functional: functions are first-class

citizens that can be passed around or
called recursively. We can avoid
changing state by passing copies.

#4

Why Study History?

• Those who cannot remember George
Santayana are condemned to misquote him.
– Supernatural, 1999

#5

Why Study History?Why Study History?
• Progress, far from consisting in change, Progress, far from consisting in change,

depends on retentiveness. depends on retentiveness. Those who cannot Those who cannot
remember the past are condemned to repeat it.remember the past are condemned to repeat it.
– George Santayana, George Santayana, Life of Reason: Life of Reason: Vol. IVol. I, ,

Reason and Common SenseReason and Common Sense, 1905-1906. , 1905-1906.
• Through meticulous analysis of history I will Through meticulous analysis of history I will

find a way to make the people worship me. By find a way to make the people worship me. By
studying the conquerors of days gone by, studying the conquerors of days gone by, I’ll I’ll
discover the mistakes that made them go awry.discover the mistakes that made them go awry.
– The Brain, The Brain, A Meticulous Analysis of HistoryA Meticulous Analysis of History, ,

P031P031

#6

Modern Era

• 1972 – C1972 – C Systems programming, ASMSystems programming, ASM
• 1983 – Ada1983 – Ada US DOD, static type safetyUS DOD, static type safety
• 1983 – C++1983 – C++ classes, default args, STLclasses, default args, STL
• 1987 – Perl 1987 – Perl dynamic scripting languagedynamic scripting language
• 1990 – Python1990 – Python interp OO + readabilityinterp OO + readability
• 1991 – Java1991 – Java portable OO lang (for iTV)portable OO lang (for iTV)
• 1993 – Ruby1993 – Ruby Perl + SmalltalkPerl + Smalltalk
• 1996 – OCaml1996 – OCaml ML + C++ML + C++
• 2000 – C#2000 – C# “simple” Java + delegates“simple” Java + delegates

I invented the term Object-Oriented,
and I did not have C++ in mind.
- Alan Kay

#7

 Time Travel

• Back to an earlier
time when the US
was worried about a
Communist “perfect
attack”

• In Soviet Russia,
noun verbs you!
 (-1 Redundant)

#8

 The Land Before Time

• It was a time very different now ...
• Joseph McCarthy 1950

– "I have here in my hand a list of 205 —
a list of names ...”

• John McCarthy 1958
– LISP = List Processing Language
– basic datatype is the List, programs

themselves are lists, can self-
modify, dynamic allocation,
garbage collection (!), functional

#9

Oh what a tangled web we weave,
When first we practise to deceive!
- Sir Walter Scott, 1771-1832

Functional
Object-

Oriented
Structured
Imperative

There are only two kinds of
programming languages: those people
always [complain] about and those
nobody uses.
- Bjarne Stroustrup

I fear the new OO systems may suffer the
fate of LISP, in that they can do many
things, but the complexity of the class
hierarchies may cause them to collapse
under their own weight.
- Bill Joy

Computer language design
is just like a stroll in the
park. Jurassic Park, that is.
- Larry Wall

#10

Functional Programming

• You know OO and Structured Imperative
• Functional Programming

– Computation = evaluating (math) functions
– Avoid “global state” and “mutable data”
– Get stuff done = apply (higher-order) functions
– Avoid sequential commands

• Important Features
– Higher-order, first-class functions
– Closures and recursion
– Lists and list processing

#11

State

• The state of a program is all of the current
variable and heap values

• Imperative programs destructively modify
existing state

SET {x} add_elem(SET, y)

#12

State

• The state of a program is all of the current
variable and heap values

• Imperative programs destructively modify
existing state

SET {x,y}

#13

State

• The state of a program is all of the current
variable and heap values

• Imperative programs destructively modify
existing state

•
• Functional programs yield new similar states

over time

SET {x,y}

SET_1 {x}

SET_2 = add_elem(SET_1, y)

#14

State

• The state of a program is all of the current
variable and heap values

• Imperative programs destructively modify
existing state

•
• Functional programs yield new similar states

over time

SET {x,y}

SET_1 {x} SET_2 {x,y}

SET_2 = add_elem(SET_1, y)

#15

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

#16

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin

endend

#17

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin
 let z = float_of_int (x + y) in let z = float_of_int (x + y) in

endend

#18

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin
 let z = float_of_int (x + y) in let z = float_of_int (x + y) in
 let z = z /. 2.0 in let z = z /. 2.0 in

endend

#19

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin
 let z = float_of_int (x + y) in let z = float_of_int (x + y) in
 let z = z /. 2.0 in let z = z /. 2.0 in
 printf “Answer is %g\n” z ;printf “Answer is %g\n” z ;

endend

#20

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin
 let z = float_of_int (x + y) in let z = float_of_int (x + y) in
 let z = z /. 2.0 in let z = z /. 2.0 in
 printf “Answer is %g\n” z ;printf “Answer is %g\n” z ;
 zz
endend

#21

The Tuple (or Pair)

• let x = (22, 58) in (* tuple creation *)
• ...
• let y, z = x in (* tuple field extraction *)
• printf “first element is %d\n” y ; ...
•
• let add_points p1 p2 =
• let x1, y1 = p1 in
• let x2, y2 = p2 in
• (x1 + x2, y1 + y2)

#22

List Syntax in OCaml

• Empty List []
• Singleton [element]
• Longer List [e1 ; e2 ; e3]
• Cons x :: [y;z] = [x;y;z]
• Append [w;x]@[y;z] = [w;x;y;z]
• List.length, List.filter, List.fold, List.map …
• More on these later!
• Every element in list must have same type

#23

Functional Example

• Simple Functional Set (built out of lists)
– let rec add_elem (s, e) =
– if s = [] then [e]
– else if List.hd s = e then s
– else List.hd s :: add_elem(List.tl s, e)

• Pattern-Matching Functional (same effect)
– let rec add_elem (s,e) = match s with
– | [] -> [e]
– | hd :: tl when e = hd -> s
– | hd :: tl -> hd :: add_elem(tl, e)

#24

Imperative Code
• More cases to handle

– List* add_elem(List *s, item e) {
– if (s == NULL)
– return list(e, NULL);
– else if (s->hd == e)
– return s;
– else if (s->tl == NULL) {
– s->tl = list(e, NULL); return s;
– } else
– return add_elem(s->tl, e);
– }

I have stopped reading Stephen
King novels. Now I just read C
code instead.
- Richard O’Keefe

Q: Advertising (785 / 842)

•Identify the company associated
with two of the following four
advertising slogans or symbols.
– "Fill it to the rim."

– "I bet you can't eat just one."

– "Snap, Crackle, Pop"

– "The San Francisco Treat"

#26

Functional-Style Advantages

• Tractable program semantics
– Procedures are functions
– Formulate and prove assertions about code
– More readable

• Referential transparency
– Replace any expression by its value without

changing the result

• No side-effects
– Fewer errors

#27

Functional-Style Disadvantages

• Efficiency
– Copying takes time

• Compiler implementation
– Frequent memory allocation

• Unfamiliar (to you!)
– New programming style

• Not appropriate for every program
– Operating systems, etc.

3.96.5Python

5.62.4C# (mono)

9.11.7Java (JDK –server)

111.7Lisp

16

1.5

1.0

1.0

Speed

5.0Ruby

2.9OCaml

1.6C++ (g++)

1.1C (gcc)

SpaceLanguage

17 small benchmarks

#28

ML Innovative Features

• Type system
– Strongly typed
– Type inference
– Abstraction

• Modules
• Patterns
• Polymorphism
• Higher-order functions
• Concise formal semantics

There are many ways of trying to
understand programs. People often rely
too much on one way, which is called
“debugging” and consists of running a
partly-understood program to see if it
does what you expected. Another way,
which ML advocates, is to install some
means of understanding in the very
programs themselves.
- Robin Milner, 1997

#29

Type System
• Type Inference

– let rec add_elem (s,e) = match s with
– | [] -> [e]
– | hd :: tl when e = hd -> s
– | hd :: tl -> hd :: add_elem(tl, e)
– val add_elem : α list * α -> α list
– “α list” means “List<T>” or “List<α>”

• ML infers types
– Inconsistent or incomplete type is an error

• Optional type declarations (exp : type)
– Clarify ambiguous cases, documentation

#30

Pattern Matching
• Simplifies Code (eliminates ifs, accessors)

– type btree = (* binary tree of strings *)
– | Node of btree * string * btree
– | Leaf of string
– let rec height tree = match tree with
– | Leaf _ -> 1
– | Node(x,_,y) -> 1 + max (height x) (height y)
– let rec mem tree elt = match tree with
– | Leaf str | Node(_,str,_) -> str = elt
– | Node(x,_,y) -> mem x elt || mem y elt

#31

Pattern Matching Mistakes

• What if I forget a case?
– let rec is_odd x = match x with
– | 0 -> false
– | 2 -> false
– | x when x > 2 -> is_odd (x-2)
– Warning P: this pattern-matching is not

exhaustive.
– Here is an example of a value that is not

matched: 1

#32

Polymorphism

• Functions and type inference are polymorphic
– Operate on more than one type
– let rec length x = match x with
– | [] -> 0
– | hd :: tl -> 1 + length tl
– val length : α list -> int
– length [1;2;3] = 3
– length [“algol”; ”smalltalk”; ”ml”] = 3
– length [1 ; “algol”] = ?

α means “any
one type”

#33

Higher-Order Functions
• Function are first-class values

– Can be used whenever a value is expected
– Notably, can be passed around
– Closure captures the environment
– let rec map f lst = match lst with
– | [] -> []
– | hd :: tl -> f hd :: map f tl
– val map : (α -> β) -> α list -> β list
– let offset = 10 in
– let myfun x = x + offset in
– val myfun : int -> int
– map myfun [1;8;22] = [11;18;32]

• Extremely powerful programming technique
– General iterators
– Implement abstraction

f is itself a
function!

#34

The Story of Fold
• We’ve seen length and map
• We can also imagine …

– sum [1; 5; 8] = 14
– product [1; 5; 8] = 40
– and [true; true; false] = false
– or [true; true; false] = true
– filter (fun x -> x>4) [1; 5; 8] = [5; 8]
– reverse [1; 5; 8] = [8; 5; 1]
– mem 5 [1; 5; 8] = true

• Can we build all of these?

#35

The House That Fold Built

• The fold operator comes from Recursion
Theory (Kleene, 1952)
– let rec fold f acc lst = match lst with
– | [] -> acc
– | hd :: tl -> fold f (f acc hd) tl

– val fold : (α -> β -> α) -> α -> β list -> α

• Imagine we’re summing a list (f = addition):

9 2 7 4 5 7 4 5… 11
f

4 518 … 27

acc lst

#36

It’s Lego TimeIt’s Lego Time

• Let’s build things out of Fold!
– length lst = fold (fun acc elt -> acc + 1) 0 lst
– sum lst = fold (fun acc elt -> acc + elt) 0 lst
– product lst= fold (fun acc elt -> acc * elt) 1 lst
– and lst = fold (fun acc elt -> acc & elt) true lst

• How would we do or?
• How would we do reverse?

#37

Tougher LegosTougher Legos
• Examples:

– reverse lst = fold (fun acc e -> acc @ [e]) [] lst
• Note typing: (acc : α list) (e : α)

– filter keep_it lst = fold (fun acc elt ->
– if keep_it elt then elt :: acc else acc) [] lst
– mem wanted lst = fold (fun acc elt ->
– acc || wanted = elt) false lst

• Note typing: (acc : bool) (e : α)

• How do we do map?
– Recall: map (fun x -> x +10) [1;2] = [11;12]
– Let’s write it on the board …

#38

Map From Fold

• let map myfun lst =
• fold (fun acc elt -> (myfun elt) :: acc) [] lst

– Types: (myfun : α -> β)

– Types: (lst : α list)

– Types: (acc : β list)

– Types: (elt : α)

• How do we do sort?
– (sort : (α * α -> bool) -> α list -> α list)

Do nothing which is of no use.
- Miyamoto Musashi, 1584-1645

#39

Sorting Examples
• langs = [“fortran”; “algol”; “c”]
• courses = [216; 333; 415]
• sort (fun a b -> a < b) langs

– [“algol”; “c”; “fortran”]

• sort (fun a b -> a > b) langs
– [“fortran”; “c”; “algol”]

• sort (fun a b -> strlen a < strlen b) langs
– [“c”; “algol”; “fortran”]

• sort (fun a b -> match is_odd a, is_odd b with
• | true, false -> true (* odd numbers first *)
• | false, true -> false (* even numbers last *)
• | _, _ -> a < b (* otherwise ascending *)) courses

– [333 ; 415 ; 216]

Java uses
Inner Classes

for this.

#40

Partial Application and Currying

• let myadd x y = x + y
• val myadd : int -> int -> int
• myadd 3 5 = 8
• let addtwo = myadd 2

– How do we know what this means? We use referential
transparency! Basically, just substitute it in.

• val addtwo : int -> int
• addtwo 77 = 79
• Currying: “if you fix some arguments, you get

a function of the remaining arguments”

#41

• ML, Python and Ruby all support ML, Python and Ruby all support
functional programmingfunctional programming
– closures, anonymous functions, etc.closures, anonymous functions, etc.

• ML has strong static typing and type ML has strong static typing and type
inference (as in this lecture)inference (as in this lecture)

• Ruby and Python have “strong” Ruby and Python have “strong”
dynamic typing (or duck typing)dynamic typing (or duck typing)

• All three combine OO and FunctionalAll three combine OO and Functional
– … … although it is rare to use both. although it is rare to use both.

#42

Homework
• Thursday: Cool Reference Manual
• Thursday: Backus Speedcoding
• Friday: PA0 due

