


TOWARDS CONTROLLABLE NEURAL
GENERATION OF ARGUMENTS

A Dissertation

Presented to The Khoury College of Computer Sciences

of Northeastern University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Thesis Committee:

Lu Wang (Chair), Northeastern University

David Smith, Northeastern University

Byron Wallace, Northeastern University

Vincent Ng, University of Texas at Dallas

by

Xinyu Hua

May 2021



© 2021 Xinyu Hua

ALL RIGHTS RESERVED



TOWARDS CONTROLLABLE NEURAL GENERATION OF ARGUMENTS

Xinyu Hua, Ph.D.

Northeastern University 2021

Argumentation is an essential cognitive skill that we utilize to achieve various

communicative goals. It has great impact on all aspects of our lives, ranging

from policymaking to conflict resolutions. The automatic construction of per-

suasive arguments thus presents great opportunities, as it can significantly re-

duce the workload required to search evidence and existing opinions of the

issue at hand. Yet the research on argument generation is relatively under-

explored. Existing methods either rely on manually crafted rules tailored for

specific domains and language styles, or built on pre-indexed argument inven-

tory for retrieval. It remains unclear whether the retrieved arguments can be

organically integrated into the underlying text generation stack in a controlled

manner. This dissertation presents a line of research aimed at more controllable

neural text generation systems for arguments. We focus on two key aspects: (1)

the proper inclusion and organization of diverse external knowledge that are

pertinent to the given topic and stance, and (2) the generation modeling design

that enables effective and interpretable text planning and conditional realiza-

tion. We experiment with a newly collected Reddit ChangeMyView corpus and

highlight the great impact of retrieval results as well as the quality of text plan-

ning. We then showcase how the controlled generation framework can be gen-

eralized to other domains with distinct language styles. Finally, we describe two

novel formulations designed for pre-trained Transformers to achieve improved

fluency and controllability for argument generation and beyond.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Argumentation is perhaps one of the most common modes of communica-

tion (Woodson, 1979; Smith, 2003) that we participate on a daily basis. From

parliamentary debate that shapes the state policy, to the analytical essays writ-

ten by students to nourish critical thinking, arguments help to present relevant

facts to the target audience, as well as articulate the reasoning process neces-

sary for making better decisions. The amount of textual data on arguments has

grown dramatically with the expansion of the Internet and digitized archives.

Naturally, the study of arguments has also gain more research interests from

the natural language processing (NLP) community (Peldszus and Stede, 2013;

Lippi and Torroni, 2016; Cabrio and Villata, 2018; Lawrence and Reed, 2019).

The majority of work has focused on understanding the composition of argu-

ments, i.e., the basic component detection (Moens et al., 2007; Levy et al., 2014;

Rinott et al., 2015; Eckle-Kohler et al., 2015), classification (Duthie et al., 2016;

Eger et al., 2017a; Nguyen and Litman, 2018; Stab et al., 2018), and structural

prediction (Persing and Ng, 2016; Niculae et al., 2017). Promising results are

achieved in various domains and language styles (Moens et al., 2007; Persing

and Ng, 2016; Stab and Gurevych, 2017; Habernal and Gurevych, 2017; Niculae

et al., 2017).

Meanwhile, the automatic construction of arguments is relatively less ex-

plored, although it has great potential to benefit a wide range of applications,

such as informing the decision makers of alternative perspectives, and edu-
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cating students on debate strategies and essay writing. Existing research can

be divided into two main categories: (1) rule-based systems that rely on ex-

pert knowledge and argument theories (Reed et al., 1996; Carenini and Moore,

2000; Zukerman et al., 2000). Such methods are usually domain-specific and

are costly to extend. (2) Retrieval-based approaches select relevant existing ar-

gument snippets from a database (Sato et al., 2015; Le et al., 2018; Hidey and

McKeown, 2019). This paradigm requires less manual efforts and scales better

to different topics and language styles. Unfortunately, combining multiple re-

trieved snippets into a fluent and coherent natural language discourse is still an

open problem. We identify the following additional challenges which we aim

to address in this thesis:

• Generating arguments of a specified stance not only requires sufficient

knowledge resource that has to be collected externally, but also a selection

method to ensure the correct polarity of them.

• Persuasive arguments usually combine a diverse set of supporting argu-

ments, such as factual evidence, expert opinion, and logical reasoning.

They need to be reflected in the collection of knowledge resource, and also

combined in an appropriate order for successful delivery.

• Language style plays an important role in argumentation, as they signal

the argumentative functions within the discourse. For example, to pro-

mote persuasiveness, a claim sentence is usually more affirmative, and

use the collective “we” as the subject, so as to demonstrate attention of the

listener as well.

• The underlying neural text generation model is difficult to control, as it

only incurs loss over the sequential token prediction. This is particularly
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the issue for recent pre-trained Transformers with large and complicated

architectures. Yet controllability is crucial to enforce the inclusion and or-

dering of the external knowledge.

In order to tackle the above challenges, we present a variety of model ar-

chitecture designs as well as training techniques. As a crucial component of

modern NLP pipelines, high-quality datasets and annotation on arguments are

also collected to support our research. We also adopt our systems over a wide

range of distinct domains and different task formulations, to showcase their

usefulness for neural text generation in general. The overview of each chapter

and the main contributions are summarized below.

1.2 Thesis Outline and Contributions

• In Chapter 3, we investigate argument component classification and sup-

port relation detection. We first exemplify the two tasks with an online

debate forum. Then, an argument scheme tailored for this domain is de-

scribed in detail. We annotate and release a new dataset with labels on argu-

ment types and supporting arguments from the cited documents. Based on this

dataset, we propose feature-based models for argument type prediction

and support relation prediction.

• In Chapter 4, we make efforts to understand arguments in academic peer

reviews, a distinct domain that has not been studied from an argument-

mining perspective before. We collect review data from a prominent machine

learning conference and annotate argument boundaries, as well as label their

types. We benchmark this new dataset using state-of-the-art models. Fi-
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nally, we run the model over a large set of reviews from different venues

and characterize the distinct properties.

• In Chapter 5, we present an argument generation system that utilizes ex-

ternally retrieved evidence. We first briefly introduce the system pipeline,

then describe a newly collected counter-argument generation dataset from

Reddit ChangeMyView forum. This dataset is the first of its kind to facilitate

research on argument generation. We also propose a novel neural network based

model, which encodes relevant retrieval snippets and generates the argument as

well as keyphrase talking points. Both automatic metrics and human evalua-

tion are conducted to assess our model efficacy.

• In Chapter 6, we introduce argument generation with text planning. We

motivate this Chapter by highlighting the importance of text planning us-

ing sample arguments and numerous retrieval results. It is followed by

the formulation of task stages as well as data source used for retrieval.

Then, we formally introduce our proposed CANDELA model, which first selects

sentence-level keyphrases using a LSTM decoder. Conditioned on the selection

results, the realization decoder produces the natural language output. CAN-

DELA compares favorably against existing method and non-trivial base-

lines, confirming the benefits of the text planning step.

• In Chapter 7, we extend the idea of text planning to build a novel generic

text generation framework, with the overall goal of promoting controlla-

bility for neural generation models. We propose improved content selection

mechanism that is aware of past selection results. Our decoder is also equipped

with a dedicated style module, that further informs the realization decoder of

the desired output style. We conduct extensive experiments on three dis-

tinct tasks to demonstrate the model effectiveness. Our analysis reveals a
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strong positive correlation between content selection and output quality,

further validating our design choice.

• In Chapter 8, we study the content-control for large pre-trained Trans-

former models. We design PAIR, a generic text generation framework that

utilizes the masked language model as a way to represent template, which is pre-

dicted from a separate content planner. To ensure the generation quality, we in-

troduce an iterative refinement strategy to decode the output sequence in multiple

rounds. We showcase this framework over three distinct domains

• In Chapter 9, we propose a novel end-to-end text generation framework called

DYPLOC, which incorporates diverse input content and automatically determines

the ordering and realization of these inputs using a mixed language model. Each

of the input content item consists of entities, concepts, and claims, encom-

passing different aspects of the desired semantic constraints. Our model

can be directly built on pre-trained Transformer to generate fluent output.

Experiments on two opinion text generation datasets indicate our model

outperforms competitive comparisons with the same input.

• In Chapter 11, we conclude this thesis and discuss future directions.
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CHAPTER 2

BACKGROUND

2.1 Argument Mining

Analysis of arguments using computational methods have recently attracted

significant research interests. In this section, we first introduce prominent ap-

proaches to argument structure understanding (Section 2.1.1). We next dis-

cuss argument search engines that enable customized argument retrieval (Sec-

tion 2.1.2). We then highlight existing work on argument generation (Sec-

tion 2.1.3). For a more detailed and thorough review, we refer the readers to

the surveys by Peldszus and Stede (2013); Cabrio and Villata (2018); Lawrence

and Reed (2019).

2.1.1 Argument Structure Extraction

Argument mining research aims to detect and recognize the argumentative dis-

course units and their interactions in textual data. Existing work typically di-

vides the pipeline into three stages. (1) Argument unit segmentation first iden-

tifies the token-level boundaries for argumentative propositions and the non-

argumentative segments. This task is usually treated as either a sequence tag-

ging problem (Ajjour et al., 2017; Eger et al., 2017b; Stab and Gurevych, 2017)

or sentence classification (Moens et al., 2007; Biran and Rambow, 2011; Stab and

Gurevych, 2014; Levy et al., 2014). Our work in Chapter 4 shows the LSTM-

based sequence tagging model enhanced with ELMo embeddings (Peters et al.,

2018) achieves satisfactory results, with over 0.81 F1 scores on arguments in
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the peer-review domain. (2) Argument component classification then labels each

argument segment into different types, according to a predefined scheme. Fea-

ture engineering has been exploited to tackle this task, with promising results

in persuasive essays (Persing and Ng, 2016; Stab and Gurevych, 2017; Nguyen

and Litman, 2018; Persing and Ng, 2020), online forums (Niculae et al., 2017;

Hua and Wang, 2017), and legal (Palau and Moens, 2009; Teruel et al., 2018) and

scientific (Teufel et al., 2009; Lauscher et al., 2018) texts. (3) Argument structure

recognition further predicts the support and attack relations among the argu-

mentative units. Early work relies on hand-crafted features that are customized

for specific domains (Peldszus and Stede, 2013; Nguyen and Litman, 2016; Stab

and Gurevych, 2017). Recently, neural network based models have shown

promising results (Eger et al., 2017b; Chakrabarty et al., 2019; Mayer et al., 2020).

However, most of them focus on relation detection within the same document.

In Chapter 3, we examine the usage of support in external documents, and ex-

amine the benefits of argument component types for structure prediction.

2.1.2 Argument Retrieval

Argument retrieval is investigated to deliver relevant arguments for user-

specified queries. Prior work (Levy et al., 2014; Rinott et al., 2015) has studied

evidence retrieval from Wikipedia for given claims. Wachsmuth et al. (2017b)

build a more generic search engine indexed with 291, 440 arguments collected

from various online debate portals. By contrast, Stab et al. (2018) focus on argu-

ment search over heterogeneous web sources from CommonCrawl.1 For both

systems, the key challenges lie in the accurate assessment of argument topics

1http://commoncrawl.org/
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and stances, as well as ranking large volume of arguments given the input

query, highlighting the necessities for developing efficient argument analysis

tools as we described in the previous section. In our work (Chapter 5 and Chap-

ter 6), argument retrieval are utilized as a pre-processing step to supply relevant

external resource for the generation model. We show that the retrieval results

can substantially improve the generation quality.

2.1.3 Argument Generation

Traditional approaches to automatically generating arguments mainly rely on

rule-based systems, e.g., designing operators that reflect strategies from argu-

mentation theory (Reed et al., 1996; Carenini and Moore, 2000; Zukerman et al.,

2000). For instance, Reed (1999) describes the first full natural language argu-

ment generation system, called Rhetorica. These systems can output highly

accurate and controlled arguments, but are limited to specific topics and do-

mains. Information retrieval systems are recently deployed to extract existing

arguments relevant to a debate motion (Sato et al., 2015). Although content

ordering has been proposed for argument synthesis (Reisert et al., 2015; Yanase

et al., 2015), the output arguments are usually a collection of sentences from het-

erogeneous information sources, thus lacking coherence and conciseness. Our

work aims to close the gap by generating eloquent and coherent arguments,

assisted by an argument retrieval system. It is also worth mentioning that, con-

current to our research, IBM has showcased an automated agent that can carry

out complex debate against human experts (Slonim et al., 2021). Their archi-

tecture involves several manually defined modules such as argument detection,

argument knowledge base, and a rule-based argument constructor, which are
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carefully engineered to tackle the oxford-style format. Whereas our focus is to

design an end-to-end solution for paragraph-level argument generation with-

out manual efforts.

2.2 Text Generation

Generating coherent text that satisfies certain input constraints is a central task

in natural language processing. The goal of this dissertation is to automatically

produce arguments with user specified topic and stance. The underlying gen-

eration stack is thus crucial to ensure the output quality. In this section, we

first introduce the high-level overview of the typical text generation pipeline

(Section 2.2.1). We then discuss the recent progress achieved by neural network

based generation models (Section 2.2.2), which is followed by existing work on

knowledge-enhanced generation (Section 2.2.3).

2.2.1 Text Generation Pipeline

Traditionally, text generation is divided into multiple subtasks (McKeown, 1985;

Reiter and Dale, 2000) including content selection, which determines which in-

formation to include (“what to say”), text planning, that organizes the selected

information in order and allocates them in sentences (“when to say what”), and

surface realization, which chooses the appropriate lexical items and expres-

sions to reflect the text plan (“how to say it”).

Early work for content selection and text planning mainly relies on rules

based on discourse theory (Scott and de Souza, 1990; Hovy, 1993), expert knowl-
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edge (Reiter et al., 2000), or trained by statistical models (Duboue and McK-

eown, 2001, 2003). Although these methods provide interpretable selection

results, they are difficult to scale to new domains. Recently, data-driven ap-

proaches have received growing interests. Barzilay and Lee (2004) character-

ize content change as topic shift, and adopt a distributional approach based

on Hidden Markov Models (HMM) to capture the information presentation or-

der, which achieves substantial improvements over a competitive feature-based

comparison model. Barzilay and Lapata (2005) treats content selection as binary

classification of database items for inclusion in the given context. Crucially, they

propose a collective classification method that considers multiple related items

simultaneously, which yields more coherent output compared to the context-

agnostic model. Following these two ideas, our proposed text generation sys-

tems (Chapter 6 and Chapter 7) are designed to learn the shift of content as well

as capture the dependencies among content items.

2.2.2 Neural Text Generation Models

In the past decade, the sequence-to-sequence (seq2seq) encoder-decoder

paradigm has become the dominant approach for text generation models. The

input and output, which are of varied lengths, are treated as sequences of sym-

bols and passed into either the recurrent neural network (RNN) or Transformer

models (Vaswani et al., 2017). The former is usually instantiated as the Long

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), or the Gated

Recurrent Unit (GRU) (Cho et al., 2014), with the attention mechanism (Bah-

danau et al., 2015; Luong et al., 2015b) to allow direct access to the encoder

states during generation. The Transformer framework (Vaswani et al., 2017) in-
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stead relies on multi-headed self-attention and stacked layers to learn the input

representation as well as the output language model. An important advantage

of seq2seq framework is that it can be end-to-end trained by maximizing log-

likelihood, thus requires no manual efforts on rule crafting or feature engineer-

ing.

The seq2seq framework is first proposed for machine translation (Sutskever

et al., 2014), and then achieves state-of-the-art performance for a wide range of

text generation tasks, such as abstract summarization (Rush et al., 2015; Nalla-

pati et al., 2016), chatbot (Vinyals and Le, 2015; Sordoni et al., 2015), and data-

to-text generation (Gehrmann et al., 2018). In this dissertation, we employ this

framework for argument generation, which substantially differing from other

tasks in that additional output content needs to be inferred and realized besides

what is provided in the input, and there also exists multiple plausible arguments

for the same input.

2.2.3 Knowledge-Enhanced Text Generation

As mentioned earlier, unlike standard text generation tasks, for argument gener-

ation, the input information alone is usually insufficient to determine the output

arguments. Moreover, world-knowledge that are pertinent to the arguments is

often implicit. For example, given the input “death penalty is more rational than

life in prison”, a human written counter-argument contains “[W]e will never have

a perfect justice system. Unreliable evidence is used when there is no witnesses, which

could result in wrongful convictions”. In order to generate this argument, the sys-

tem needs to infer that death penalty is a result of legal conviction, which might
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be wrong if there is no witnesses. To tackle this challenge, we enable the gener-

ation system with external knowledge that are orders of magnitude larger than

the training data, to better inform the model of necessary knowledge (Chapter 5

and Chapter 6).

More broadly, knowledge-enhanced text generation aims to incorporate dif-

ferent types of knowledge to the generation pipeline. The most common

methods utilize existing knowledge base with entities and relations, such as

Wikipedia and ConceptNet (Speer et al., 2017), in order to provide common-

sense and factual events that are relevant to the generation. Experiments have

been conducted on question answering (Long et al., 2017; Mihaylov and Frank,

2018; Bi et al., 2019), summarization (Fan et al., 2019a; Huang et al., 2020; Gunel

et al., 2020), and dialogue generation (Zhou et al., 2018; Lian et al., 2019). These

systems generally consist of a knowledge retriever that selects the relevant facts,

which is then linearized and encoded with the seq2seq framework to inform the

decoder. In this dissertation, we utilize passage-level retrieval over Wikipedia,

and extract keyphrases from the passages to carry the salient information. We

show that this design choice is both flexible and expressive, as the system is able

to handle arbitrary combinations of keyphrases and generate fluent output.

2.3 Controllable Generation

Neural generation models are capable to generate fluent output. But since

they are fully end-to-end trained and conflate the text planning and realiza-

tion stages, it is difficult to control certain content to be mentioned in specified

location. Consequently, they are prone to factual errors (Wiseman et al., 2017;
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Rohrbach et al., 2018) and even toxic output (Holtzman et al., 2019; Sheng et al.,

2019). In this section, we first discuss what are the dimensions researchers aim

to control (Section 2.3.1), and how controllability are viewed as conditional lan-

guage model (Section 2.3.2). Finally, we describe controlled generation using

refinement (Section 2.3.3).

2.3.1 What Aspects Do We Need to Control?

As we described in Section 2.2.1, text generation systems can be modeled in

different stages. Correspondingly, the level of control can also range from en-

forcing the high-level content and style (Hu et al., 2017; Ficler and Goldberg,

2017; Fu et al., 2018), semantics (Wen et al., 2015; Elder et al., 2018), to manipu-

late the low-level syntactic structure (Dušek and Jurčı́ček, 2016; Iyyer et al., 2018;

Goyal and Durrett, 2020). Specific applications encourage the model to cover a

given topic (Wang et al., 2017a; See et al., 2019), mention specified entities (Fan

et al., 2018a), or display a certain attribute (Hu et al., 2017; Luo et al., 2019;

Balakrishnan et al., 2019). However, most existing work relies on model engi-

neering, limiting the generalizability to new domains and adaptability to large

pre-trained Transformers. One exception is the Plug and Play model (Dathathri

et al., 2020), which directly modifies the key and value states of GPT-2 (Radford

et al., 2019). However, since the signal is derived from the whole generated text,

it is too coarse to provide precise sentence-level content control. In Chapter 7

and Chapter 8, we instead gain fine-grained controllability through keyphrase

assignment and positioning per sentence, which can be adapted to any off-the-

shelf pre-trained Transformer generators.
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2.3.2 Controlled Generation by Conditional Language Model

A straightforward way to achieve controllability is to train the neural generator

as a conditional language model. In addition to the input, the system is sup-

plied with a control variable, the generation probability is then conditioned on

both these two elements. Early work has adopted this approach for image cap-

tioning (Kiros et al., 2014; Vinyals et al., 2015b), dialogue generation (Wen et al.,

2016; Zhang et al., 2019), and review generation (Tang et al., 2016; Ficler and

Goldberg, 2017). The control variable typically takes the form of a dense vector

that participates in the calculation of decoder states, and it is trained together

with the seq2seq model in an end-to-end fashion.

A more recent line of research has explored conditioning over symbolic in-

formation. Most notably, it has been shown that first generating sequences

of entities and their semantic relations, and then conditioning on them yields

more coherent and diverse output in story generation (Fan et al., 2019b; Yao

et al., 2019a; Goldfarb-Tarrant et al., 2020). Our proposed text generation mod-

els (Chapter 6, Chapter 7, Chapter 9) also follow this setting. The predicted

keyphrase selection results for each sentence are treated as the conditional vari-

ables. They are either directly fed into the decoder states, or accessed through

attention mechanism, to reflect the desired control.

2.3.3 Controlled Generation by Editing and Refinement

So far the neural generation models we discussed are auto-regressive in nature,

i.e., the output is generated in one-shot as a sequence of tokens. An alternative

approach is to run the generator in multiple passes, allowing modifications over

14



already generated tokens. This framework has also been leveraged to improve

controllability over the generation. Li et al. (2018) present a text attribute trans-

fer system that first identifies attribute markers (words need to be edited), and

then retrieves sentences with target attributes (e.g., desired sentiment word).

Finally, an RNN generates the output given the edits and original sentence.

Guu et al. (2018) study a more generic unconditional sentence generation task,

where they first draw a random sentence (prototype) from the training corpus,

together with a random editing vector. Analyses reveal that the prototype-then-

edit framework yields more fluent output and achieves fine-grained control

over the semantic space. More broadly, the non-autoregressive generation has

been used in machine translation (Lee et al., 2018; Freitag et al., 2019; Mansimov

et al., 2019; Kasai et al., 2020) to gradually improve the generation quality. It

is further popularized by the emergence of large pre-trained Transformers (De-

vlin et al., 2019; Liu et al., 2019), which are based on the masked language model.

Lawrence et al. (2019) employ the special placeholder token to leverage the pre-

trained BERT (Devlin et al., 2019) model for text generation. The output is ini-

tialized with all placeholders, which are then iteratively replaced with tokens

from the output vocabulary. Their system outperforms competitive baselines

over two conversational tasks. In Chapter 8, we introduce a refinement based

generation framework based on the seq2seq BART (Lewis et al., 2020a), offer-

ing better generalizability and stronger capacity for long text generation. Our

proposed strategy substantially differs from prior solutions that rely on in-place

word substitutions (Novak et al., 2016; Xia et al., 2017; Weston et al., 2018), as

we leverage the seq2seq architecture to offer more flexible edits.
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CHAPTER 3

UNDERSTANDING ARGUMENT TYPES AND SUPPORT RELATIONS

In this chapter, we propose an argument type scheme and discuss the automatic

classification of argument sentences from an online debate portal. We further in-

troduce the support argument detection task, which aims to pinpoint a sentence

that best supports a given argument, from an external document. This work is

published at ACL 2017 (Hua and Wang, 2017). The relevant resources can be

found at: http://xinyuhua.github.io//Resources.

3.1 Introduction

Argumentation plays a crucial role in persuasion and decision-making pro-

cesses. An argument usually consists of a central claim (or conclusion) and

several supporting premises. Constructing arguments of high quality would

require the inclusion of diverse information, such as factual evidence and solid

reasoning (Rieke et al., 1997; Park and Cardie, 2014). For instance, as shown in

Figure 3.1, the editor on idebate.org – a Wikipedia-style website for gath-

ering pro and con arguments on controversial issues, utilizes arguments based

on study, factual evidence, and expert opinion to support the anti-gun claim

“legally owned guns are frequently stolen and used by criminals”. However,

it would require substantial human effort to collect information from diverse

resources to support argument construction. In order to facilitate this process,

there is a pressing need for tools that can automatically detect supporting argu-

ments.
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Study A June 2013 IOM report states that “almost all guns
used in criminal acts enter circulation via initial legal
transaction”.

Factual Between 2005 and 2010, 1.4 million guns were stolen
from US homes during property crimes (including
bulglary and car theft), a yearly average of 232,400.

Expert opinion Ian Ayres, JD, PhD, . . . states, “with guns being a prod-
uct that can be easily carried away and quickly sold at
a relatively high fraction of the initial cost, the pres-
ence of more guns can actually serve as a stimulus to
burglary and theft.”

Figure 3.1: Three different types of arguments used to support the claim
“Legally owned guns are frequently stolen and used by criminals”.

To date, most of the argument mining research focuses on recognizing argu-

mentative components and their structures from constructed arguments based

on curated corpus (Mochales and Moens, 2011; Stab and Gurevych, 2014; Feng

and Hirst, 2011; Habernal and Gurevych, 2015; Nguyen and Litman, 2016). Lim-

ited work has been done for retrieving supporting arguments from external re-

sources. Initial effort by Rinott et al. (2015) investigates the detection of relevant

factual evidence from Wikipedia articles. However, it is unclear whether their

method can perform as good on documents of different genres (e.g. news arti-

cles vs. blogs) for detecting distinct types of supporting information.

In this work, we present a novel study on the task of sentence-level supporting ar-

gument detection from relevant documents for a user-specified claim. Take Figure 3.2

as an example: assume we are given a claim on topic of “banning cosmetic

surgery” and a relevant article (cited for argument construction), we aim to

automatically pinpoint the sentence(s) (in italics) among all sentences in cited

article, that can be used to back up the claim. We define such tasks as support-

ing argument detection. Furthermore, another goal of this work is to understand

and characterize different types of supporting arguments. Indeed, human edi-
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Topic: This house would ban cosmetic surgery
Claim: An outright ban would be easier than the partial bans
that have been enacted in some places.
Human Constructed Argument: . . .This potentially leaves diffi-
culty drawing the line for what is allowed.[1] . . .
Citation Article
[1]: “Australian State Ban Cosmetic Surgery for Teens”
- . . . It is unfortunate that a parent would consider letting a 16-
year-old daughter have a breast augmentation.”
- But others worry that similar legislation, if it ever comes to pass in
the United States, would draw a largely arbitrary line – and could
needlessly restrict some teens from procedures that would help their
self-esteem.
- Dr. Malcolm Z. Roth, director of plastic surgery at Maimon-
des Medical Center in Brooklyn, N.Y. , said he believes that some
teens are intelligent and mature enough to comprehend the risks
and benefits of cosmetic surgery.. . .

Figure 3.2: A typical debate motion consists of a Topic, Claims, and Human
Constructed Arguments. Citation article is marked at the end of sentence. Our
goal is to find out supporting argument (in italics) from citation article the can
back up the given claim.

tors do use different types of information to promote persuasiveness as we will

show in Section 3.2. Prediction performance also varies among different types

of supporting arguments.

Given that none of the existing datasets is suitable for our study, we col-

lect and annotate a corpus from Idebate, which contains hundreds of debate

topics and corresponding claims. As is shown in Figure 3.2, each claim is sup-

ported with some human constructed argument, with cited articles marked on

sentence level. After careful inspection on the supporting arguments, we pro-

pose to label them as STUDY, FACTUAL, OPINION, or REASONING. Substantial

inter-annotator agreement rate is achieved for both supporting argument label-

ing (with Cohen’s κ of 0.8) and argument type annotation, on 200 topics with

621 reference articles.
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Based on the new corpus, we first carry out study on characterizing ar-

guments of different types via type prediction. We find that arguments of

STUDY and FACTUAL tend to use more concrete words, while arguments of

OPINION contain more named entities of person names. We then investigate

whether argument type can be leveraged to assist supporting argument detec-

tion. Experimental results based on LambdaMART (Burges, 2010) show that

utilizing features composite with argument types achieves a Mean Reciprocal

Rank (MRR) score of 57.65, which outperforms an unsupervised baseline and

the same ranker trained without type information. Feature analysis also demon-

strates that salient features have significantly different distribution over differ-

ent argument types.

3.2 Data and Annotation

We rely on data from idebate.org, where human editors construct para-

graphs of arguments, either supporting or opposing claims under controversial

topics. We also extract textual citation articles as source of information used by

editors during argument construction. In total we collected 383 unique debates,

out of which 200 debates are randomly selected for study. After removing in-

valid ones, our final dataset includes 453 claims and 629 citation articles with

17,910 sentences.

Annotation Process. As shown in Figure 3.2, we first annotate which sen-

tence(s) from a citation articles is used by the editor as supporting arguments.

Then we annotate the type for each of them as STUDY, FACTUAL, OPINION, or

REASONING, based on the scheme in Table 3.1. For instance, the highlighted
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Type Explanation Example

STUDY Results and discoveries, usually
quantitative, as a result of some re-
search investment. For example, re-
sults of some experiments or poll.

A World Bank survey in 2011 showed that
about 40% of those who join rebel move-
ments say they are motivated by a lack of
jobs.

FACTUAL Description of some occurred
events or facts, or chapters in law
or declaration. Usually can be
obtained without research invest-
ment. For example, description of
objective environment, issuance of
law, historical events.

The US trade deficit widened to £50.2 bn
in May, the highest level for 31 months.

OPINION Quotes from some person or group,
either direct or indirect. It usu-
ally contains subjective, judgemen-
tal and evaluative languages, and
might reflect the position or stance
of someone. For example, com-
ments on laws and policies from of-
ficials, speculation or prediction on
stock markets.

“The Tea Party movement is interesting
in that there is a combination of local-
ism, nativism and populism that we’ve
seen at various points in America, ”
said Nathaniel Persily, a law Professor at
Columbia.

REASONING Logical structures. It usually can be
further broken down into causal or
conditional substructures. For ex-
ample, to explain how oil extrac-
tion could break ecosystem by giv-
ing causal chains and their effects.

Obviously, the light from these objects
needed billions of years to reach us, and
therefore the universe has to be billions of
years old.

Table 3.1: Annotation scheme and examples for our dataset.

supporting argument in Figure 3.2 is labeled as REASONING.

Two experienced annotator were hired to identify supporting arguments by

reading through the whole cited article and locating the sentences that best

match the reference human constructed argument. This task is rather compli-

cated since human do not just repeat or directly quote the original sentences

from citation articles, they also paraphrase, summarize, and generalize. For

instance, the original sentence is “The global counterfeit drug trade, a billion-
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dollar industry, is thriving in Africa”, which is paraphrased to “This is exploited

by the billion dollar global counterfeit drug trade” in human constructed argu-

ment.

Multiple rounds of annotation were carried out. First round was a pilot an-

notation where each annotator was assigned 30 topics. The annotators were

asked to annotate independently, then discuss and resolve disagreements and

give feedback about current scheme. This process continued until 200 topics

were finished. Each time we add details to scheme guidelines and revise scheme

if necessary. We compute inter-annotator agreement based on Cohen’s κ for both

supporting arguments labeling and argument type annotation. For supporting

arguments we have high degree of consensus, with Cohen’s κ score ranges from

0.76 to 0.83 in all rounds and 0.80 overall. For most type annotation we achieve

reasonably good agreements, except for type REASONING which is 0.29 overall.

This is because many times annotators have different interpretations on REA-

SONING, and frequently label it as OPINION.

Statistics. In total 1107 sentences are identified as supporting arguments, which

account for 6.18% of all sentences in the dataset. Among those, 108 (9.76%) are

labeled as STUDY, 575 (51.94%) as FACTUAL, 382 (34.51%) as OPINION, and 42

(3.79%) as REASONING. The statistics are listed in Table 3.2.

We further analyze the source of the supporting arguments. Domain names

of the citation articles are collected based on their URL, and then categorized

into “news”, “organization”, “scientific”, “blog”, “reference”, and others, ac-

cording to a taxonomy provided by Alexa1 with a few edits to fit our dataset.

News articles are the major source for all types, which account for roughly 50%

1http://www.alexa.com/topsites/category
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Figure 3.3: For each supporting argument type, from left to right shows the
percentage of domain names of organizations, scientific, blog, and reference. We
do not display statistics for news, because news articles take the same portion
in all types (about 50%).

STUDY FACTUAL OPINION REASONING

# Sentence 95 497 363 40
Cohen’s κ 0.61 0.75 0.71 0.29

Table 3.2: The statistics of four types on our annotated dataset.

for each. We show the distribution of other four types in Figure 3.3. Argu-

ments of STUDY and REASONING are mostly from “scientific” websites (14.9%

and 22.9%), whereas “organization” websites contribute a large portion of argu-

ments of FACTUAL (18.5%) and OPINION (16.7%).

3.3 A Study on Argument Type Prediction

Here we characterize arguments of different types based on diverse features

under the task of predicting argument types. Supporting arguments identified

from previous section are utilized for experiments. We also leverage the learned

classifier in this section to label the sentences that are not supporting arguments,
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which will be used for supporting argument detection in the next section. Four

major types of features are considered.

Basic Features. We calculate frequencies of unigram and bigram words, num-

ber of four major types of part-of-speech tags (verb, noun, adjective, and ad-

verb), number of dependency relations, and number of seven types of named

entities (Chinchor and Robinson, 1997).

Sentiment Features. We also compute number of positive, negative and neu-

tral words in MPQA lexicon (Wilson et al., 2005), and number of words from a

subset of semantic categories from General Inquirer (Stone et al., 1966). Specifi-

cally, we used the following categories: Strong, Weak, Virtue, Vice, Ovrst (Over-

stated), Undrst (Understated), Academ (Academic), Doctrin (Doctrine), Econ

(Economic), Relig (Religious), Causal, Ought, Perceiv (Perception).

Discourse Features. We use number of discourse connectives from the top two

levels of Penn Discourse Tree Bank (Prasad et al., 2008).

Style Features. We measure word attributes for their concreteness (perceptible

vs. conceptual), valence (or pleasantness), arousal (or intensity of emotion), and

dominance (or degree of control) based on the lexicons collected by Brysbaert

et al. (2014) and Warriner et al. (2013).

We utilize Log-linear model for argument type prediction with one-vs-rest

setup. Three baselines are considered: (1) random guess, (2) majority class, and

(3) unigrams and bigrams as features for Log-linear model. Identified support-

ing arguments are used for experiments, and divided into training set (50%),

validation set (25%) and test set (25%). From Table 3.3, we can see that Log-

linear model trained with all features outperforms the ones trained with ngram
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Accuracy Micro-F1

Majority class 0.520 0.171
Random 0.240 0.199
Log-linear (ngrams features) 0.535 0.277
Log-linear (all features) 0.622 0.436

Table 3.3: One-vs-rest classification results.

features. To further characterize arguments of different types, we display sam-

ple features with significant different values in Figure 3.4. As can be seen, argu-

ments of STUDY and FACTUAL tend to contain more concrete words and named

entities. Arguments of OPINION mention more person names, which implies

that expert opinions are commonly quoted.

Classification results show that Log-linear model trained with all features as

one-vs-rest classifier has accuracy of 0.622, outperforming a Log-linear model

trained with ngram features (unigrams and bigrams) with accuracy of 0.535. To

further characterize arguments of different types, we display sample features

with significant different values in Figure 3.4. As can be seen, arguments of

STUDY and FACTUAL tend to contain more concrete words and named entities.

Arguments of OPINION mention more person names, which implies that ex-

pert opinions are commonly quoted. And REASONING has more words used in

causal and conditional structures, which accords with our expectation.
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Figure 3.4: Average features values for different argument types. Numbers in
boldface are significantly higher than the others based on paired t-test (p <
0.05).

3.4 Supporting Argument Detection

We cast the sentence-level supporting argument detection problem as a ranking

task.2 Features in Section 3.3 are also utilized here as “Sentence features” with

additional features considering the sentence position in the article. We further

employ features that measure similarity between claims and sentences, and the

composite features that leverage argument type information.

Similarity Features. We compute similarity between claim and candidate

2Many sentences in the citation article is relevant to the topic to various degrees. We focus
on detecting the most relevant ones, and thus treat it as a ranking problem instead of a binary
classification task.
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sentence based on TF-IDF and average word embeddings. We also consider

ROUGE (Lin, 2004), a recall oriented metric for summarization evaluation. In

particular, ROUGE-L, a variation based on longest common subsequence, is

computed by treating claim as reference and each candidate sentence as sample

summary. In similar manner we use BLEU (Papineni et al., 2002), a precision

oriented metric.

Composite Features. We adopt composite features to study the interac-

tion of other features with type of the sentence. Given claim c and sen-

tence s with any feature mentioned above, a composite feature function

φM(type, feature)(s, c) is set to the actual feature value if and only if the argument

type matches. For instance, if the ROUGE-L score is 0.2, and s is of type STUDY,

then φM(study, ROUGE)(s, c) = 0.2. φM(factual, ROUGE)(s, c), φM(opinion, ROUGE)(s, c),

φM(reasoning, ROUGE)(s, c) are all set to 0.

We choose LambdaMART (Burges, 2010) for experiments, which is shown

to be successful for many text ranking problems (Chapelle and Chang, 2011).

Our model is evaluated by Mean Reciprocal Rank (MRR) and Normalized Dis-

counted Cumulative Gain (NDCG) using 5-fold cross validation. We compare

to TFIDF and Word embedding similarity baselines, and LambdaMART trained

with ngrams (unigrams and bigrams).

Results in Table 3.4 show that using composite features with argument type

information (Comp(type, Sen) + Comp(type, Sim)) can improve the ranking per-

formance. Specifically, the best performance is achieved by adding composite

features to sentence features, similarity features, and ngram features. As can

be seen, supervised methods outperform unsupervised baseline methods. And

similarity features have similar performance as those baselines. The best per-
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MRR NDCG

Baselines
TF-IDF similarity 45.48 56.48
word2vec similarity 47.65 59.00
Ngrams 27.26 43.83

Separate feature sets
Sentence (Sen) 55.38 65.09
Similarity (Sim) 43.13 55.16
Comp(type, Sen) + Comp(type, Sim) 55.75 64.91

Additive feature sets
Sen + Ngrams + Sim 56.43 65.79

+ Comp(type, Sen) + Comp(type, Sim) 57.65 66.51
+ Comp(type, Claim) 56.58 65.68

Table 3.4: Supporting argument detection results. “Sentence” stands for features
discussed in section 4 for modeling candidate sentences. “Similarity” refers to
similarity features. Comp(type, Sen) stands for composite features of argument
type and sentence features, similarly for Comp(type,Sim). Comp(type,Claim)
represents composite features of type and claim features. Results that are sta-
tistically significantly better than all three baselines are marked with ∗ (paired
t-test, p < 0.05).

formance is achieved by combination of sentence features, N-grams, similarity,

and two composite types, which is boldfaced. Feature sets that significantly

outperform all three baselines are marked with ∗.

For feature analysis, we conduct t-test for individual feature values between

supporting arguments and the others. We breakdown features according to

their argument types and show top salient composite features in Table 3.5. For

all sentences of type STUDY, relevant ones tend to contain more “percentage”

and more concrete words. We also notice those sentences with more hedging

words are more likely to be considered. For sentences of FACTUAL, position of

sentence in article plays an important role, as well as their similarity to the claim

based on ROUGE scores. For type OPINION, unlike all other types, position of

sentence seems to be insignificant. As we could imagine, opinionated informa-
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Feature STUDY FACTUAL OPINION REASONING
# PERC, NE ∗∗ ↑↑↑↑ – – –
# LOC, NE – ∗∗ ↑↑ – ∗∗ ↑

position of sentence ∗∗ ↓↓ ∗ ∗ ∗∗ ↓↓ – ∗ ∗ ∗∗ ↓↓↓↓

concreteness of sentence ∗ ∗ ∗ ↑↑ – ∗∗ ↑↑ ∗ ∗ ∗ ↓

arousal of sentence ∗ ∗ ∗ ↑↑ – ∗∗ ↑↑ ∗∗ ↓

# hedging word ∗∗ ↑↑↑ – – –
ROUGE-L ∗ ∗ ∗↑↑ ∗ ∗ ∗ ↑ ∗∗ ↑↑ –
concreteness of claim ∗ ∗ ∗ ↑↑ – ∗∗ ↑↑ ∗ ∗ ∗ ↓

arousal of claim ∗ ∗ ∗ ↑↑ – ∗∗ ↑↑ ∗ ∗ ∗ ↓

Table 3.5: Comparison of feature significance under composition with different
types. The number of ∗ stands for the p-value based on t-test between support-
ing argument sentences and the others after Bonferroni correction. From one ∗
to four, the p-value scales as: 0.05, 1e-3, 1e-5, and 1e-10. When mean value of
supporting argument sentences is larger, ↑ is used; otherwise, ↓ is displayed.
Number of arrows represents the ratio of the larger value over smaller one. “-”
indicates no significant difference.

tion might scatter around the whole documents. For sentences of REASONING,

the ones that can be used as supporting arguments tend to be less concrete and

less emotional, as opposed to opinion.

3.5 Conclusion

We presented a novel study on the task of sentence-level supporting argument

detection from relevant documents for a user-specified claim. Based on our

newly-collected dataset, we characterized arguments of different types with a

rich feature set. We also showed that leveraging argument type information can

further improve the performance of supporting argument detection.
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CHAPTER 4

ARGUMENT MINING ON PEER REVIEWS

In the previous chapter, we discussed a general domain argument mining

framework over an online debate portal. In practice, specific argument scheme

is often necessary to better capture the unique patterns for specific domains.

In this chapter, we focus on arguments present in academic peer reviews. We

outline steps for the schematic design, the annotation procedure, and various

modeling choices for automatic argument extraction and classification.

This work is published at NAACL 2019 (Hua et al., 2019b). This is a joint

work with Mitko Nikolov, Nikhil Badugu, and Lu Wang. Relevant resources

can be found at: http://xinyuhua.github.io/Resources/naacl19/.

4.1 Introduction

Peer review is a process where domain experts scrutinize the quality of research

work in their field, and it is a cornerstone of scientific discovery (Hettich and

Pazzani, 2006; Kelly et al., 2014; Price and Flach, 2017). In 2015 alone, approxi-

mately 63.4 million hours were spent on peer reviews (Kovanis et al., 2016). To

maximize their benefit to the scientific community, it is crucial to understand

and evaluate the construction and limitation of reviews themselves. However,

minimal work has been done to analyze reviews’ content and structure, let alone

to evaluate their quality.

As seen in Figure 4.1, peer reviews resemble arguments: they contain ar-

gumentative propositions (henceforth propositions) that convey reviewers’ in-
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Review #1 (rating: 5, number of sentences: 11)

[Quality: This paper demonstrates that convolutional and relational
neural networks fail to solve visual relation problems . . . ]FACT [This
points at important limitations of current neural network architectures
where architectures depend mainly on rote memorization.]EVAL . . . [Sig-
nificance: This work demonstrates failures of relational networks on
relational tasks. . .]FACT

[Pros: Important message about network limitations.]EVAL [Cons:
Straightforward testing of network performance on specific visual re-
lation tasks.]EVAL . . .

Review #2 (rating: 5, number of sentences: 10)

[The authors present two autoregressive models . . .]FACT. . . [In that con-
text , this work can be viewed as applying deep autoregressive density
estimators to policy gradient methods.]EVAL. . . [At least one of those pa-
pers ought to be cited.]REQ [It also seems like a simple, obvious baseline
is missing from their experiments . . .]EVAL. . .
[The method could even be made to capture dependencies between
different actions by adding a latent probabilistic layer . . .]EVAL. . . [A di-
rect comparison against one of the related methods in the discussion
section would help]REQ. . .

Figure 4.1: Sample ICLR review excerpts from openreview.net. Propositions
are annotated with types, such as FACT (fact), EVAL (evaluation), and REQ (re-
quest). Both assigned a rating of 5 (out of 10) for the reviewed paper. Review #2
contains in-depth evaluation and actionable suggestion, thus is perceived to be
of a higher quality.

terpretation and evaluation of the research. Constructive reviews, e.g., review

#2, often contain in-depth analysis as well as concrete suggestions. As a result,

automatically identifying propositions and their types would be useful to un-

derstand the composition of peer reviews.

Therefore, we propose an argument mining-based approach to understand the

content and structure of peer reviews. Argument mining studies the automatic de-

tection of argumentative components and structure within discourse (Peldszus

and Stede, 2013). Specifically, argument types (e.g. evidence and reasoning) and
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their arrangement are indicative of argument quality (Habernal and Gurevych,

2016; Wachsmuth et al., 2017a).

In this work, we focus on two specific tasks: (1) proposition segmenta-

tion—detecting elementary argumentative discourse units that are proposi-

tions, and (2) proposition classification—labeling the propositions according

to their types (e.g., evaluation vs. request).

Since there was no annotated dataset for peer reviews, as part of this study,

we first collect 14.2K reviews from major machine learning (ML) and natural

language processing (NLP) venues. We create a dataset, AMPERE (Argument

Mining for PEer REviews), by annotating 400 reviews with 10, 386 propositions

and labeling each proposition with the type of EVALUATION, REQUEST, FACT,

REFERENCE, QUOTE, or NON-ARG. Significant inter-annotator agreement is

achieved for proposition segmentation (Cohen’s κ = 0.93), with good consen-

sus level for type annotation (Krippendorf’s αU = 0.61). We release the dataset

and annotation guideline at http://xinyuhua.github.io/Resources/

naacl19/.

We benchmark our new dataset with state-of-the-art and popular argument

mining models to better understand the challenges posed in this new domain.

We observe a significant drop of performance for proposition segmentation on

AMPERE, mainly due to its different argument structure. For instance, 25% of

the sentences contain more than one proposition, compared to that of 8% for

essays (Stab and Gurevych, 2017), motivating new solutions for segmentation

and classification.

We further investigate review structure difference across venues based on
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proposition usage, and uncover several patterns. For instance, ACL reviews

tend to contain more propositions than those in ML venues, especially with

more requests but fewer facts. We further find that reviews with extreme rat-

ings, i.e., strong reject or accept, tend to be shorter and make much fewer re-

quests. Moreover, we probe the salient words for different proposition types.

For example, ACL reviewers ask for more “examples” when making requests,

while ICLR reviews contain more evaluation of “network” and how models are

“trained”.

4.2 AMPERE Dataset

We collect review data from three sources: (1) openreview.net—an online

peer reviewing platform for ICLR 2017, ICLR 2018, and UAI 2018 1; (2) reviews

released for accepted papers at NeurIPS from 2013 to 2017; and (3) opted-in

reviews for ACL 2017 from Kang et al. (2018). Table 4.1 shows review count for

each venue. All venues except NeurIPS have paper rating scores attached to the

reviews.

ICLR UAI ACL NeurIPS Total

4,057 768 275 9,152 14,202

Table 4.1: Statistics for review data sets used in our study.

Annotation Process. For proposition segmentation, we adopt the concepts

from Park et al. (2015) and instruct the annotators to identify elementary ar-

gumentative discourse units on sentence or sub-sentence level, based on their

1ICLR reviews are downloaded using the public API: https://github.com/iesl/
openreview-py. UAI reviews are collected directly by the OpenReview team.
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discourse functions and topics. They then classify the propositions into five

types with an additional non-argument category, as explained below:

• EVALUATION: Subjective statements, often containing qualitative judg-

ment. Ex: “This paper shows nice results on a number of small tasks.”

• REQUEST: Statements suggesting a course of action. Ex: “The authors

should compare with the following methods.”

• FACT: Objective information of the paper or commonsense knowledge.

Ex: “Existing works on multi-task neural networks typically use hand-tuned

weights. . .”

• REFERENCE: Citations and URLs. Ex: “see MuseGAN (Dong et al), MidiNet

(Yang et al), etc ”

• QUOTE: Quotations from the paper. Ex: “The author wrote ‘where r is lower

bound of feature norm’.”

• NON-ARG: Non-argumentative statements. Ex: “Aha, now I understand.”

We sample 400 ICLR 2018 reviews for annotation. To ensure the subset is

representative of the full dataset, samples are drawn based on two aspects: re-

view length and rating score. Table 4.2 shows the distribution of reviews with

regard to their length in the full ICLR 2018 dataset and the subset we sampled

for annotation (AMPERE). As can be seen, the distribution over five bins are

consistent between AMPERE and the full dataset. A similar trend is observed on

rating distribution in Table 4.3.

Two annotators who are fluent English speakers first label the 400 reviews

with proposition segments and types, and a third annotator then resolves dis-

agreements.
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Length (0,200] (200,400] (400,600] (600,800] (800,∞)

AMPERE 14.8% 35.5% 25.3% 10.0% 14.6%
ICLR2018 17.6% 39.3% 23.8% 11.4% 7.9%

Table 4.2: Review length distribution of the full ICLR 2018 dataset and AMPERE,
which consists of 400 sampled reviews.

Rating 1 2 3 4 5

AMPERE 3.0% 32.5% 43.8% 19.3% 1.5%
ICLR2018 2.6% 32.5% 42.4% 20.6% 1.8%

Table 4.3: Review rating distribution of AMPERE and the full ICLR 2018 dataset.

Inter-Annotator Agreement (IAA). We calculate the inter-annotator agreement

between the two annotators. A Cohen’s κ of 0.93 is achieved for proposition

segmentation, with each review treated as a BIO sequence. For classification,

unitized Krippendorf’s αU (Krippendorff, 2004), which considers disagreements

among segmentation, is calculated per review and then averaged over all sam-

ples, and the value is 0.61. Among the exactly matched proposition segments,

we report a Cohen’s κ of 0.64. The agreement scores for each type are listed in

Table 4.4.

EVAL REQ FACT REF QUOT NON-A overall

αU 0.51 0.64 0.60 0.63 0.41 0.18 0.61
κ 0.60 0.68 0.64 0.88 0.59 0.27 0.64

Table 4.4: Inter-annotator agreement for all categories.

Statistics. Table 4.5 shows comparison between AMPERE and some other argu-

ment mining datasets of different genres. We also show the number of propo-

sitions in each category in Table 4.6. The most frequent types are evaluation

(38.3%) and fact (36.5%).
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Dataset # Doc # Sent # Prop
Comments (Park and Cardie, 2018) 731 3,994 4,931
Essays (Stab and Gurevych, 2017) 402 7,116 6,089
News (Al-Khatib et al., 2016) 300 11,754 14,313
Web (Habernal and Gurevych, 2017) 340 3,899 1,882
AMPERE 400 8,030 10,386

Table 4.5: Statistics for AMPERE and some other argument mining corpora, in-
cluding # of annotated propositions.

EVAL REQ FACT REF QUOT NON-A Total
3,982 1,911 3,786 207 161 339 10,386

Table 4.6: Number of propositions per type in AMPERE.

4.3 Experiments with Existing Models

We benchmark AMPERE with popular and state-of-the-art models for propo-

sition segmentation and classification. Both tasks can be treated as sequence

tagging problems with the setup similar to Schulz et al. (2018). For experi-

ments, 320 reviews (7, 999 propositions) are used for training and 80 reviews

(2, 387 propositions) are used for testing. Following Niculae et al. (2017), 5-fold

cross validation on the training set is used for hyperparameter tuning. For pre-

processing, we utilize the Stanford CoreNLP toolkit (Manning et al., 2014). To

improve the accuracy of tokenization, we manually replace mathematical for-

mulas, variables, URL links, and formatted citation with special tokens such as

<EQN>, <VAR>, <URL>, and <CIT>.
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Precision Recall F1
FullSent 73.68 56.00 63.64
PDTB-conn 51.11 49.71 50.40
RST-parser 30.28 43.00 35.54
CRF 66.53 52.92 58.95
BiLSTM-CRF 82.25 79.96 81.09∗

CRF-joint 74.99 63.33 68.67
BiLSTM-CRF-joint 81.12 78.42 79.75

Table 4.7: Proposition segmentation results. Result that is significantly better
than all comparisons is marked with ∗ (p < 10−6, McNemar test).

4.3.1 Task I: Proposition Segmentation

We consider three baselines. FullSent: treating each sentence as a proposition.

PDTB-conn: further segmenting sentences when any discourse connective (col-

lected from Penn Discourse Treebank (Prasad et al., 2008)) is observed. RST-

parser: segmenting discourse units by the RST parser in Feng and Hirst (2011).

For learning-based methods, we start with Conditional Random Field

(CRF) (Lafferty et al., 2001; Okazaki, 2007) with features proposed by Stab and

Gurevych (2017) (2017, Table 7), and BiLSTM-CRF, a bidirectional Long Short-

Term Memory network (BiLSTM) connected to a CRF output layer and fur-

ther enhanced with ELMo representation (Peters et al., 2018). We adopt the

BIO scheme for sequential tagging (Ramshaw and Marcus, 1999), with O cor-

responding to NON-ARG. Finally, we consider jointly modeling segmentation

and classification by appending the proposition types to BI tags, e.g., B-fact,

with CRF (CRF-joint) and BiLSTM-CRF (BiLSTM-CRF-joint).

Table 4.7 shows that BiLSTM-CRF outperforms other methods in F1. More

importantly, the performance on reviews is lower than those reached on existing

datasets, e.g., an F1 of 86.7 is obtained by CRF for essays (Stab and Gurevych,
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2017). This is mostly due to essays’ better structure, with frequent use of dis-

course connectives.

4.3.2 Task II: Proposition Classification

With given proposition segments, predicted or gold-standard, we experiment

with proposition-level models to label proposition types. We utilize two base-

lines. Majority simply assigns the majority type in the training set. PropLexi-

con matches the following lexicons for different proposition types in order, and

returns the first corresponding type with a match; if no lexicon is matched, the

proposition is labeled as NON-ARG:

• REFERENCE: <URL>, <CIT>

• QUOTE: “, ”, ’

• REQUEST: should, would be nice, why, please, would like to, need

• EVALUATION: highly, very, unclear, clear, interesting, novel, well, important,

similar, clearly, quite, good

• FACT: author, authors, propose, present, method, parameters, example, dataset,

same, incorrect, correct

For supervised models, we employ linear SVM with a squared hinge loss

and group Lasso regularizer (Yuan and Lin, 2006). It is trained with the top 500

features selected from Table 9 in (Stab and Gurevych, 2017) by χ2 test. We also

train a convolutional neural network (CNN) proposed by Kim (2014), with the

same setup and pre-trained word embeddings from word2vec (Mikolov et al.,
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Overall EVAL REQ FACT REF QUOT

With Gold-Standard Segments
Majority 40.75 57.90 – – – –
PropLexicon 36.83 40.42 36.07 32.23 59.57 31.28
SVM 60.98 63.88 69.02 54.74 69.47 7.69
CNN 66.56∗ 69.02 63.26 66.17 67.44 52.94
With Predicted Segments
Majority 33.30 47.60 – – – –
PropLexicon 23.21 22.45 23.97 23.73 35.96 16.67
SVM 51.46 54.05 48.16 52.77 52.27 4.71
CNN 55.48 57.75 53.71 55.19 48.78 33.33
CRF-joint 50.69 46.78 55.74 52.27 55.77 26.47
BiLSTM-CRF-joint 62.64∗ 62.36∗ 67.31∗ 61.86 54.74 37.36

Table 4.8: Proposition classification F1 scores. Results that are significant better
than other methods are marked with ∗ (p < 10−6, McNemar test).

2013). Finally, results by joint models of CRF and BiLSTM-CRF are also re-

ported.

F1 scores for all propositions and each type are reported in Table 4.8. A pre-

diction is correct when both segment and type are matched with the true labels.

CNN performs better for types with significantly more training samples, i.e.,

evaluation and fact, indicating the effect of data size on neural model’s perfor-

mance. Joint models (CRF-joint and BiLSTM-CRF-joint) yield the best F1 scores

for all categories when gold-standard segmentation is unavailable.

4.3.3 Training Details

For all models except CNN, we conduct 5-fold cross validation on training set

to select hyperparameters.

CRF. We utilize the CRFSuite (Okazaki, 2007) implementation and tune coeffi-
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cients C1 and C2 for `1 and `2 regularizer. For segmentation task the optimal

setup is C1 = 0.0 and C2 = 1.0; for joint prediction, C1 = 1.0 and C2 = 0.01 is

used.

BiLSTM-CRF. We experiment with implementation by Reimers and Gurevych

(2017) with an extra ELMo embedding. Based on the cross validation for both

segmentation and joint learning, the optimal network architecture selected has

two layers with 100 dimensional hidden states each, with dropout probabilities

of 0.5 for both layers. The word embedding pre-trained by Komninos and Man-

andhar (2016) is chosen, as it outperforms GloVe embeddings (Pennington et al.,

2014) trained either on Google News or Wikipedia.

SVM. We utilize SAGA (Defazio et al., 2014) implemented in the Lightning

library (Blondel and Pedregosa, 2016) to learn a linear SVM optimized with

Coordinate Descent (Wright, 2015). The coefficient for a group Lasso regular-

izer (Yuan and Lin, 2006) is set to 0.001 by cross validation.

CNN. We implement the CNN-non-static variant as described in Kim (2014),

with the following configuration: filter window sizes of {3,4,5}, with 128 feature

maps each. Dropout probability is 0.5. 300 dimensional word embeddings are

initiated with the pre-trained word2vec on 100 billion Google News (Mikolov

et al., 2013).

4.4 Proposition Analysis by Venues

Here we leverage the BiLSTM-CRF-joint model trained on the annotated AM-

PERE data to identify propositions and their types in unlabeled reviews from
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Figure 4.2: Proposition number in reviews. Differences among venues are all
significant except UAI vs. ICLR and ACL vs. NeurIPS (p < 10−6, unpaired
t-test).
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Figure 4.3: Distribution of proposition type per venue.

the four venues (ICLR, UAI, ACL, and NeurIPS), to understand the content and

structure of peer reviews at a larger scale.

Proposition Usage by Venue and Rating. Figure 4.2 shows the average number

of propositions per review, grouped by venue and rating. Scores in 1 − 10 are

scaled to 1 − 5 by dx/2e, with 1 as strong reject and 5 as strong accept. ACL

and NeurIPS have significantly more propositions than ICLR and UAI. Ratings,

which reflect a reviewer’s judgment of paper quality, also affect proposition

usage. We find that reviews with extreme ratings, i.e., 1 and 5, tend to have

fewer propositions.

We further study the distribution of proposition type in each venue. As ob-
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Figure 4.4: Distribution of proposition type per rating (in %) on AMPERE.

served in Figure 4.3, ACL reviews contain more requests but fewer facts than

other venues. Specifically, we find that 94.6% of ACL reviews have at least one

REQUEST proposition, compared to 81.5% for ICLR and 84.7% for UAI. We also

show proposition type distribution based on ratings in Figure 4.4. Reviews with

the highest rating tend to use fewer evaluation and reference, while reviews

with ratings of 3 − 4 (borderline or weak accept) contain more requests. We fur-

ther observe a sharp decrease of QUOTE usage in rating group 4, and a surge

of NON-ARG for rating group 5, while FACT remains consistent across rating

ranges.

EVAL REQ FACT REF QUOT NON-A
EVAL 50.3 17.2 27.3 1.0 1.4 2.9
REQ 32.2 41.6 19.4 1.8 2.3 2.8
FACT 33.5 11.0 51.2 1.3 0.9 2.0
REF 15.0 10.8 18.0 50.9 3.6 1.8
QUOT 31.2 23.6 25.5 1.3 12.1 6.4
NON-A 31.9 15.5 22.7 1.3 2.8 25.9

Figure 4.5: Proposition transition probabilities on AMPERE.

Proposition Structure. Argumentative structure, which is usually studied as
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support and attack relations, reveals how propositions are organized into coher-

ent text. According to Park and Cardie (2018), 75% of support relations happen

between adjacent propositions in user comments. We thus plot the proposition

transition probability matrix in Figure 4.5, to show the argument structure in

AMPERE. The high probabilities along the diagonal line imply that proposi-

tions of the same type are often constructed consecutively, with the exception of

quote, which is more likely to be followed by evaluation.

Proposition Type and Content. We also probe the salient words used for each

proposition type, and the difference of their usage across venues. For each

venue, we utilize log-likelihood ratio test (Lin and Hovy, 2000a) to identify the

representative words in each proposition type compared to other types. Ta-

ble 4.9 shows both the commonly used salient words across venues and the

unique words with top frequencies for each venue (α = 0.001, χ2 test). For

evaluation, all venues tend to focus on clarity and contribution, with ICLR dis-

cussing more about “network” and NeurIPS often mentioning equations. ACL

reviews then frequently request for “examples”.

4.5 Conclusion

We study the content and structure of peer reviews under the argument mining

framework. AMPERE, a new dataset of peer reviews, is collected and annotated

with propositions and their types. We benchmark AMPERE with state-of-the-

art argument mining models for proposition segmentation and classification.

We leverage the classifiers to analyze the proposition usage in reviews across

ML and NLP venues, showing interesting patterns in proposition types and
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content.
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CHAPTER 5

ARGUMENT GENERATION AUGMENTED

WITH EXTERNALLY RETRIEVED EVIDENCE

Our goal in the previous two chapters is to understand the argument structure

and their interplay with external supports. This chapter describes an argument

generation system, equipped with a retrieval component to access the useful

external information from Wikipedia. We also introduce the ChangeMyView

dataset, collected as part of this work to facilitate argument generation research.

This work is published at ACL 2018 (Hua and Wang, 2018). Rel-

evant resources can be found at: https://xinyuhua.github.io/

neural-argument-generation/.

5.1 Introduction

Generating high quality arguments plays a crucial role in decision-making and

reasoning processes (Bonet and Geffner, 1996; Byrnes, 2013). A multitude of ar-

guments and counter-arguments are constructed on a daily basis, both online

and offline, to persuade and inform us on a wide range of issues. For instance,

debates are often conducted in legislative bodies to secure enough votes for bills

to pass. In another example, online deliberation has become a popular way of

soliciting public opinions on new policies’ pros and cons (Albrecht, 2006; Park

et al., 2012). Nonetheless, constructing persuasive arguments is a daunting task,

for both human and computers. We believe that developing effective argument

generation models will enable a broad range of compelling applications, includ-
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Figure 5.1: Sample user arguments from Reddit Change My View community
that argue against original post’s thesis on “government should be allowed to
view private emails”. Both arguments leverage supporting information from
Wikipedia articles.

ing debate coaching, improving students’ essay writing skills, and providing

context of controversial issues from different perspectives. As a consequence,

there exists a pressing need for automating the argument construction process.

To date, progress made in argument generation has been limited to retrieval-

based methods—arguments are ranked based on relevance to a given topic,

then the top ones are selected for inclusion in the output (Rinott et al., 2015;

Wachsmuth et al., 2017b; Hua and Wang, 2017). Although sentence ordering

algorithms are developed for information structuring (Sato et al., 2015; Reisert

et al., 2015), existing methods lack the ability of synthesizing information from

different resources, leading to redundancy and incoherence in the output.

In general, the task of argument generation presents numerous challenges,

ranging from aggregating supporting evidence to generating text with coherent

logical structure. One particular hurdle comes from the underlying natural lan-

guage generation (NLG) stack, whose success has been limited to a small set of
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Figure 5.2: Overview of our system pipeline (best viewed in color). Given a
statement, relevant articles are retrieved from Wikipedia with topic signatures
from statement as queries (marked in red and bold). A reranking module then
outputs top sentences as evidence. The statement and the evidence (encoder
in gray) are concatenated and encoded as input for our argument generation
model. During decoding, the keyphrase decoder first generates talking points
as phrases, followed by the argument decoder which constructs the argument
by attending both input and keyphrases.

domains. Especially, most previous NLG systems rely on templates that are ei-

ther constructed by rules (Hovy, 1993; Belz, 2008; Bouayad-Agha et al., 2011), or

acquired from a domain-specific corpus (Angeli et al., 2010) to enhance gram-

maticality and coherence. This makes them unwieldy to be adapted for new

domains.

In this work, we study the following novel problem: given a statement on a

controversial issue, generate an argument of an alternative stance. To address the

above challenges, we present a neural network-based argument generation frame-

work augmented with externally retrieved evidence. Our model is inspired by the

observation that when humans construct arguments, they often collect ref-

erences from external sources, e.g., Wikipedia or research papers, and then

write their own arguments by synthesizing talking points from the references.
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Figure 5.1 displays sample arguments by users from Reddit subcommunity

/r/ChangeMyView 1 who argue against the motion that “government should

be allowed to view private emails”. Both replies leverage information drawn

from Wikipedia, such as “political corruption” and “Fourth Amendment on

protections of personal privacy”.

Concretely, our neural argument generation model adopts the popular

encoder-decoder-based sequence-to-sequence (seq2seq) framework (Sutskever

et al., 2014), which has achieved significant success in various text generation

tasks (Bahdanau et al., 2015; Wen et al., 2015; Wang and Ling, 2016; Mei et al.,

2016; Wiseman et al., 2017). Our encoder takes as input a statement on a dis-

puted issue, and a set of relevant evidence automatically retrieved from English

Wikipedia2. Our decoder consists of two separate parts, one of which first gen-

erates keyphrases as intermediate representation of “talking points”, and the

other then generates an argument based on both input and keyphrases.

Automatic evaluation based on BLEU (Papineni et al., 2002) shows that our

framework generates better arguments than directly using retrieved sentences

or popular seq2seq-based generation models (Bahdanau et al., 2015) that are

also trained with retrieved evidence. We further design a novel evaluation pro-

cedure to measure whether the arguments are on-topic by predicting their rele-

vance to the given statement based on a separately trained relevance estimation

model. Results suggest that our model generated arguments are more likely to

be predicted as on-topic, compared to other seq2seq-based generations models.

1https://www.reddit.com/r/changemyview
2https://en.wikipedia.org/
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5.2 Framework

Our argument generation pipeline, consisting of evidence retrieval and argument

construction, is depicted in Figure 5.2. Given a statement, a set of queries are con-

structed based on its topic signature words (e.g., “government” and “national

security”) to retrieve a list of relevant articles from Wikipedia. A reranking com-

ponent further extracts sentences that may contain supporting evidence, which

are used as additional input information for the neural argument generation

model.

The generation model then encodes the statement and the evidence with a

shared encoder in sequence. Two decoders are designed: the keyphrase decoder

first generates an intermediate representation of talking points in the form of

keyphrases (e.g., “right to privacy”, “political corruption”), followed by a sepa-

rate argument decoder which produces the final argument.

5.3 Data Collection and Processing

We draw data from Reddit subcommunity /r/ChangeMyView (henceforth

CMV), which focuses on facilitating open discussions on a wide range of dis-

puted issues. Specifically, CMV is structured as discussion threads, where the

original post (OP) starts with a viewpoint on a controversial topic, followed

with detailed reasons, then other users reply with counter-arguments. Impor-

tantly, when a user believes his view has been changed by an argument, a delta

is often awarded to the reply.

In total, 26,761 threads from CMV are downloaded, dating from January
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2013 to June 2017. Only root replies (i.e., replies directly addressing OP) that

meet all of the following requirements are included: (1) longer than 5 words, (2)

without offensive language3, (3) awarded with delta or with more upvotes than

downvotes, and (4) not generated by system moderators. We publicly release

the processed dataset at: http://xinyuhua.github.io/Resources/.

After filtering, the resultant dataset contains 26,525 OPs along with 305,475

relatively high quality root replies. We treat each OP as the input statement,

and the corresponding root replies as target arguments, on which our model is

trained and evaluated.

A Focused Domain Dataset. The current dataset contains diverse domains with

unbalanced numbers of arguments. We therefore choose samples from the poli-

tics domain due to its large volume of discussions and good coverage of popular

arguments in the domain.

However, topic labels are not available for the discussions. We thus con-

struct a domain classifier for politics vs. non-politics posts based on a logistic

regression model with unigram features, trained from our heuristically labeled

Wikipedia abstracts4. Concretely, we manually collect two lists of keywords that

are indicative of politics and non-politics (Table 5.1). Each abstract is labeled as

politics or non-politics if its title only matches keywords from one category. In

total, 264,670 politics abstracts and 827,437 of non-politics are labeled. Starting

from this dataset, our domain classifier is trained in a bootstrapping manner by

gradually adding OPs predicted as politics or non-politics. Finally, 12,549 OPs

are labeled as politics, each of which is paired with 9.4 high-quality target argu-
3We use offensive words collected by Google’s What Do You Love project: https://gist.

github.com/jamiew/1112488, last accessed on February 22nd, 2018.
4About 1.3 million English Wikipedia abstracts are downloaded from http://dbpedia.

org/page/.
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Politics non-Politics

politics political science media
policy congress automobiles sports
rights election football fashion
president trump entertainment movie
clinton immigration movies music
democracy democrats musics art
democratic republican arts television
constitution liberal religion philosophy
government legalization morality dating
surveillance amnesty eugenics marriage
antisemitism terrorism parenthood history
war taxation organic handicaps
liberalism libertarianism disease
marxism conservatism
anarchism autocracy
fascism voting

Table 5.1: Lists of politics and non-politics keywords used to obtain Wikipedia
abstract labels.

ments on average. The average length for OPs is 16.1 sentences of 356.4 words,

and 7.7 sentences of 161.1 words for arguments.

5.4 Model

In this section, we present our argument generation model, which jointly learns

to generate talking points in the form of keyphrases and produce arguments

based on the input and keyphrases. Extended from the successful seq2seq at-

tentional model (Bahdanau et al., 2015), our proposed model is novel in the

following ways. First, two separate decoders are designed, one for generat-

ing keyphrases, the other for argument construction. By sharing the encoder

with keyphrase generation, our argument decoder is better aware of salient

51



talking points in the input. Second, a novel attention mechanism is designed

for argument decoding by attending both input and the previously generated

keyphrases. Finally, a reranking-based beam search decoder is introduced to

promote topic-relevant generations.

5.4.1 Model Formulation

Our model takes as input a sequence of tokens x = {xO; xE}, where xO is the

statement sequence and xE contains relevant evidence that is extracted from

Wikipedia based on a separate retrieval module. A special token <evd> is in-

serted between xO and xE. Our model then first generates a set of keyphrases

as a sequence yp = {yp
l }, followed by an argument ya = {ya

t }, by maximizing

log P(y|x), where y = {yp; ya}.

The objective is further decomposed into
∑

t log P(yt|y1:t−1, x), with each term

estimated by a softmax function over a non-linear transformation of decoder

hidden states sa
t and sp

t , for argument decoder and keyphrase decoder, respec-

tively. The hidden states are computed as done in Bahdanau et al. (2015) with

attention:

st = g(st−1, ct, yt) (5.1)

ct =

T∑
j=1

αt jh j (5.2)

αt j =
exp(et j)∑T

k=1 exp(etk)
(5.3)

et j = vT tanh(Whh j + Wsst + battn) (5.4)

Notice that two sets of parameters and different state update functions g(·)
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are learned for separate decoders: {Wa
h , Wa

s , ba
attn, g

a(·)} for the argument decoder;

{W p
h , W p

s , bp
attn, g

p(·)} for the keyphrase decoder.

Encoder. A two-layer bidirectional LSTM (bi-LSTM) is used to obtain the en-

coder hidden states hi for each time step i. For biLSTM, the hidden state is

the concatenation of forward and backward hidden states: hi = [
−→
hi;
←−
hi]. Word

representations are initialized with 200-dimensional pre-trained GloVe embed-

dings (Pennington et al., 2014), and updated during training. The last hidden

state of encoder is used to initialize both decoders. In our model the encoder is

shared by argument and keyphrase decoders.

Decoders. Our model is equipped with two decoders: keyphrase decoder and ar-

gument decoder, each is implemented with a separate two-layer unidirectional

LSTM, in a similar spirit with one-to-many multi-task sequence-to-sequence

learning (Luong et al., 2015a). The distinction is that our training objective is

the sum of two loss functions:

L(θ) = −
α

Tp

∑
(x,yp)∈D

log P(yp|x; θ) −
(1 − α)

Ta

∑
(x,ya)∈D

log P(ya|x; θ) (5.5)

where Tp and Ta denote the lengths of reference keyphrase sequence and argu-

ment sequence. α is a weighting coefficient, and it is set as 0.5 in our experi-

ments.

Attention over Both Input and Keyphrases. Intuitively, the argument decoder

should consider the generated keyphrases as talking points during the gener-

ation process. We therefore propose an attention mechanism that can attend

both encoder hidden states and the keyphrase decoder hidden states. Addi-

tional context vector c′t is then computed over keyphrase decoder hidden states
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sp
j , which is used for computing the new argument decoder state:

sa
t = g′(sa

t−1, [ct; c′t], y
a
t ) (5.6)

c′t =

Tp∑
j=1

α′t js
p
j (5.7)

α′t j =
exp(e′t j)∑Tp

k=1 exp(e′tk)
(5.8)

e′t j = v′T tanh(W′
psp

j + W′
asa

t + b′attn) (5.9)

where sp
j is the hidden state of keyphrase decoder at position j, sa

t is the hidden

state of argument decoder at timestep t, and ct is computed in Eq. 5.2.

Decoder Sharing. We also experiment with a shared decoder between

keyphrase generation and argument generation: the last hidden state of the

keyphrase decoder is used as the initial hidden state for the argument decoder.

A special token <arg> is inserted between the two sequences, indicating the

start of argument generation.

5.4.2 Hybrid Beam Search Decoding

Here we describe our decoding strategy on the argument decoder. We design

a hybrid beam expansion method combined with segment-based reranking to

promote diversity of beams and informativeness of the generated arguments.

Hybrid Beam Expansion. In the standard beam search, the top k words of high-

est probability are selected deterministically based on the softmax output to

expand each hypothesis. However, this may lead to suboptimal output for text

generation (Wiseman and Rush, 2016), e.g., one beam often dominates and thus

inhibits hypothesis diversity. Here we only pick the top n words (n < k), and
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randomly draw another k − n words based on the multinomial distribution af-

ter removing the n expanded words from the candidates. This leads to a more

diverse set of hypotheses.

Segment-based Reranking. We also propose to rerank the beams every p steps

based on beam’s coverage of content words from input. Based on our obser-

vation that likelihood-based reranking often leads to overly generic arguments

(e.g., “I don’t agree with you”), this operation has the potential of encouraging

more informative generation. k = 10, n = 3, and p = 10 are used for experiments.

The effect of parameter selection is studied in Section 5.7.

5.5 Relevant Evidence Retrieval

5.5.1 Retrieval Methodology

We take a two-step approach for retrieving evidence sentences: given a statement,

(1) constructing one query per sentence and retrieving relevant articles from

Wikipedia, and (2) reranking paragraphs and then sentences to create the final

set of evidence sentences. Wikipedia is used as our evidence source mainly due

to its objective perspective and broad coverage of topics. A dump of Decem-

ber 21, 2016 was downloaded. For training, evidence sentences are retrieved

with queries constructed from target user arguments. For test, queries are con-

structed from OP. Key statistics are displayed in Table 5.2.

Article Retrieval. We first create an inverted index lookup table for Wikipedia

as done in Chen et al. (2017). For a given statement, we construct one query
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Queries Constructed from
OP Argument

Average # Topic Signature 17.2 9.8
Average # Query 6.7 1.9
Average # Article Retrieved 26.1 8.0
Average # Sentence Retrieved 67.3 8.5

Table 5.2: Statistics for evidence sentence retrieval from Wikipedia. Considering
query construction from either OP or target user arguments, we show the av-
erage numbers of topic signatures collected, queries constructed, and retrieved
articles and sentences.

per sentence to broaden the diversity of retrieved articles. Therefore, multiple

passes of retrieval will be conducted if more than one query is created. Specifi-

cally, we first collect topic signature words of the post. Topic signatures (Lin and

Hovy, 2000b) are terms strongly correlated with a given post, measured by log-

likelihood ratio against a background corpus. We treat posts from other discus-

sions in our dataset as background. For each sentence, one query is constructed

based on the noun phrases and verbs containing at least one topic signature

word. For instance, a query “the government, my e-mails, national

security” is constructed for the first sentence of OP in the motivating exam-

ple (Figure 5.2). Top five retrieved articles with highest TF-IDF similarity scores

are kept per query.

Sentence Reranking. The retrieved articles are first segmented into paragraphs,

which are reranked by TF-IDF similarity to the given statement. Up to 100

top ranked paragraphs with positive scores are retained. These paragraphs are

further segmented into sentences, and reranked according to TF-IDF similarity

again. We only keep up to 10 top sentences with positive scores for inclusion in

the evidence set.
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Component Stage 1 Stage 2 Stage 3

Encoder
OP 50 150 400
Evidence 0 80 120

Decoder
Keyphrases 0 80 120
Target Argument 30 80 120

Table 5.3: Truncation size (i.e., number of tokens including delimiters) for dif-
ferent stages during training. Note that in the first stage we do not include
evidence and keyphrases.

5.5.2 Gold-Standard Keyphrase Construction

To create training data for the keyphrase decoder, we use the following rules to

identify keyphrases from evidence sentences that are reused by human writers

for argument construction:

• Extract noun phrases and verb phrases from evidence sentences using

Stanford CoreNLP (Manning et al., 2014).

• Keep phrases of length between 2 and 10 that overlap with content words

in the argument.

• If there is span overlap between phrases, the longer one is kept if it has

more content word coverage of the argument; otherwise the shorter one is

retained.

The resultant phrases are then concatenated with a special delimiter

<phrase> and used as gold-standard generation for training.
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5.6 Experimental Setup

5.6.1 Final Dataset Statistics

Encoding the full set of evidence by our current decoder takes a huge amount

of time. We there propose a sampling strategy to allow the encoder to finish

encoding within reasonable time by considering only a subset of the evidence:

For each sentence in the statement, up to three evidence sentences are randomly

sampled from the retrieved set; then the sampled sentences are concatenated.

This procedure is repeated three times per statement, where a statement is an

user argument for training data and an OP for test set. In our experiments,

we remove duplicates samples and the ones without any retrieved evidence

sentence. Finally, we break down the augmented data into a training set of

224,553 examples (9,737 unique OPs), 13,911 for validation (640 OPs), and 30,417

retained for test (1,892 OPs).

5.6.2 Training Setup

For all models, we use a two-layer biLSTM as encoder and a two-layer unidirec-

tional LSTM as decoder, with 200-dimensional hidden states in each layer. We

apply dropout (Gal and Ghahramani, 2016) on RNN cells with a keep probabil-

ity of 0.8. We use Adam (Kingma and Ba, 2015) with an initial learning rate of

0.001 to optimize the cross-entropy loss. Gradient clipping is also applied with

the maximum norm of 2.0. The input and output vocabulary sizes are both 50k.

Curriculum Training. We train the models in three stages where the truncated
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Figure 5.3: Effect of pre-training on seq2seq-based models. Red dotted line
shows the performance of the seq2seq model used for parameter initialization.

input and output lengths are gradually increased. Details are listed in Table 5.3.

Importantly, this strategy allows model training to make rapid progress during

early stages. Training each of our full models takes about four days on a Quadro

P5000 GPU card with a batch size of 32. The model converges after about 10

epochs in total with pre-training initialization, which is described below.

Adding Pre-training. We pre-train a two-layer seq2seq model with OP as input

and target argument as output from our training set. After 20 epochs (before

converging), parameters for the first layer are used to initialize the first layer

of all comparison models and our models (except for the keyphrase decoder).

Experimental results show that pre-training boosts all methods by roughly 2

METEOR (Denkowski and Lavie, 2014) points, as illustrated in Figure 5.3.
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5.6.3 Baseline and Comparisons

We first consider a RETRIEVAL-based baseline, which concatenates retrieved evi-

dence sentences to form the argument. We further compare with three seq2seq-

based generation models with different training data: (1) SEQ2SEQ: training

with OP as input and the argument as output; (2) SEQ2SEQ + encode evd: aug-

menting input with evidence sentences as in our model; (3) SEQ2SEQ + encode

KP: augmenting input with gold-standard keyphrases, which assumes some of

the talking points are known. All seq2seq models use a regular beam search

decoder with the same beam size as ours.

Variants of Our Models. We experiment with variants of our models based

on the proposed separate decoder model (DEC-SEPARATE) or using a shared

decoder (DEC-SHARED). For each, we further test whether adding keyphrase

attention for argument decoding is helpful (+ attend KP).

System vs. Oracle Retrieval. For test time, evidence sentences are retrieved

with queries constructed from OP (System Retrieval). We also experiment with

an Oracle Retrieval setup, where the evidence is retrieved based on user argu-

ments, to indicate how much gain can be expected with better retrieval results.
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5.7 Results

5.7.1 Automatic Evaluation

For automatic evaluation, we use BLEU (Papineni et al., 2002), an n-

gram precision-based metric (up to bigrams are considered), and ME-

TEOR (Denkowski and Lavie, 2014), measuring unigram recall and precision

by considering paraphrases, synonyms, and stemming. Human arguments are

used as the gold-standard. Because each OP may be paired with more than one

high-quality arguments, we compute BLEU and METEOR scores for the system

argument compared against all arguments, and report the best. We do not use

multiple reference evaluation because the arguments are often constructed from

different angles and cover distinct aspects of the issue. For models that generate

more than one arguments based on different sets of sampled evidence, the one

with the highest score is considered.

As can be seen from Table 5.4, our models produce better BLEU scores than

almost all the comparisons. Especially, our models with separate decoder yield

significantly higher BLEU and METEOR scores than all seq2seq-based models

(approximation randomization testing, p < 0.0001) do. Better METEOR scores

are achieved by the RETRIEVAL baseline, mainly due to its significantly longer

arguments.

Moreover, utilizing attention over both input and the generated keyphrases

further boosts our models’ performance. Interestingly, utilizing system re-

trieved evidence yields better BLEU scores than using oracle retrieval for test-

ing. The reason could be that arguments generated based on system retrieval
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w/ System Retrieval w/ Oracle Retrieval
BLEU METEOR Length BLEU METEOR Length

Baseline
RETRIEVAL 15.32 12.19 151.2 10.24 16.22 132.7

Comparisons
SEQ2SEQ 10.21 5.74 34.9 7.44 5.25 31.1

+ encode evd 18.03 7.32 67.0 13.79 10.06 68.1
+ encode KP 21.94 8.63 74.4 12.96 10.50 78.2

Our Models
DEC-SHARED 21.22 8.91 69.1 15.78 11.52 68.2

+ attend KP 24.71 10.05 74.8 11.48 10.08 40.5
DEC-SEPARATE 24.24 10.63 88.6 17.48 13.15 86.9

+ attend KP 24.52 11.27 88.3 17.80 13.67 86.8

Table 5.4: Results on argument generation by BLEU and METEOR, with sys-
tem retrieved evidence and oracle retrieval. The best performing model is
highlighted in bold per metric. Our separate decoder models, with and with-
out keyphrase attention, statistically significantly outperform all seq2seq-based
models based on approximation randomization testing (Noreen, 1989), p <
0.0001.

contain less topic-specific words and more generic argumentative phrases.

Since the later is often observed in human written arguments, it may lead to

higher precision and thus better BLEU scores.

Decoder Strategy Comparison. We also study the effect of our reranking-based

decoder by varying the reranking step size (p) and the number of top words ex-

panded to beam hypotheses deterministically (k). From the results in Figure 5.4,

we find that reranking with a smaller step size, e.g., p = 5, can generally lead

to better METEOR scores. Although varying the number of top words for beam

expansion does not yield significant difference, we do observe more diverse

beams from the system output if more candidate words are selected stochasti-

cally (i.e. with a smaller k).
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Figure 5.4: Effect of our reranking-based decoder. Beams are reranked at every
5, 10, and 20 steps (p). For each step size, we also show the effect of varying k,
where top-k words are selected deterministically for beam expansion, with 10−k
randomly sampled over multinomial distribution after removing the k words.
Reranking with smaller step size yields better results.

5.7.2 Topic-Relevance Evaluation

During our pilot study, we observe that generic arguments, such as “I don’t

agree with you” or “this is not true”, are prevalent among generations by

seq2seq models. We believe that good arguments should include content that

addresses the given topic. Therefore, we design a novel evaluation method to

measure whether the generated arguments contain topic-relevant information.

To achieve the goal, we first train a topic-relevance estimation model in-

spired by the latent semantic model in Huang et al. (2013). A pair of OP and

argument, each represented as the average of the 300-dimensional GloVe (Pen-

nington et al., 2014) word embeddings, are separately fed into a two-layer

transformation model. A dot-product is computed over the two projected low-

dimensional vectors, and then a sigmoid function outputs the relevance score.

For model learning, we further divide our current training data into training,
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developing, and test sets. For each OP and argument pair, we first randomly

sample 100 arguments from other threads, and then pick the top 5 dissimilar

ones, measured by Jaccard distance, as negative training samples. This model

achieves a Mean Reciprocal Rank (MRR) score of 0.95 on the test set.

We then take this trained model to evaluate the relevance between OP and

the corresponding system arguments. Each system argument is treated as posi-

tive sample; we then select five negative samples from arguments generated for

other OPs whose evidence sentences most similar to that of the positive sample.

Intuitively, if an argument contains more topic relevant information, then

the relevance estimation model will output a higher score for it; otherwise, the

argument will receive a lower similarity score, and thus cannot be easily dis-

tinguished from negative samples. Ranking metrics of MRR and Precision at 1

(P@1) are utilized, with results reported in Table 5.5. The ranker yields signif-

icantly better scores over arguments generated from models trained with evi-

dence, compared to arguments generated by SEQ2SEQ model.

Moreover, we manually pick 29 commonly used generic responses (e.g., “I

don’t think so”) and count their frequency in system outputs. For the seq2seq

model, more than 75% of its outputs contain at least one generic argument, com-

pared to 16.2% by our separate decoder model with attention over keyphrases.

This further implies that our model generates more topic-relevant content.
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Standard Decoder Our Decoder
MRR P@1 MRR P@1

Baseline
RETRIEVAL 81.08 65.45 - -

Comparisons
SEQ2SEQ 75.29 58.85 74.46 57.06

+ encode evd 83.73 71.59 88.24 78.76
Our Models
DEC-SHARED 79.80 65.57 95.18 90.91

+ attend KP 94.33 89.76 93.48 87.91
DEC-SEPARATE 86.85 76.74 91.70 84.72

+ attend KP 88.53 79.05 92.77 86.46

Table 5.5: Evaluation on topic relevance—models that generate arguments
highly related with OP should be ranked high by a separately trained rele-
vance estimation model, i.e., higher Mean Reciprocal Rank (MRR) and Preci-
sion at 1 (P@1) scores. All models trained with evidence significantly outper-
form seq2seq trained without evidence (approximation randomization testing,
p < 0.0001).

5.7.3 Human Evaluation

We also hire three trained human judges who are fluent English speakers to rate

system arguments for the following three aspects on a scale of 1 to 5 (with 5 as

best): Grammaticality—whether an argument is fluent, informativeness—whether

the argument contains useful information and is not generic, and relevance—

whether the argument contains information of a different stance or off-topic. 30

CMV threads are randomly selected, each of which is presented with randomly-

shuffled OP statement and four system arguments.

Table 5.6 shows that our model with separate decoder and attention over

keyphrases produce significantly more informative and relevant arguments

than seq2seq trained without evidence.5 However, we also observe that hu-

5Inter-rater agreement scores for these three aspects are 0.50, 0.60, and 0.48 by Krippendorff’s
α.
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System Grammaticality Informativeness Relevance

RETRIEVAL 4.5 ± 0.6 3.7 ± 0.9 3.3 ± 1.1
SEQ2SEQ 3.3 ± 1.1 1.2 ± 0.5 1.4 ± 0.7
OUR MODEL 2.5 ± 0.8 1.6 ± 0.8 1.8 ± 0.8

Table 5.6: Human evaluation results on grammaticality, informativeness, and
relevance of arguments. Our model with separate decoder and attention over
keyphrases receives significantly better ratings in informativeness and rele-
vance than seq2seq (one-way ANOVA, p < 0.005).

man judges prefer the retrieved arguments over generation-based models, il-

lustrating the gap between system arguments and human edited text. Sample

arguments are displayed in Figure 5.5.

5.8 Further Discussion

Keyphrase Generation Analysis. Here we provide further analysis over the

generated keyphrases by our separate decoder model. First, about 10% of the

keyphrases output by our model also appear in the gold-standard (i.e., used

by human arguments). Furthermore, 36% of generated keyphrases are reused

by our system arguments. With human inspection, we find that although some

keyphrases are not directly reused by the argument decoder, they represent high

level talking points in the argument. For instance, in the first sample argument

by our model in Figure 5.5, keyphrases “the motive” and “russian” are gener-

ated. Although not used, they suggest the topics that the argument should stay

on.

Sample Arguments and Future Directions. As can be seen from the sample

outputs in Figure 5.5, our model generally captures more relevant concepts,
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Input: Putin is trying to re-form a “Soviet Union” with his past actions in Georgia and current actions
in Ukraine
Human: So far Putin has only really targeted areas where the local population is majority russian (or
historically majority russian) and sympathetic to russia. That’s not to say that he wouldn’t go further,
but I don’t think there is yet any compelling reason to believe he would.
Retrieval: In 1968, the Soviet Union and Warsaw pact allies invaded Czechoslovakia to halt the
Prague spring reforms. It was this significant lack of flexibility that was exploited by the US to
undermine the strength of the Soviet Union and thus foster its reform. In the summer of 1991, the
new union treaty, which would have turned the Soviet Union into a much looser union, was agreed
upon by eight republics.
Our Model: There are two reasons you are so far beyond. There is no reason to see the military army.
You can infer what they assume it, so they tend to protect up. There. If we assume it were bad, they
can not be controlled. So we’re talking going to ignore the wars of the world. The fact of the matter
is not bad. I would also assume it. However, the government can not be reminded of the world.
Seq2seq + evd: 1. The reason is that the government isn’t the power of the war of Russia, at the time
of the war of Russia. In Russia, there is no way to continue to control the military.
Seq2seq + KP: I don’t think it’s a bit. I don’t think you’re forgetting. I don’t want to see the Syrian
American dream in the US. I don’t see the Syrian American dream of American citizens. I don’t see
the Syrian American dream of American citizens. I don’t see the Syrian American military in the
world. I don’t think it wouldn’t be true.
Input: Voting for either Hillary or Trump is morally reprehensible.
Human: I don’t think a vote for either of them means “I’m totally fine with...” as you say. Why is it
not acceptable to pick the option whose platform most closely aligns to your values/beliefs/desires,
while acknowledging neither candidate is ideal?
Retrieval: Vote trading under a democratic, majority-rule institution is sometimes considered
morally reprehensible behavior.
Our Model: He’s going to happen. You’re overestimating the more premise. He’s already overesti-
mating to this hypothetical party. He’s already killed over the supreme court positions. Looking for
Bernie. This is the same reasons: Clinton is not the supreme court presidency. You’ve already sent
Trump’s right to vote. The fact is that he’s going to happen. He’s already going to notice. However,
it’s a long way.
Seq2seq + evd: 1. If they don’t vote the vote, they would not be able to vote for any candidate. They
don’t have the same effect on their political power. They are not voting for them.
Seq2seq + KP: I agree with your view. I don’t agree with you. I don’t think it’s easy to appeal to the
Clintons. If you don’t want to do this?

Figure 5.5: Sample arguments generated by human, our system, and seq2seq
trained with evidence. Only the main thesis is shown for the input OP. System
generations are manually detokenized and capitalized.

e.g., “military army” and “wars of the world”, as discussed in the first exam-

ple. Meanwhile, our model also acquires argumentative style language, though

there is still a noticeable gap between system arguments and human constructed

arguments. As discovered by our prior work (Wang et al., 2017b), both topical
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content and language style are essential elements for high quality arguments.

For future work, generation models with a better control on linguistic style need

to be designed. As for improving coherence, we believe that discourse-aware

generation models (Ji et al., 2016) should also be explored in the future work to

enhance text planning.

5.9 Conclusion

We studied the novel problem of generating arguments of a different stance

for a given statement. We presented a neural argument generation framework

enhanced with evidence retrieved from Wikipedia. Separate decoders were de-

signed to first produce a set of keyphrases as talking points, and then generate

the final argument. Both automatic evaluation against human arguments and

human assessment showed that our model produced more informative argu-

ments than popular sequence-to-sequence-based generation models.
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CHAPTER 6

ARGUMENT GENERATION WITH RETRIEVAL, PLANNING, AND

REALIZATION

In this chapter, we introduce an improved argument generation system with

retrieval on both Wikipedia evidence and opinions from news articles. We fur-

ther augment the neural generator with a text planning module, which selects

keyphrases to include for each sentence and simultaneously predicts an argu-

mentative function.

This work is published at ACL 2019 (Hua et al., 2019a). Relevant resources

can be found at: https://xinyuhua.github.io/Resources/acl19/.

6.1 Introduction

Counter-argument generation aims to produce arguments of a different stance,

in order to refute the given proposition on a controversial issue (Toulmin, 1958;

Damer, 2012). A system that automatically constructs counter-arguments can

effectively present alternative perspectives along with associated evidence and

reasoning, and thus facilitate a more comprehensive understanding of compli-

cated problems when controversy arises.

Nevertheless, constructing persuasive arguments is a challenging task, as it

requires an appropriate combination of credible evidence, rigorous logical rea-

soning, and sometimes emotional appeal (Walton et al., 2008; Wachsmuth et al.,

2017a; Wang et al., 2017b). A sample counter-argument for a pro-death penalty

post is shown in Figure 6.1. As can be seen, a sequence of talking points on the
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List of exonerated death row inmates... there had been 156 
exonerations of prisoners on death row in the United States since 1973...

Original post: Death penalty is more rational than life in prison.
...I don't believe murderers and rapists can be successfully integrated...                                                                                                        

Counter-argument: In theory I agree with you. But in reality we 
will never have a perfect justice system. Unreliable evidence is 
used when there is no witnesses, which could result in wrongful 
convictions. In the US, there had been 156 death row inmates 
who were exonerated since 1973. If we execute them, we can 
never undo it.  I hope it can change your view.
The Grim Facts About Lethal Injection                                
...Our justice system is a joke and we are asking other people to...

The problem of innocence in death penalty cases               
...The evidence in death penalty cases is not always very strong. 
After all, in many murders, there are no surviving witnesses... 

Source: The New York Times

Source: Wikipedia

Source: The Wall Street Journal

Figure 6.1: Sample counter-argument for a pro-death penalty statement from
Reddit /r/ChangeMyView. The argument consists of a sequence of proposi-
tions, by synthesizing opinions and facts from diverse sources. Sentences in
italics contain stylistic languages for argumentation purpose.

“imperfect justice system” are presented: it starts with the fundamental con-

cept, then follows up with more specific evaluative claim and supporting fact.

Although retrieval-based methods have been investigated to construct counter-

arguments (Sato et al., 2015; Reisert et al., 2015), they typically produce a col-

lection of sentences from disparate sources, thus fall short of coherence and

conciseness. Moreover, human always deploy stylistic languages with specific

argumentative functions to promote persuasiveness, such as making a conces-

sive move (e.g., “In theory I agree with you”). This further requires the generation

system to have better control of the languages style.

Our goal is to design a counter-argument generation system to address the

above challenges and produce paragraph-level arguments with rich-yet-coherent con-

tent. To this end, we present CANDELA—a novel framework to generate
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Counter-Arguments with two-step Neural Decoders and ExternaL knowledge

Augmentation. Concretely, CANDELA has three major distinct features:

First, it is equipped with two decoders: one for text planning—selecting

talking points to cover for each sentence to be generated, the other for content

realization—producing a fluent argument to reflect decisions made by the text

planner. This enables our model to produce longer arguments with richer infor-

mation.

Furthermore, multiple objectives are designed for our text planning decoder

to both handle content selection and ordering, and select a proper argumenta-

tive discourse function of a desired language style for each sentence generation.

Lastly, the input to our argument generation model is augmented with

keyphrases and passages retrieved from a large-scale search engine, which in-

dexes 12 million articles from Wikipedia and four popular English news media

of varying ideological leanings. This ensures access to reliable evidence, high-

quality reasoning, and diverse opinions from different sources, as opposed to

recent work that mostly considers a single origin, such as Wikipedia (Rinott

et al., 2015) or online debate portals (Wachsmuth et al., 2018b).

We experiment with argument and counter-argument pairs collected from

the Reddit ChangeMyView. Automatic evaluation shows that the proposed

model significantly outperforms our prior argument generation system (Hua

and Wang, 2018) and other non-trivial comparisons. Human evaluation further

suggests that our model produces more appropriate counter-arguments with

richer content than other automatic systems, while maintaining a fluency level

comparable to human-constructed arguments.
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6.2 Overview of CANDELA

Our counter-argument generation framework, as shown in Figure 6.2, has two

main components: argument retrieval model (§ 6.3) that takes the input state-

ment and a search engine, and outputs relevant passages and keyphrases, which

are used as input for our argument generation model (§ 6.4) to produce a fluent

and informative argument.

Concretely, the argument retrieval component retrieves a set of candidate

passages from Wikipedia and news media (§ 6.3.1), then further selects passages

according to their stances towards the input statement (§ 6.3.3). A keyphrase

extraction module distills the refined passages into a set of talking points, which

comprise the keyphrase memory as additional input for generation (§ 6.3.2).

The argument generation component first runs the text planning decoder

(§ 6.4.2) to produce a sequence of hidden states, each corresponding to a

sentence-level representation that encodes the selection of keyphrases to cover, as

well as the predicted argumentative function for a desired language style. The

content realization decoder (§ 6.4.3) then generates the argument conditioned

on the sentence representations.
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Figure 6.2: Architecture of CANDELA. 1© Argument Retrieval (§ 6.3): a set
of passages are retrieved and ranked based on relevance and stance (§ 6.3.1,
§ 6.3.3), from which 2© a set of keyphrases are extracted (§ 6.3.2), with both as
input for argument generation. 3© The biLSTM encoder consumes the input
statement and passages returned from step 1. 4© A text planning decoder out-
puts a representation per sentence, and simultaneously predicts an argumenta-
tive function and selects keyphrases to include for the next sentence to be gener-
ated (§ 6.4.2). 5© A content realization decoder produces the counter-argument
(§ 6.4.3).

6.3 Argument Retrieval

6.3.1 Information Sources and Indexing

We aim to build a search engine from diverse information sources with factual

evidence and varied opinions of high quality. To achieve that, we use Com-

mon Crawl1 to collect a large-scale online news dataset covering four major En-

glish news media: The New York Times (NYT), The Washington Post

(WaPo), Reuters, and The Wall Street Journal (WSJ). HTML files are

processed using the open-source tool jusText (Pomikálek, 2011) to extract article

content. We deduplicate articles and remove the ones with less than 50 words.

1http://commoncrawl.org/
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Source # Articles # Passages Date Range

Wikipedia 5,743,901 42,797,543 dump of 12/2016
WaPo 1,109,672 22,564,532 01/1997 - 10/2018
NYT 1,952,446 28,904,549 09/1895 - 09/2018
Reuters 1,052,592 9,913,400 06/2005 - 09/2018
WSJ 2,059,128 16,109,392 01/1996 - 09/2018
Total 11,917,739 120,289,416 -

Table 6.1: Statistics on information sources for argument retrieval. News media
are sorted by ideological leanings from left to right, according to https://
www.adfontesmedia.com/.

We also download a Wikipedia dump. About 12 million articles are processed

in total, with basic statistics shown in Table 6.1.

We segment articles into passages with a sliding window of three sentences,

with a step size of two. We further constraint the passages to have at least 50

words. For shorter passages, we keep adding subsequent sentences until reach-

ing the length limit. Per Table 6.1, 120 million passages are preserved and in-

dexed with Elasticsearch (Gormley and Tong, 2015) as done in Stab et al. (2018).

Query Formulation. For an input statement with multiple sentences, one query

is constructed per sentence, if it has more than 5 content words (10 for ques-

tions), and at least 3 are distinct. For each query, the top 20 passages ranked by

BM25 (Robertson et al., 1995) are retained, per medium. All passages retrieved

for the input statement are merged and deduplicated, and they will be ranked

as discussed in § 6.3.3.
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6.3.2 Keyphrase Extraction

Here we describe a keyphrase extraction procedure for both input statements

and retrieved passages, which will be utilized for passage ranking as detailed

in the next section.

For input statement, our goal is to identify a set of phrases representing the

issues under discussion, such as “death penalty” in Figure 6.1. We thus first ex-

tract the topic signature words (Lin and Hovy, 2000a) for input representation,

and expand them into phrases that better capture semantic meanings.

Concretely, topic signature words of an input statement are calculated

against all input statements in our training set with log-likelihood ratio test. In

order to cover phrases with related terms, we further expand this set with their

synonyms, hyponyms, hypernyms, and antonyms based on WordNet (Miller,

1994). The statements are first parsed with Stanford part-of-speech tagger (Man-

ning et al., 2014). Then we apply the regular expression grammar, as shown

below, to extract candidate noun phrases and verb phrases.

NP: {<DT|PP$>?<JJ|JJR>*<NN.*|CD|JJ>+}
PP: {<IN><NP>}
VP: {<MD>?<VB.*><NP|PP>}

A keyphrase is selected if it contains: (1) at least one content word, (2) no

more than 10 tokens, and (3) at least one topic signature word or a Wikipedia

article title.

For retrieved passages, their keyphrases are extracted using the same proce-

dure as above, except that the input statement’s topic signature words are used

as references again.
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6.3.3 Passage Ranking and Filtering

We merge the retrieved passages from all media and rank them based on the

number of words in overlapping keyphrases with the input statement. To break

a tie, with the input as the reference, we further consider the number of its

topic signature words that are covered by the passage, then the coverage of non-

stopword bigrams and unigrams. In order to encourage diversity, we discard a

passage if more than 50% of its content words are already included by a higher

ranked passage. In the final step, we filter out passages if they have the same

stance as the input statement for given topics.

We determine the stances of passages by adopting the stance scoring model

proposed by Bar-Haim et al. (2017). Concretely, we aggregate the sentiment

words surrounding the opinion targets. Here we choose the keyphrases of in-

put statement as opinion targets, denoted as T. We then tally sentiment words,

collected from Hu and Liu (2004), towards targets in T, with positive words

counted as +1 and negative words as −1. Each score is discounted by d−5
τ,l , with

dτ,l being the distance between the sentiment word l and the target τ ∈ T. The

stance score of a text psg (an input statement or a retrieved passage) towards

opinion targets T is calculated as:

Q(psg,T) =
∑
τ∈T

∑
l∈psg

sgn(l) · d−5
τ,l (6.1)

In our experiments, we only keep passages with a stance score of the oppo-

site sign to that of the input statement, and with a magnitude greater than 5, i.e.

|Q(psg,T)| > 5 (determined by manual inspection on training set).
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6.4 Argument Generation

6.4.1 Task Formulation

Given an input statement X = {xi}, a set of passages, and a keyphrase mem-

oryM, our goal is to generate a counter-argument Y = {yt} of a different stance

as X, xi and yt are tokens at timestamps i and t. Built upon the sequence-to-

sequence (seq2seq) framework with input attention (Sutskever et al., 2014; Bah-

danau et al., 2015), the input statement and the passages selected in § 6.3 are

encoded by a bidirectional LSTM (biLSTM) encoder into a sequence of hidden

states hi. The last hidden state of the encoder is used as the first hidden state of

both text planning decoder and content realization decoder.

As depicted in Figure 6.2, the counter-argument is generated as follows. A

text planning decoder (§ 6.4.2) first calculates a sequence of sentence represen-

tations s j (for the j-th sentence) by encoding the keyphrases selected from the

previous timestamp j−1. During this step, an argumentative function label is pre-

dicted to indicate a desired language style for each sentence, and a subset of the

keyphrases are selected fromM (content selection) for the next sentence. In the

second step, a content realization decoder (§ 6.4.3) generates the final counter-

argument conditioned on previously generated tokens and the corresponding

sentence representation s j.
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6.4.2 Text Planning Decoder

Text planning is an important component for natural language generation sys-

tems to decide on content structure for the target generation (Lavoie and Rain-

bow, 1997; Reiter and Dale, 2000). We propose a text planner with two objec-

tives: selecting talking points from the keyphrase memory M, and choosing a

proper argumentative function per sentence.

s j = f (s j−1,
∑

ek∈C( j)

ek) (6.2)

where f is an LSTM network, ek is the embedding for a selected phrase, rep-

resented by summing up all its words’ Glove embeddings (Pennington et al.,

2014) in our experiments.

Content Selection C( j). We propose an attention mechanism to conduct content

selection and yield C( j) from the representation of the previous sentence s j−1 to

encourage topical coherence. To allow the selection of multiple keyphrases, we

use the sigmoid function to calculate the score:

α jm = sigmoid(emW pas j−1) (6.3)

where W pa are trainable parameters, keyphrases with α jm > 0.5 are included in

C( j), and the keyphrase with top attention value is always selected. We further

prohibit a keyphrase from being chosen for more than once in multiple sen-

tences. For the first sentence s0, C(0) only contains <start>, whose embedding

is randomly initialized. During training, the true labels of C( j) are constructed

as follows: a keyphrase in M is selected for the j-th gold-standard argument

sentence if they overlap with any content word.

Argumentative Function Prediction yp
j . As shown in Figure 6.1, humans often
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deploy stylistic languages to achieve better persuasiveness, e.g. agreement as

a concessive move. We aim to inform the realization decoder about the choice

of style, and thus distinguish between two types of argumentative functions:

argumentative content sentence which delivers the critical ideas, e.g. “unreli-

able evidence is used when there is no witness”, and argumentative filler sentence

which contains stylistic languages or general statements (e.g., “you can’t bring

dead people back to life”).

Since we do not have argumentative function labels, during training, we

use the following rules to automatically label each sentence as content sentence

if it has at least 10 words (20 for questions) and satisfy the following condi-

tions: (1) it has at least two topic signature words of the input statement or a

gold-standard counter-argument2, or (2) at least one topic signature word with

a discourse marker at the beginning of the sentence. If the first three words

in a content sentence contain a pronoun, the previous sentence is labeled as such

too. Discourse markers are manually selected from the Appendix B in the PDTB

manual (Prasad et al., 2008), as listed below:

• Contrast: although, though, even though, by comparison, by contrast, in

contrast, however, nevertheless, nonetheless, on the contrary, regardless,

whereas

• Restatement/Equivalence/Generalization: eventually, in short, in sum,

on the whole, overall

• Result: accordingly, as a result, as it turns out, consequently, finally, fur-

thermore, hence, in fact, in other words, in short, in the end, in turn, there-

fore, thus, ultimately
2When calculating topic signatures for gold-standard arguments, all replies in the training

set are used as background.
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All other sentences become filler sentences. In the future work, we will consider

utilizing learning-based methods, e.g., Hidey et al. (2017), to predict richer ar-

gumentative functions.

The argumentative function label yp
j for the j-th sentence is calculated as

follows:

P(yp
j |y

p
< j, X) = softmax(wT

p (tanh (W po[c j; s j])) + bp) (6.4)

c j =
∑

em∈M

α jmem (6.5)

where α jm is the alignment score computed as in Eq. 6.3, c j is the attention

weighted context vector, wp, W po, and bp are trainable parameters.

6.4.3 Content Realization Decoder

The content realization decoder generates the counter-argument word by word,

with another LSTM network f w. We denote the sentence id of the t-th word in

the argument as J(t), then the sentence representation sJ(t) from the text planning

decoder, together with the embedding of the previous generated token yt−1, are

fed as input to calculate the hidden state zt:

zt = f w(zt−1, tanh(WwpsJ(t) + Wwwyt−1 + bw)) (6.6)

The conditional probability of the next token yt is then computed over a

standard softmax, with an attention mechanism applied on the encoder hidden
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states hi to obtain the context vector cw
t :

P(yt|y<t, X, sJ(t)) = softmax(wT
w(tanh (Wwo[cw

t ; zt])) + bo) (6.7)

cw
t =

|X|∑
i=1

βtihi (6.8)

βti = softmax(hiWwa zt) (6.9)

where βti is the input attention, Wwp, Www, Wwo, Wwa, bo, ww, and bw are learnable.

Reranking-based Beam Search. Our content realization decoder utilizes beam

search enhanced with a reranking mechanism, where we sort the beams at the

end of each sentence by the number of selected keyphrases that are generated.

We also discard beams with n-gram repetition for n ≥ 4.

6.4.4 Training Objective

Given all model parameters θ, our mixed objective considers the target argu-

ment (Larg(θ)), the argumentative function type (Lfunc(θ)), and the next sentence

keyphrase selection (Lsel(θ)):

L(θ) = Larg(θ) + γ · Lfunc(θ) + η · Lsel(θ) (6.10)

Larg(θ) = −
∑

(X,Y)∈D

log P(Y|X; θ) (6.11)

Lfunc(θ) = −
∑

(X,Yp)

log P(Yp|X; θ) (6.12)

Lsel(θ) = −
∑
Yp

|Yp |∑
j=1

(
∑

em∈C( j)

log(α jm) +
∑

em<C( j)

log(1 − α jm)) (6.13)

where D is the training corpus, (X,Y) are input statement and counter-argument

pairs, and Yp are the sentence function labels. α jm are keyphrase selection labels
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as computed in Eq. 6.3. For simplicity, we set γ and η as 1.0 in our experiments,

while they can be further tuned as hyper-parameters.

6.5 Experimental Setups

6.5.1 Data Collection and Preprocessing

We use the same methodology as in our prior work (Hua and Wang, 2018) to col-

lect an argument generation dataset from Reddit /r/ChangeMyView.3 To con-

struct input statement and counter-argument pairs, we treat the original poster

(OP) of each thread as the input. We then consider the high quality root replies,

defined as the ones awarded with ∆s or with more upvotes than downvotes

(i.e., karma > 0). It is observed that each paragraph often makes a coherent ar-

gument. Therefore, these replies are broken down into paragraphs, and a para-

graph is retained as a target argument to the OP if it has more than 10 words

and at least one argumentative content sentence.

We then identify threads in the domains of politics and policy, and re-

move posts with offensive languages. Most recent threads are used as test

set. As a result, we have 11, 356 threads or OPs (217, 057 arguments) for train-

ing, 1, 774 (33, 318 arguments) for validation, and 1, 703 (36, 777 arguments) for

test. They are split into sentences and then tokenized by the Stanford CoreNLP

toolkit (Manning et al., 2014).

Training Data Construction for Passages and Keyphrase Memory. Since no

3We further crawled 42, 649 threads from July 2017 to December 2018, compared to the pre-
viously collected dataset.
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gold-standard annotation is available for the input passages and keyphrases,

we acquire training labels by constructing queries from the gold-standard ar-

guments as described in § 6.3.1, and reranking retrieved passages based on the

following criteria in order: (1) coverage of topic signature words in the input

statement; (2) a weighted summation of the coverage of n-grams in the argu-

ment4; (3) the magnitude of stance score, where we keep the passages of the

same polarity as the argument; (4) content word overlap with the argument;

and (5) coverage of topic signature words in the argument.

6.5.2 System and Oracle Retrieved Passages

For evaluation, we employ both system retrieved passages (i.e., constructing

queries from OP) and KM (§ 6.3), and oracle retrieved passages (i.e., constructing

queries from target argument) and KM as described in training data construc-

tion. Statistics on the final dataset are listed in Table 6.2.

Training System Oracle

Avg. # words per OP 383.7 373.0 373.0
Avg. # words per argument 66.0 65.1 65.1
Avg. # passage 4.3 9.6 4.2
Avg. # keyphrase 57.1 128.6 56.6

Table 6.2: Statistics on the datasets for experiments.

6.5.3 Comparisons

In addition to a Retrieval model, where the top ranked passage is used as

counter-argument, we further consider four systems for comparison. (1) A stan-
4We choose 0.5, 0.3, 0.2 as weights for 4-grams, trigrams, and bigrams, respectively.
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dard Seq2seq model with attention, where we feed the OP as input and train

the model to generate counter-arguments. Regular beam search with the same

beam size as our model is used for decoding. (2) A Seq2seqAug model with

additional input of the keyphrase memory and ranked passages, both concate-

nated with OP to serve as the encoder input. The reranking-based decoder

in our model is also implemented for SEQ2SEQAUG to enhance the coverage

of input keyphrases. (3) An ablated SEQ2SEQAUG model where the passages

are removed from the input. (4) We also reimplement the argument generation

model in our prior work (Hua and Wang, 2018) (H&W) with PyTorch (Paszke

et al., 2017), which is used for CANDELA implementation. H&W takes as input

the OP and ranked passages, and then uses two separate decoders to first gen-

erate all keyphrases and then the counter-argument. For our model, we also

implement a variant where the input only contains the OP and the keyphrase

memory.

6.5.4 Training Details

For all models, we use a two-layer LSTM for all encoders and decoders with

a dropout probability of 0.2 between layers (Gal and Ghahramani, 2016). All

layers have 512-dimensional hidden states. We limit the input statement to 500

tokens, the ranked passages to 400 tokens, and the target counter-argument to

120 tokens. Our vocabulary has 50K words for both input and output, with 300-

dimensional word embeddings initialized with GloVe (Pennington et al., 2014)

and fine-tuned during model training. We use AdaGrad (Duchi et al., 2011) with

a learning rate of 0.15 and an initial accumulator of 0.1 as the optimizer, with the

gradient norm clipped to 2.0. Early stopping is implemented according to the
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perplexity on validation set. For all our models the training takes approximately

30 hours (40 epochs) on a Quadro P5000 GPU card, with a batch size of 64. For

beam search, we use a beam size of 5, tuned from {5, 10, 15} on validation.

We also pre-train a biLSTM for encoder based on all OPs from the training

set, and an LSTM for content realization decoder based on two sources of data:

353K counter-arguments that are high quality root reply paragraphs extended

with posts of non-negative karma, and 2.4 million retrieved passages randomly

sampled from the training set. Both are trained as done in Bengio et al. (2003).

We then use the first layer’s parameters to initialize all models, including our

comparisons.

6.6 Results and Analysis

6.6.1 Automatic Evaluation

We employ ROUGE (Lin, 2004), a recall-oriented metric, BLEU (Papineni et al.,

2002), based on n-gram precision, and METEOR (Denkowski and Lavie, 2014),

measuring unigram precision and recall by considering synonyms, paraphrases,

and stemming. BLEU-2, BLEU-4, ROUGE-2 recall, and METEOR are reported

in Table 6.3 for system setup and Table 6.4 for oracle setup.

Under system setup, our model CANDELA statistically significantly outper-

forms all comparisons and the retrieval model in all metrics, based on a ran-

domization test (Noreen, 1989) (p < 0.0005). Furthermore, our model generates

longer sentences whose lengths are comparable with human arguments, both
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w/ System Retrieval
BLEU-2 BLEU-4 ROUGE-2 METEOR #Word #Sent

HUMAN - - - - 66 22
RETRIEVAL 7.55 1.11 8.64 14.38 123 23

Comparisons
SEQ2SEQ 6.92 2.13 13.02 15.08 68 15
SEQ2SEQAUG 8.26 2.24 13.79 15.75 78 14

w/o psg 7.94 2.28 10.13 15.71 75 12
H&W (2018) 3.64 0.92 8.83 11.78 51 12

Our Models
CANDELA 12.02∗ 2.99∗ 14.93∗ 16.92∗ 119 22

w/o psg 12.33∗ 2.86∗ 14.53∗ 16.60∗ 123 23

Table 6.3: Main results on argument generation using system retrieval. We
report BLEU-2, BLEU-4, ROUGE-2 recall, METEOR, and average number of
words per argument and per sentence. Best scores are in bold. ∗: statisti-
cally significantly better than all comparisons (randomization approximation
test (Noreen, 1989), p < 0.0005).

with about 22 words per sentence. This also results in longer arguments. Un-

der oracle setup, all models are notably improved due to the higher quality

of reranked passages, and our model achieves statistically significantly better

BLEU scores. Interestingly, we observe a decrease of ROUGE and METEOR,

but a marginal increase of BLEU-2 by removing passages from our model input.

This could be because the passages introduce divergent content, albeit probably

on-topic, that cannot be captured by BLEU.

Content Diversity. We further measure whether our model is able to gener-

ate diverse content. First, borrowing the diversity measurement from dialogue

generation research (Li et al., 2016), we report the average number of distinct

n-grams per argument under system setup in Figure 6.3. Our system generates

more unique unigrams and bigrams than other automatic systems, underscor-

ing its capability of generating diverse content. Our model also maintains a
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w/ Oracle Retrieval
BLEU-2 BLEU-4 ROUGE-2 METEOR #Word #Sent

HUMAN - - - - 66 22
RETRIEVAL 10.97 3.05 23.49 20.08 140 21

Comparisons
SEQ2SEQ 6.92 2.13 13.02 15.08 68 15
SEQ2SEQAUG 10.98 4.41 22.97 19.62 71 14

w/o psg 9.89 3.34 14.20 18.40 66 12
H&W (2018) 8.51 2.86 18.89 17.18 58 12

Our Models
CANDELA 15.80∗ 5.00∗ 23.75 20.18 116 22

w/o psg 16.33∗ 4.98∗ 23.65 19.94 123 23

Table 6.4: Results using oracle retrieved passages. ∗: statistically significantly
better than all comparisons (randomization approximation test (Noreen, 1989),
p < 0.0005). Input is the same for SEQ2SEQ for both system and oracle setups.

unigram bigram trigram
0

25

50

75

100

125

150
#distinct n-grams per argument

Human
Retrieval

Seq2seq
Seq2seqAug

HW (2018)
CANDELA

Figure 6.3: Average number of distinct n-grams per argument.

comparable type-token ratio (TTR) compared to systems that generate shorter

arguments, e.g., a 0.79 for bigram TTR of our model versus 0.83 and 0.84 for

SEQ2SEQAUG and SEQ2SEQ. RETRIEVAL, containing top ranked passages of

human-edited content, produces the most distinct words.

Next, we compare how each system generates content beyond the common
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K
100 500 1000 2000

HUMAN 44.1 25.8 18.5 12.0
RETRIEVAL 50.6 33.3 26.0 18.6
SEQ2SEQ 25.0 7.5 3.2 1.2
SEQ2SEQAUG 28.2 9.2 4.6 1.8
H&W (2018) 38.6 24.0 19.5 16.2
CANDELA 30.0 10.5 5.3 2.3

Figure 6.4: Percentage of words in arguments that are not in the top-K (K =

100, 500, 1000, 2000) frequent words seen in training. Darker color indicates
higher portion of uncommon words found in the arguments.

words. As shown in Figure 6.4, human-edited text, including gold-standard

arguments (HUMAN) and retrieved passages, tends to have higher usage of un-

common words than automatic systems, suggesting the gap between human vs.

system arguments. Among the four automatic systems, our prior model (Hua

and Wang, 2018) generates a significantly higher portion of uncommon words,

yet further inspection shows that the output often includes more off-topic infor-

mation.

6.6.2 Human Evaluation

Human judges are asked to rate arguments on a Likert scale of 1 (worst) to 5

(best) on the following three aspects: grammaticality—denotes language flu-

ency; appropriateness—indicates if the output is on-topic and on the opposing

stance; content richness—measures the amount of distinct talking points. In

order to promote consistency of annotation, we provide descriptions and sam-

ple arguments for each scale. For example, an appropriateness score of 3 means

the counter-argument contains relevant words and is likely to be on a differ-

ent stance. The judges are then asked to rank all arguments for the same input
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Gram. Appr. Cont. Top-1 Top-2

HUMAN 4.95 4.23 4.39 75.8% 85.8%
RETRIEVAL 4.85 3.04 3.68 17.5% 55.8%

SEQ2SEQAUG 4.83 2.67 2.47 1.7% 22.5%
H&W (2018) 3.86 2.27 2.10 1.7% 7.5%
CANDELA 4.59 2.97 2.93∗ 3.3% 28.3%

Table 6.5: Human evaluation on grammaticality (Gram), appropriateness
(Appr), and content richness (Cont.), on a scale of 1 to 5 (best). The best result
among automatic systems is highlighted in bold, with statistical significance
marked with ∗ (approximation randomization test, p < 0.0005). The highest
standard deviation among all is 1.0. Top-1/2: % of evaluations a system being
ranked in top 1 or 2 for overall quality.

based on their overall quality.

We randomly sampled 43 threads from the test set, and hired three native or

proficient English speakers to evaluate arguments generated by SEQ2SEQAUG,

our prior argument generation model (H&W), and the new model CANDELA,

along with gold-standard HUMAN arguments and the top passage by RE-

TRIEVAL.

Results. The first 3 examples are used only for calibration, and the remain-

ing 40 are used to report results in Table 6.5. Inter-annotator agreement scores

(Krippendorff’s α) of 0.44, 0.58, 0.49 are achieved for the three aspects, implying

general consensus to intermediate agreement.

Our system obtains the highest appropriateness and content richness among

all automatic systems. This confirms the previous observation that our model

produces more informative argument than other neural models. SEQ2SEQAUG

has a marginally better grammaticality score, likely due to the fact that our ar-

guments are longer, and tend to contain less fluent generation towards the end.
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Furthermore, we see that human arguments are ranked as the best in about

76% of the evaluation, followed by RETRIEVAL. Our model is more likely to

be ranked top than any other automatic models. Especially, our model is rated

better than either HUMAN or RETRIEVAL, i.e., human-edited text, in 39.2% of

the evaluations, compared to 34.2% for SEQ2SEQAUG and 13.3% for our prior

model.

6.6.3 Sample Arguments and Discussions

We show sample outputs of different systems alongside human constructed

counter-argument in Figure 6.5. As can be seen, our system arguments cover

many relevant talking points, including the idea of “taking care of children” that

is also used by human. It further illustrates the effectiveness of our retrieval

system and the usage of keyphrase selection as part of text planning to guide

argument generation. Moreover, we also observe that our model generation

is able to switch between argumentative content sentence and filler sentence,

though better control is needed to improve coherence. Meanwhile, SEQ2SEQ

frequently echos words from OP, and both SEQ2SEQ and SEQ2SEQAUG suffer

from the problems of “hallucination” (e.g., the first sentence in SEQ2SEQAUG)

and repetition (e.g., the second and third sentences in SEQ2SEQ).

Nonetheless, there is a huge space for improvement. First, our model tends

to overuse negation, such as “this is not to say that it is unfair...”. It is likely

due to its overfitting on specific stylistic languages, e.g., negation is often ob-

served for refutation in debates (Wang et al., 2017b). Second, human arguments

have significantly better organization and often deploy complicated argumen-

90



OP: The wage gap isn’t about gender. (...) So one factor definitely the fact that there are
some government jobs that are seriously dominated by women and happen to pay really
low (...)

Human: Children are the first factor. I work in a traditionally male-dominated field, and
questions are asked to determine familial status, even though those are illegal. Employers
know single moms have to stay home if their child is sick. They know single moms can
only work during daycare hours. They know single moms are unavailable for weekend
and late night work. They know single moms cannot travel. The workplace is very family-
unfriendly.
Seq2seq: the problem with this is that there are a lot of people who do n’t want to hire
women . there are plenty of women who do n’t have the money to pay for it . the problem
is that women do n’t need to pay for their work . they do n’t have to worry about it . it ’s a
matter of money .
Seq2seqAug: men and women are not 39.5 % of the pay gap . the problem is not that
women are more likely to be victims of sexism , but rather that they are more natural good-
looking/attractive action . this is not the case .
CANDELA: the problem with this argument is that the wage gap does not have to do with
the gender pay gap . it is a fact that women are more likely to be able to take care of their
children than their male counterparts . this is not to say that it is unfair to assume that
women are being paid less than men , but that does not mean that it is not the case that
women are discriminated against . it is not a matter of the wage gap , it is a matter of opinion .
it is the job of the employer to make sure that the job is not the same as the other

Keyphrase Memory: wage gap; discrimination; gender pay gaps; raise the child;
male colleagues; paid maternity leave; underlying gender discrimination . . .

Figure 6.5: Sample arguments generated by different systems along with a sam-
ple human argument. For our model CANDELA, additionally shown are the
keyphrase memory with selected phrases in color, and argumentative filler sen-
tence in italics.

tation strategies (Wachsmuth et al., 2018a), which so far is not well captured

by any automatic system. Both points inspire future work on (1) controlling of

the language styles and corresponding content, and (2) mining argumentation

structures for use in guiding generation with better planning.
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6.7 Conclusion

We present a novel counter-argument generation framework, CANDELA. Given

an input statement, it first retrieves arguments of different perspectives from

millions of high-quality articles collected from diverse sources. An argument

generation component then employs a text planning decoder to conduct con-

tent selection and specify a suitable language style at sentence-level, followed

by a content realization decoder to produce the final argument. Automatic eval-

uation and human evaluation indicate that our model generates more proper

arguments with richer content than non-trivial comparisons, with comparable

fluency to human-edited content.
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CHAPTER 7

SENTENCE-LEVEL CONTENT PLANNING AND STYLE SPECIFICATION

FOR NEURAL TEXT GENERATION

In this chapter, we propose a generalized text generation framework enabled

with content selection. We showcase this model over two new domains on

Wikipedia paragraph and academic paper abstract generation.

This work is published at EMNLP 2019 (Hua and Wang, 2019). Relevant

resources can be found at: xinyuhua.github.io/Resources/emnlp19/.

7.1 Introduction

Automatic text generation is a long-standing challenging task, as it needs to

solve at least three major problems: (1) content selection (“what to say”), identi-

fying pertinent information to present, (2) text planning (“when to say what”),

arranging content into ordered sentences, and (3) surface realization (“how to

say it”), deciding words and syntactic structures that deliver a coherent output

based on given discourse goals (McKeown, 1985). Traditional text generation

systems often handle each component separately, thus requiring extensive ef-

fort on data acquisition and system engineering (Reiter and Dale, 2000). Recent

progress has been made by developing end-to-end trained neural models (Rush

et al., 2015; Yu et al., 2018; Fan et al., 2018b), which naturally excel at producing

fluent text. Nonetheless, limitations of model structures and training objectives

make them suffer from low interpretability and substandard generations which

are often incoherent and unfaithful to the input material (See et al., 2017; Wise-
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Topic:  US should cut off foreign aid completely.

/r/ChangeMyView Counter-argument:  It can be a useful 
political bargaining chip. A few years ago, the US cut financial 
aid to Uganda due to its plans to make homosexuality a crime 
punishable by death. Please consider changing your mind!

Topic:  Artificial Intelligence

English Wikipedia:  … Computer science defines AI research as 
… any device that perceives its environment and takes actions 
that maximize its chance of successfully achieving its goals. ...

Simple Wikipedia:  Artificial Intelligence is the ability of a 
computer program or a machine to think and learn. ...

Figure 7.1: [Upper] Sample counter-argument from Reddit. Argumentative
stylistic language for persuasion is in italics. [Bottom] Excerpts from Wikipedia,
where sophisticated concepts and language of higher complexity used in the
standard version are not present in the corresponding simplified version. Both:
key concepts are in bold.

man et al., 2017; Li et al., 2017).

To address the problems, we believe it is imperative for neural models to

gain adequate control on content planning (i.e., content selection and order-

ing) to produce coherent output, especially for long text generation. We further

argue that, in order to achieve desired discourse goals, it is beneficial to en-

able style-controlled surface realization by explicitly modeling and specifying

proper linguistic styles. Consider the task of producing counter-arguments to

the topic “US should cut off foreign aid completely”. A sample argument in Fig-

ure 7.1 demonstrates how human selects a series of talking points and a proper

style based on the argumentative function for each sentence. For instance, the

argument starts with a proposition on “foreign aid as a political bargaining chip”,

followed by a concrete example covering several key concepts. It ends with ar-

gumentative stylistic language, which differs in both content and style from the

previous sentences. Figure 7.1 shows another example on Wikipedia articles:
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can ...

0
PREMISE

FUNCTIONAL

0

political bargaining chip

0

0
0
0

1
1

A few years ago, the US cut financial 
aid to Uganda...make homosexuality 
a crime punishable by death

PREMISE

Please consider 
changing your mind!

FUNCTIONAL

CLAIM 1

cut financial aid
uganda
make homosexuality a crime

<END>

political bargaining chip

cut financial aid
uganda
make homosexuality a crime

<END>

political bargaining ...

cut financial aid
uganda
make homosexuality...

<END>

political ...

cut...
uganda
make ...

<END>

Topic: US should 
cut off foreign aid 
completely

it be a useful

Figure 7.2: Overview of our framework. The LSTM content planning decoder
(§ 7.2.2) first identifies a set of keyphrases from the memory bank conditional on
previous selection history, based on which, a style is specified. During surface
realization, the hidden states of the planning decoder and the predicted style
encoding are fed into the realizer, which generates the final output (§ 7.2.3).
Best viewed in color.

compared to a topic’s standard version where longer sentences with compli-

cated concepts are constructed, its simplified counterpart tends to explain the

same subject with plain language and simpler concepts, indicating the interplay

between content selection and language style.

We thus present an end-to-end trained neural text generation framework

that includes the modeling of traditional generation components, to promote

the control of content and linguistic style of the produced text. Our model

performs sentence-level content planning for information selection and ordering,

and style-controlled surface realization to produce the final generation. We focus

on conditional text generation problems (Lebret et al., 2016; Colin et al., 2016;

Dušek et al., 2018): As shown in Figure 7.2, the input to our model consists of a

topic statement and a set of keyphrases. The output is a relevant and coherent

paragraph to reflect the salient points from the input. We utilize two separate

decoders: for each sentence, (1) a planning decoder selects relevant keyphrases

and a desired style conditional on previous selections, and (2) a realization de-

coder produces the text in the specified style.
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We demonstrate the effectiveness of our framework on three challeng-

ing datasets with diverse topics and varying linguistic styles: persuasive ar-

gument generation on Reddit ChangeMyView (Hua and Wang, 2018); intro-

duction paragraph generation on a newly collected dataset from Wikipedia

and its simple version; and scientific paper abstract generation on AGENDA

dataset (Koncel-Kedziorski et al., 2019).

Experimental results on all three datasets show that our models that consider

content planning and style selection achieve significantly better BLEU, ROUGE,

and METEOR scores than non-trivial comparisons that do not consider such in-

formation. Human judges also rate our model generations as more fluent and

correct compared to the outputs produced by its variants without style model-

ing.

7.2 Model

Our model tackles conditional text generation tasks where the input is com-

prised of two major parts: (1) a topic statement, x = {xi}, which can be an

argument, the title of a Wikipedia article, or a scientific paper title, and (2) a

keyphrase memory bank, M, containing a list of talking points, which plays

a critical role in content planning and style selection. We aim to produce a

sequence of words, y = {yt}, to comprise the output, which can be a counter-

argument, a paragraph as in Wikipedia articles, or a paper abstract.
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7.2.1 Input Encoding

The input text x is encoded via a bidirectional LSTM (biLSTM), with its last

hidden state used as the initial states for both content planning decoder and

surface realization decoder. To encode keyphrases in the memory bank M,

each keyphrase is first converted into a vector ek by summing up all its words’

embeddings from GloVe (Pennington et al., 2014). A biLSTM-based keyphrase

reader, with hidden states he
k, is used to encode all keyphrases in M. We also

insert entries of <START> and <END> into M to facilitate learning to start and

finish selection.

7.2.2 Sentence-Level Content Planning and Style Specification

Content Planning: Context-Aware Keyphrase Selection. Our content planner

selects a set of keyphrases from the memory bankM for each sentence, indexed

with j, conditional on keyphrases that have been selected in previous sentences,

allowing topical coherence and content repetition avoidance. The decisions are

denoted as a selection vector v j ∈ R
|M|, with each dimension v j,k ∈ {0, 1}, indicating

whether the k-th phrase is selected for the j-th sentence generation. Starting

with a <START> tag as the input for the first step, our planner predicts v1 for

the first sentence, and recurrently makes predictions per sentence until <END>

is selected, as depicted in Figure 7.2.

Formally, we utilize a sentence-level LSTM f , which consumes the summa-

tion embedding of selected keyphrases, mj, to produce a hidden state s j for the
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j-th sentence step:

s j = f (s j−1,mj) (7.1)

mj =

|M|∑
k=1

v j,khe
k (7.2)

where v j,k ∈ {0, 1} is the selection decision for the k-th keyphrase in the j-th

sentence.

Our prior work (Hua et al., 2019a) (Chapter 6) utilizes a similar formulation

for sentence representations. However, the prediction of v j+1 is estimated by a

bilinear product between he
k and s j, which is agnostic to what have been selected

so far. While in reality, content selection for a new sentence should depend on

previous selections. For instance, keyphrases that have already been utilized

many times are less likely to be picked again; topically related concepts tend to

be mentioned closely. We therefore propose a vector q j that keeps track of what

keyphrases have been selected up to the j-th sentence:

q j = (
j∑

r=0

vr)T × E (7.3)

where E = [he
1, h

e
2, . . . h

e
|M|

]T ∈ R|M|×H is the matrix of keyphrase representations,

H is the hidden dimension of the keyphrase reader LSTM.

Then v j+1 is calculated in an attentive manner with q j as the attention query:

P(v j+1,k = 1|v1: j) = σ(wT
v s j + q jWche

k) (7.4)

where σ is the sigmoid funciton, and w∗, W∗, and W∗∗ are trainable parameters

throughout the paper. Bias terms are all omitted for simplicity.

As part of the learning objective, we utilize the binary cross-entropy loss
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with the gold-standard selection v∗j as criterion over the training set D:

Lsel = −
∑

(x,y)∈D

J∑
j=1

(
|M|∑
k=1

log(P(v∗j,k))) (7.5)

Style Specification. As discussed in § 7.1, depending on the content (repre-

sented as selected keyphrases in our model), humans often choose different

language styles adapted for different discourse goals. Our model characterizes

such stylistic variations by assigning a categorical style type t j for each sentence,

which is predicted as follows:

t̂ j = softmax(wT
s (tanh (Ws[mj; s j])) (7.6)

t̂ j is the estimated distribution over all types. We select the one with the

highest probability and use a one-hot encoding vector, t j, as the input to our re-

alization decoder (§ 7.2.3). The estimated distributions t̂ j are compared against

the gold-standard labels t∗j to calculate the cross-entropy loss Lstyle:

Lstyle = −
∑

(x,y)∈D

J∑
j=1

t∗j log t̂ j (7.7)

7.2.3 Style-Controlled Surface Realization

Our surface realization decoder is implemented with an LSTM with state cal-

culation function g to get each hidden state zt for the t-th generated token. To

compute zt, we incorporate the content planning decoder hidden state sJ(t) for

the sentence to be generated, with J(t) as the sentence index, and previously

generated token yt−1:

zt = g(zt−1, tanh(WwssJ(t) + Wwwyt−1)) (7.8)
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For word prediction, we calculate two attentions, one over the input state-

ment x, which produces a context vector cw
t (Eq. 7.10), the other over the

keyphrase memory bankM, which generates ce
t (Eq. 7.11). To better reflect the

control over word choice by language styles, we directly append the predicted

style tJ(t) to the context vectors and hidden state zt, to compute the distribution

over the vocabulary1:

P(yt|y1:t−1) = softmax(tanh(Wo[zt; cw
t ; ce

t ; tJ(t)])) (7.9)

cw
t =

L∑
i=1

αw
i hi, αw

i = softmax(ztWwahi) (7.10)

ce
t =

|M|∑
k=1

αkhe
k, αe

k = softmax(ztWwehe
k) (7.11)

We further adopt a copying mechanism from See et al. (2017) to enable di-

rect reuse of words from the input x and keyphrase bank M to allow out-of-

vocabulary words to be included.

7.2.4 Training Objective

We jointly learn to conduct content planning and surface realization by aggre-

gating the losses over (i) word generation: Lgen = −
∑

D
∑T

t=1 log P(y∗t |x; θ), (ii)

keyphrase selection: Lsel (Eq. 7.5), and (iii) style prediction Lstyle (Eq. 7.7):

L(θ) = Lgen(θ) + γ · Lstyle(θ) + η · Lsel(θ) (7.12)

where θ denotes the trainable parameters. γ and η are set to 1.0 in our experi-

ments for simplicity.

1The inclusion of style variables is different from our prior style-aware generation
model (Hua et al., 2019a), where styles are predicted but not encoded for word production.
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7.3 Tasks and Datasets

7.3.1 Task I: Argument Generation

Our first task is to generate a counter-argument for a given statement on a

controversial issue. The input keyphrases are extracted from automatically re-

trieved and reranked passages with queries constructed from the input state-

ment.

We reuse the dataset from our previous work (Hua et al., 2019a) as described

in Chapter 6, but annotate with newly designed style scheme. We first briefly

summarize the procedures for data collection, keyphrase extraction and selec-

tion, and passage reranking; more details can be found in our prior work. Then

we describe how to label argument sentences with style types that capture ar-

gumentative structures.

The dataset is collected from Reddit /r/ChangeMyView subcommunity,

where each thread consists of a multi-paragraph original post (OP), followed

by user replies with the intention to change the opinion of the OP user. Each

OP is considered as the input, and the root replies awarded with delta (∆), or

with positive karma (# upvotes > # downvotes) are target counter-arguments

to be generated. A domain classifier is further adopted to select politics related

threads.

Input Keyphrases and Label Construction. To obtain the input keyphrase

candidates and their sentence-level selection labels, we first construct queries

to retrieve passages from Wikipedia and news articles collected from
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Argument Wikipedia AGENDA
# Args (# Threads) (Nor. / Sim.)

# Train 272,147 (11,434) 125,136 38,720
# Dev 40,291 (1,784) 21,004 1,000
# Test 46,757 (1,706) 23,534 1,000
# Tokens 54.87 70.57 / 48.60 141.34
# Sent. 2.48 3.15 / 3.20 5.59
# KP (candidates) 55.80 23.56 12.23
# KP (selected) 11.61 16.01/11.11 12.23

Table 7.1: Statistics of the three datasets. Average numbers are reported. For ar-
gument dataset, number of unique threads is also shown. On AGENDA, entities
are extracted from abstract as keyphrases, hence all candidates are “selected”.

commoncrawl.org.2 For training, we construct a query per target argument

sentence using its content words for retrieval, and keep top 5 passages per

query. For testing, the queries are constructed from the sentences in OP (input

statement).

We then extract keyphrases from the retrieved passages based on topic sig-

nature words (Lin and Hovy, 2000a) calculated over the given OP. These words,

together with their related terms from WordNet (Miller, 1994), are used to de-

termine whether a phrase in the passage is a keyphrase. Specifically, a keyphrase

is (1) a noun phrase or verb phrase that is shorter than 10 tokens; (2) contains at

least one content word; (3) has a topic signature or a Wikipedia title. For each

keyphrase candidate, we match them with the sentences in the target counter-

argument, and we consider it to be “selected” for the sentence if there is any

overlapping content word.

During test time, we further adopt a stance classifier from Bar-Haim et al.

(2017) to produce a stance score for each passage. We retain passages that have

2The choice of news portals, statistics of the dataset, and preprocerssing steps are described
in § 6.3.1
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CLAIM PREMISE FUNCTIONAL

# Arguments 29.1% 62.2% 8.7%
# Tokens 17.0 26.2 10.0

Length ∈ (0, 10] (10, 20] (20, 30] (30, +∞)

Normal Wikipedia 9.9% 40.5% 29.8% 19.8%
Simple Wikipedia 29.3% 51.7% 14.6% 4.4%

Table 7.2: Sentence style distribution for argument and Wikipedia datasets.

a negative stance towards OP, and a greater than 5 stance score. They are further

ordered based on the number of overlapping keyphrases with the OP. Top 10

passages are used to construct the input keyphrase bank, and as optional input

to our model.

Sentence Style Label Construction. For argument generation, we define three

sentence styles based on their argumentative discourse functions (Persing and

Ng, 2016; Lippi and Torroni, 2016): CLAIM is a proposition, usually containing

one or two talking points, e.g., “I believe foreign aid is a useful bargaining chip”;

PREMISE contains supporting arguments with reasoning or examples; FUNC-

TIONAL is usually a generic statement, e.g., “I understand what you said”. For

training, we employ a list of rules extended from the claim detection method

by Levy et al. (2018) to automatically construct a style label for each sentence.

Statistics are displayed in Table 7.2, and the rules are shown below:

• CLAIM: is shorter than 20 tokens and matches any pattern in Table 7.3.

• PREMISE: is longer than 5 tokens, contains at least one noun or verb con-

tent word, and matches any pattern in Table 7.3.

• FUNCTIONAL: contains fewer than 5 alphabetical words and no noun or

verb content word
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Rule Patterns
CLAIM

Belief i (don’t)? (believe|agree|concede|suspect|doubt|see

|feel|understand)

Imperative (any|anyone|anybody|every|everyone|everybody|all|most

|few|no|no one|nobody|it|we|you|they|there) \w{0,10}
(could|should|might|need|must)

Sense (it|this|that) make (no|zero)? sense

Chance (chance|likelihood|possibility|probability) .∗

(slim|zero|negligible)

Evaluation (be|seem) (necessary|unnecessary|moral|immoral|right

|wrong|stupid|unconstitutional|costly|inefficient

|efficient|reasonable|beneficial|important|unfair|harmful

|justified|jeopardized|meaningless|flawed|justifiable

|unacceptable|impossible|irrational|foolish)

Miscellaneous(in my opinion|imo|my view|i be try to say|have nothing

to do with|tldr)

PREMISE

Affect (help|improve|reduce|deter|increase|decrease|promote)

Example (for example|for instance|e.g.)

Table 7.3: Patterns for sentence style label construction on CLAIM and PREMISE
for argument generation.

Paragraphs that only contain FUNCTIONAL sentences are removed from our

dataset.

7.3.2 Task II: Paragraph Generation for Normal and Simple

Wikipedia

The second task is generating introduction paragraphs for Wikipedia articles.

The input consists of a title, a user-specified global style (normal or simple), and

a list of keyphrases collected from the gold-standard paragraphs of both normal

and simple Wikipedia. During training and testing, the global style is encoded

as one extra bit appended to mj (Eq. 7.2).
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We construct a new dataset with topically-aligned paragraphs from normal

and simple English Wikipedia.3 For alignment, we consider it a match if two

articles share exactly the same title with at most two non-English words. We

then extract the first paragraphs from both and filter out the pair if one of the

paragraphs is shorter than 10 words or is followed by a table.

Input Keyphrases and Label Construction. Similar to argument generation, we

extract noun phrases and verb phrases and consider the ones with at least one

content word as keyphrase candidates. After de-duplication, there are on aver-

age 5.4 and 3.7 keyphrases per sentence for the normal and simple Wikipedia

paragraphs, respectively. For each sample, we merge the keyphrases from the

aligned paragraphs as the input. The model is then trained to select the appro-

priate ones conditioned on the global style.

Sentence Style Label Construction. We distinguish sentence-level styles based

on language complexity, which is approximated by sentence length. The distri-

bution of sentence styles is displayed in Table 7.2.

7.3.3 Task III: Paper Abstract Generation

We further consider a task of generating abstracts for scientific papers (Am-

mar et al., 2018), where the input contains a paper title and scientific entities

mentioned in the abstract. We use the AGENDA data processed by Koncel-

Kedziorski et al. (2019), where entities and their relations in the abstracts are

extracted by SciIE (Luan et al., 2018). All entities appearing in the abstract are

included in our keyphrase bank. The state-of-the-art system (Koncel-Kedziorski

3We download the dumps of 2019/04/01 for both dataset.
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et al., 2019) exploits the scientific entities, their relations, and the relation types.

In our setup, we ignore the relation graph, and focus on generating the abstract

with only entities and title as the input. Due to the dataset’s relatively uniform

language style and smaller size, we do not experiment with our style specifica-

tion component.

7.4 Experiments

7.4.1 Implementation Details

For argument generation, we truncate the input OP and retrieved passages to

500 and 400 words. Passages are optionally appended to OP as our encoder in-

put. The keyphrase bank size is limited to 70 for argument, and 30 for Wikipedia

and AGENDA data (based on the average numbers in Table 7.1), with keyphrases

truncated to 10 words. We use a vocabulary size of 50K for all tasks.

Training Details. Our models use a two-layer LSTM for both decoders. They

all have 512-dimensional hidden states per layer and dropout probabilities (Gal

and Ghahramani, 2016) of 0.2 between layers. Wikipedia titles are encoded with

the summation of word embeddings due to their short length. The learning

process is driven by AdaGrad (Duchi et al., 2011) with 0.15 as the learning rate

and 0.1 as the initial accumulator. We clip the gradient norm to a maximum of

2.0. The mini-batch size is set to 64. And the optimal weights are chosen based

on the validation loss.

For argument generation, we also pre-train the encoder and the lower layer
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of realization decoder using language model losses. We collect all the OP

posts from the training set, and an extended set of reply paragraphs, which

includes additional counter-arguments that have non-negative karma. For

Wikipedia, we consider the large collection of 1.9 million unpaired normal En-

glish Wikipedia paragraphs to pre-train the model for both normal and simple

Wikipedia generation.

Beam Search Decoding. For inference, we utilize beam search with a beam

size of 5. We disallow the repetition of trigrams, and replace the UNK with the

keyphrase of the highest attention score.

7.4.2 Baselines and Comparisons

For all three tasks, we consider a SEQ2SEQ with attention baseline (Bahdanau

et al., 2015), which encodes the input text and keyphrase bank as a sequence of

tokens, and generates the output.

For argument generation, we implement a RETRIEVAL baseline, which re-

turns the highest reranked passage retrieved with OP as the query. We also

compare with our prior model (Hua and Wang, 2018) (Chapter 5), which is a

multi-task learning framework to generate both keyphrases and arguments.

For Wikipedia generation, a RETRIEVAL baseline obtains the most similar

paragraph from the training set with input title and keyphrases as the query,

measured with bigram cosine similarity. We further train a logistic regression

model (LOGREGSEL), which takes the summation of word embeddings in a

phrase and predicts its inclusion in the output for a normal or simple Wiki para-
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graph.

For abstract generation, we compare with the state-of-the-art system

GRAPHWRITER (Koncel-Kedziorski et al., 2019), which is a transformer model

enabled with knowledge graph encoding mechanism to handle both the entities

and their structural relations from the input.

We also report results by our model variants to demonstrate the usefulness of

content planning and style control: (1) with gold-standard4 keyphrase selection

for each sentence (Oracle Plan.), and (2) without style specification.

7.5 Results and Analysis

7.5.1 Automatic Evaluation

We report precesion-oriented BLEU (Papineni et al., 2002), recall-oriented

ROUGE-L (Lin, 2004) that measures the longest common subsequence, and ME-

TEOR (Denkowski and Lavie, 2014), which considers both precision and recall.

Argument Generation. For each input OP, there can be multiple possible

counter-arguments. We thus consider the best matched (i.e., highest scored)

reference when reporting results in Table 7.4. Our models yield significantly

higher BLEU and ROUGE scores than all comparisons while producing longer

arguments than generation-based approaches. Furthermore, among our model

variants, oracle content planning further improves the performance, indicating

4“Gold-standard” indicates the keyphrases that have content word overlap with the refer-
ence sentence.
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BLEU-2 ROUGE-L METEOR Length

RETRIEVAL 7.81 15.68 10.59 150.0
SEQ2SEQ 3.64 19.00 9.85 51.7
H&W (2018) 5.73 14.44 3.82 36.5

OURS (Oracle Plan.) 16.30∗ 20.25∗ 11.61 65.5
OURS 13.19∗ 20.15∗ 10.42 65.2

w/o Style 12.61∗ 20.28∗ 10.15 64.5
w/o Passage 11.84∗ 19.90∗ 9.03 62.6

Table 7.4: Results on argument generation with BLEU (up to bigrams), ROUGE-
L, and METEOR (MTR). Best systems without oracle planning are in bold per
metric. Our models that are significantly better than all comparisons are marked
with ∗ (p < 0.001, approximate randomization test (Noreen, 1989)).

the importance of content selection and ordering. Taking out style specification

decreases scores, indicating the influence of style control on generation.5

Wikipedia Generation. Results on Wikipedia (Table 7.5) show similar trends,

where our models almost always outperform all comparisons across metrics.

The significant performance drop on ablated models without style prediction

proves the effectiveness of style usage. Our model, if guided with oracle

keyphrase selection per sentence, again achieves the best performance.

We further show the effect of content selection on generation on Wikipedia and

abstract data in Figure 7.3, where we group the test samples into 10 bins based

on F1 scores on keyphrase selection.6 We observe a strong correlation between

keyphrase selection and generation performance, e.g., for BLEU, Pearson corre-

lations of 0.95 (p < 10−4) and 0.85 (p < 10−2) are established for Wikipedia and

5We do not compare with our recent model in Hua et al. (2019a) due to the training data
difference caused by our new sentence style scheme. However, the newly proposed model
generates arguments with lengths closer to human arguments, benefiting from the improved
content planning module.

6We calculate F1 by aggregating the selections across all sentences. For argument generation,
keyphrases are often paraphrased, making it difficult to calculate F1 reliably, therefore omitted
here.
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BLEU ROUGE METEOR Length BLEU ROUGE METEOR Length

Normal Wikipedia Simple Wikipedia

RETRIEVAL 20.10 28.60 12.23 44.5 21.99 33.44 12.97 34.7
SEQ2SEQ 22.62 27.49 14.74 52.9 21.98 29.36 16.94 52.8
LOGREGSEL 29.28 28.65 27.76 34.3 5.59 23.21 13.27 13.0
OURS (Oracle Plan.) 37.70∗ 45.41∗ 31.65∗ 79.8 34.22∗ 45.48∗ 32.84∗ 70.5
OURS 33.76∗ 40.08∗ 25.70 65.4 31.22∗ 40.76∗ 26.76∗ 58.7

w/o Style 31.06∗ 37.72∗ 24.56 71.0 27.94∗ 38.20∗ 25.87∗ 64.5

Table 7.5: Results on Wikipedia generation. Best results without oracle planning
are in bold. ∗: Our models that are significantly better than all comparisons
(p < 0.001, approximate randomization test).
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Figure 7.3: Effect of keyphrase selection (F1 score) on generation performance,
measured by BLEU and ROUGE. Positive correlations are observed.

abstract. For ROUGE, the values are 0.99 (p < 10−8) and 0.72 (p < 10−1).

Abstract Generation. Lastly, we compare with the state-of-the-art GRAPH-

WRITER model on AGENDA dataset in Table 7.6. Although our model does not

make use of the relational graph encoding, we achieve competitive ROUGE-L

and METEOR scores given the oracle plans. Our model also outperforms the

seq2seq baseline, which has the same input, indicating the applicability of our

method across different domains.
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BLEU-2 ROUGE-L METEOR Length

GRAPHWRITER 29.95 28.56 19.90 130.1
SEQ2SEQ 18.13 21.03 13.95 134.8

OURS (Oracle Plan.) 25.03 26.18 19.21 125.8
OURS 20.32 23.30 15.95 128.3

Table 7.6: Results on paper abstract generation. Notice that GRAPHWRITER
models rich information about relations and relation types among entities,
which is not utilized by our model.

Argument Wikipedia

Gram. Corr. Cont. Gram. Corr. Cont.

HUMAN 4.81 3.90 3.48 4.84 4.73 4.49
OURS 3.99∗ 2.78∗ 2.61∗ 3.38 3.24∗ 3.43

w/o Style 3.03 2.26 2.03 2.99 2.89 3.50
Krippendorff’s α 0.75 0.69 0.33 0.70 0.56 0.55

Table 7.7: Human evaluation on argument generation (Upper) and Wikipedia
generation (Bottom). Grammaticality (Gram), correctness (Corr), and content
richness (Cont) are rated on Likert scale (1 − 5). We mark our model with ∗ to
indicate statistically significantly better ratings over the variant without style
specification (p < 0.001, approximate randomization test).

7.5.2 Human Evaluation

We further ask three proficient English speakers to assess the quality of gener-

ated arguments and Wikipedia paragraphs. Human subjects are asked to rate

on a scale of 1 (worst) to 5 (best) on grammaticality, correctness of the text (for

arguments, the stance is also considered), and content richness (i.e., coverage

of relevant points). Detailed guidelines for different ratings are provided to the

raters (Table 7.9 and Table 7.10). For both tasks, we randomly choose 30 samples

from the test set; outputs from two variants of our models and a human written

text are presented in random order.

According to Krippendorff’s α, the raters achieve substantial agreement on
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Topic: Aborting a fetus has some non-zero negative moral implications
Human: It’s not the birthing process that changes things. It’s the existence of the baby.
Before birth, the baby only exists inside another human being. After birth, it exists on its
own in the world like every other person in the world.
Seq2seq: i ’m not going to try to change your view here , but i do n’t want to change your
position . i do n’t think it ’s fair to say that a fetus is not a person . it ’s not a matter of
consciousness .
Our model: tl ; dr : i agree with you , but i think it ’s important to note that fetuses are not
fully developed . i do n’t know if this is the case , but it does n’t seem to be a compelling
argument to me at all , so i ’m not going to try to change your view by saying that it should
be illegal to kill

Topic: Moon Jae-in
Simple Wikipedia: Moon Jae-in is a South Korean politician. He is the 12th and current
President of South Korea since 10 May 2017 after winning the majority vote in the 2017
presidential election.
Seq2seq: moon election park is a election politician who served as prime minister of korea
from 2007 to 2013 . he was elected as a member of the house of democratic party in the
moon ’s the the moon the first serving president of jae-in , in office since 2010 .
Our model: moon jae-in is a south korean politician and current president of south korea
from 2012 to 2017 and again from 2014 to 2017.
Normal Wikipedia: Moon Jae-in is a South Korean politician serving as the 19th and cur-
rent President of South Korea since 2017. He was elected after the impeachment of Park
Geun-hye as the candidate of the Democratic Party of Korea.
Seq2seq: moon winning current is a current politician who served as prime minister of
korea from 2007 to 2013 . he was elected as a member of the house of democratic party in
the moon ’s the the current the first president of pakistan , in office . prior to that , he also
served on the democratic republic of germany .
Our model: moon jae-in is a south korean politician serving as the 19th and current presi-
dent of south korea , since 2019 to 2019 and 2019 to 2017 respectively he has been its current
president ever since .

Figure 7.4: Sample outputs for argument generation and Wikipedia generation.

grammaticality and correctness, while the agreement on content richness is only

moderate due to its subjectivity. As shown in Table 7.7, on both tasks, our mod-

els with style specification produce more fluent and correct generations, com-

pared to the ones without such information. However, there is still a gap be-

tween system generations and human edited text.

We further show sample outputs in Figure 7.4. The first example is on the
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Human reference Our model
CLAIM It doesn’t mean that; every-

one should be able to
I don’t believe that it is neces-
sary; don’t need to be able to

PREMISE have the freedom to; is leagal
in the US; imagine for a mo-
ment if; Let’s say (you/your
partner/a friend)

have the right to (bear
arms/cast a ballot vote); For
example, (if you look at/let’s
look at/I don’t think)

FUNCTIONAL Why is that?; that’s ok; Would
it change your mind?

I’m not sure (why/if) this is;
TLDR: I don’t care about this

Table 7.8: Top frequent patterns captured in style CLAIM, PREMISE, and FUNC-
TIONAL from arguments by human and our model.

topic of abortion, our model captures the relevant concepts such as “fetuses are

not fully developed” and “illegal to kill”. It also contains fewer repetitions than

the seq2seq baseline. For Wikipedia, our model is not only better at controlling

the global simplicity style, but also more grammatical and coherent than the

seq2seq output.

7.5.3 Further Analysis and Discussions

We further investigate the usage of different styles, and show the top frequent

patterns for each argument style from human arguments and our system gener-

ation (Table 7.8). We first calculate the most frequent 4-grams per style, then ex-

tend it with context. We manually cluster and show the representative ones. For

both columns, the popular patterns reflect the corresponding discourse func-

tions: CLAIM is more evaluative, PREMISE lists out details, and FUNCTIONAL

exhibits argumentative stylistic languages. Interestingly, our model also learns

to paraphrase popular patterns, e.g., “have the freedom to” vs. “have the right to”.

For Wikipedia, the sentence style is defined by length. To validate its effect
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on content selection, we calculate the average number of keyphrases per style

type. The results on human written paragraphs are 2.0, 3.8, 5.8, and 9.0 from the

simplest to the most complex. A similar trend is observed in our model outputs,

which indicates the challenge of content selection in longer sentences.

For future work, improvements are needed in both model design and eval-

uation. As shown in Figure 7.4, system arguments appear to overfit on stylistic

languages and rarely create novel concepts like humans do. Future work can

lead to improved model guidance and training methods, such as reinforcement

learning-based explorations, and better evaluation to capture diversity.

7.6 Conclusion

We present an end-to-end trained neural text generation model that considers

sentence-level content planning and style specification to gain better control of

text generation quality. Our content planner first identifies salient keyphrases

and a proper language style for each sentence, then the realization decoder pro-

duces fluent text. We consider three tasks of different domains on persuasive

argument generation, paragraph generation for normal and simple versions of

Wikipedia, and abstract generation for scientific papers. Experimental results

demonstrate the effectiveness of our model, where it obtains significantly bet-

ter BLEU, ROUGE, and METEOR scores than non-trivial comparisons. Human

subjects also rate our model generations as more grammatical and correct when

language style is considered.

114



In the following survey, you will read 33 short argumentative text prompts
and evaluate 3 counter-arguments for each of them. Please rate each
counter-argument on a scale of 1-5 (the higher the better), based on the fol-
lowing three aspects:

• Grammaticality: whether the counter-argument is fluent and has no
grammar errors

– 1. the way the way etc. ’m not ’s important

– 3. is a good example. i don’t think should be the case. i’re not going to
talk whether or not it’s bad.

– 5. i agree that the problem lies in the fact that too many representatives
do n’t understand the issues or have money influencing their decisions.

• Correctness: whether the counter-argument is relevant to the topic
and of correct stance

– 1. i don’t think it ’s fair to say that people should n’t be able to care for
their children

– 3. i don’t agree with you and i think legislative bodies do need to explain
why they vote that way

– 5. there are hundreds of votes a year . how do you decide which ones
are worth explaining ? so many votes are bipartisan if not nearly unan-
imous . do those all need explanations ? they only have two years right
now and i do n’t want them spending less time legislating .

• Content richness: whether the counter-argument covers many talking
points

– 1. i do n’t agree with your point about legislation but i ’m not going to
change your view.

– 3. i agree that this is a problem for congress term because currently it is
too short.

– 5. congressional terms are too short and us house reps have to spend half
of their time campaigning and securing campaign funds. they really
have like a year worth of time to do policy and another year to meet with
donors and do favors.

Table 7.9: Evaluation guidelines on argument data and representative examples
on rating scales.
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In the following survey, you will read 32 samples. Each of them contains a
topic, and 3 text snippets explaining the topic. For each of the explanation,
please rate it on a scale of 1-5 (the higher the better) based on the following
three aspects:

• Grammaticality: whether the explanation is fluent and has no gram-
mar errors

– 1. android android operating system mobile kindle is a modified operat-
ing

– 3. android is an operating system for mobile mobile mobile and other
manufactures like htc and the

– 5. android is an operating system for mobile devices . it is also used by
other manufactures like htc and samsung .

• Correctness: whether the explanation contains obvious semantic mis-
takes or contradictions. Please note that this is NOT intended for
fact checking, so you should not find other resources to determine if
the concrete information (such as years, locations) are wrong, instead
please apply commonsense level knowledge to judge the correctness

– 1. android is used for tablets such as amazon.com as well as other phone
such as linux and amazon

– 3. android is an operating system for android and devices .

– 5. android is an operating system for mobile devices .

• Content richness: whether the explanation covers the amount of in-
formation that is necessary to explain the topic

– 1. modified mobile mobile android

– 3. android is an operating system used for mobile devices .

– 5. android is an operating system for mobile devices , it is mostly used
for, like google ’s own google pixel, as well as by other phone manufac-
turers like htc and samsung .

Table 7.10: Evaluation guidelines on Wikipedia data and representative exam-
ples on rating scales.
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CHAPTER 8

PLANNING AND ITERATIVE REFINEMENT IN PRE-TRAINED

TRANSFORMERS FOR LONG TEXT GENERATION

In this chapter, we present a text generation framework using pre-trained Trans-

former. Our system is capable to generate longer output, and achieves better

controllability over keyphrases.

This work is published at EMNLP 2020 (Hua and Wang, 2020). Relevant

resources can be found at: http://xinyuhua.github.io/Resources/

emnlp20/.

8.1 Introduction

Large pre-trained language models are the cornerstone of many state-of-the-art

models in various natural language understanding and generation tasks (Devlin

et al., 2019; Liu et al., 2019; Lewis et al., 2020a), yet they are far from perfect. In

generation tasks, although models like GPT-2 (Radford et al., 2019) are able to

produce plausible text, their spontaneous nature limits their utility in actual

applications, e.g., users cannot specify what contents to include, and in what

order.

To make large models more useful in practice, and to improve their gener-

ation quality, we believe it is critical to inform them of when to say what, which

is addressed as content planning in traditional generation systems (Duboue and

McKeown, 2001; Stent et al., 2004). Specially designed control codes and auxil-

iary planning modules have been integrated into neural models (Keskar et al.,
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Content Plan (output by planning model):
(1) a communist3 ▷ begin with8 ▷ coherent ideology15 ▷

[SEN] 21
(2) [SEN] 4

(3) no evidence2 ▷ any coherent8 ▷ held beliefs12 ▷ any
topic15 ▷ [SEN] 18

Prompt: CMV. Donald Trump is a communist.

Template:
(1) __0 __1 __2 a communist __5 __6 __7 begin with __10

__11 __12 __13 __14 coherent ideology__17 __18 __19 __20
(2) __0 __1 __2 __3
(3) __0 __1 no evidence __4 __5 __6 __7 any coherent __10

__11 held beliefs __14 any topic __17

Draft (initial generation):
(1) Well call him a communist, you must begin with that 

Donald Trump has some kind of coherent ideology to 
begin with.

(2) Which is unlikely.
(3) There is no evidence to suggest Donald Trump has any 

coherent or commonly held beliefs on any topic.
Refined (final generation):
(1) To call him a communist, you must begin with that he

has some kind of coherent ideology in the first place.
(2) He does not.
(3) There is no evidence whatsoever that Trump has any 

coherent, commonly held beliefs on any topic.
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Figure 8.1: An argument generation example using Reddit ChangeMyView.
[Top] Partial output by our planner with keyphrase assignment and positions
(in subscripts) for each sentence, segmented by special token [SEN], from
which a template is constructed. [Bottom] A draft is first produced and then
refined, with updated words highlighted in italics.

2019; Moryossef et al., 2019; Hua and Wang, 2019), yet those solutions require

model architecture modification or retraining, making text generation with

large models a very costly endeavor.
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To this end, this work aims to bring new insights into how to effectively incor-

porate content plans into large models to generate more relevant and coherent text. We

first study a planning model trained from BERT (Devlin et al., 2019) to produce the

initial content plan, which assigns keyphrases to different sentences and pre-

dicts their positions. Next, we propose a content-controlled text generation frame-

work, built upon the pre-trained sequence-to-sequence (seq2seq) Transformer

model BART (Lewis et al., 2020a). As shown in Figure 8.1, our generation model

takes in a content plan consisting of keyphrase assignments and their correspond-

ing positions for each sentence. The plan is encoded as a template, with [MASK]

tokens added at positions where no content is specified. Our model then out-

puts a fluent and coherent multi-sentence text (draft) to reflect the plan. This is

done by fine-tuning BART without modifying its architecture.

Furthermore, we present an iterative refinement algorithm to improve the gen-

eration in multiple passes, within the seq2seq framework. At each iteration,

tokens with low generation confidence are replaced with [MASK] to compose a

new template, from which a new output is produced. Unlike prior refinement

algorithms that only permit editing in place, our solution offers more flexibility.

Figure 8.1 exemplifies the refinement outcome.

We call our system PAIR (Planning And Iterative Refinement).1 It is ex-

perimented on three distinct domains: counter-argument generation with Red-

dit ChangeMyView data, opinion article writing with the New York Times

(NYT) corpus , and news report production on NYT. Automatic evaluation with

BLEU, ROUGE, and METEOR shows that, by informing the generation model

with sentence-level content plans, our model significantly outperforms a BART

model fine-tuned with the same set of keyphrases as input (§ 8.4.1). Human

1Code and data are available at: http://xinyuhua.github.io/Resources/emnlp20/
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judges also rate our system outputs as more relevant and coherent (§ 8.4.2).

Additionally, our iterative refinement strategy consistently improves the gener-

ation quality according to both automatic scores and human evaluation. Finally,

our model achieves better content control by reflecting the specified keyphrases

in the content plan, whose outputs are preferred by human to another version

with weaker control.

To summarize, our major contributions include:

•We propose a novel content planner built upon BERT to facilitate long-form

text generation.

•We present a novel template mask-and-fill method to incorporate content

planning into generation models based on BART.

•We devise an iterative refinement algorithm that works within the seq2seq

framework to flexibly improve the generation quality.

8.2 Content-controlled Text Generation with PAIR

Task Description. Our input consists of (1) a sentence-level prompt x, such as

a news headline, or a proposition in an argument, and (2) a set of keyphrases m

that are relevant to the prompt. The system aims to generate y that contains mul-

tiple sentences, as in a news report or an argument, by reflecting the keyphrases

in a coherent way.

In this section, we first introduce content planning built upon BERT, that as-

signs keyphrases into sentences and predicts their positions (§ 8.2.1). Then we
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Figure 8.2: Content planning with BERT. We use bidirectional self-attentions for
input encoding, and apply causal self-attentions for keyphrase assignment and
position prediction. The input (x, m) and output keyphrase assignments (m′)
are distinguished by different segment embeddings.

propose a seq2seq generation framework with BART fine-tuning that includes

a given content plan derived from keyphrases m (§ 8.2.2). Finally, § 8.2.3 dis-

cusses improving generation quality by iteratively masking the less confident

predictions and regenerating within our framework.

8.2.1 Content Planning with BERT

Our content planner is trained from BERT to assign keyphrases to different sen-

tences and predict their corresponding positions. As shown in Figure 8.2, the

concatenation of prompt x and unordered keyphrases m is encoded with bidi-

rectional self-attentions. Keyphrase assignments are produced autoregressively

as a sequence of tokens m′ = {w j}, with their positions in the sentence s = {s j}

predicted as a sequence tagging task.

We choose BERT because it has been shown to be effective at both language
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modeling and sequence tagging. Moreover, we leverage its segment embed-

ding to distinguish the input and output sequences. Specifically, we reuse its

pre-trained language model output layer for keyphrase assignment. We further

design a separate keyphrase positioning layer to predict token position s j as the

relative distance from each sentence’s beginning:

p(s j|w≤ j) = softmax(HLWs) (8.1)

where HL is the last layer hidden states of the Transformer, and Ws are the newly

added keyphrase positioning parameters learned during BERT fine-tuning. The

range of allowed positions is from 0 to 127.

Noticeably, as our prediction is done autoregressively, attentions should

only consider the generated tokens, but not the future tokens. However, BERT

relies on bidirectional self-attentions to attend to both left and right. To resolve

this discrepancy, we apply causal attention masks (Dong et al., 2019) over m′ to

disallow attending to the future (gray arrows in Figure 8.2).

Training the Planner. We extract keyphrases and acquire their ground-truth po-

sitions from human-written references, and fine-tune BERT with cross-entropy

losses for both assignment and positioning, with a scaling factor 0.1 over the

positioning loss.

Inference. A [BOK] token signals the beginning of keyphrase assignment gen-

eration. We employ a greedy decoding algorithm, and limit the output vocabu-

lary to tokens in m and ensure each keyphrase is generated at most once. To al-

low sentence-level content planning, a special [SEN] token is generated to rep-

resent the sentence boundary, with its predicted position indicating the length.

The planning process terminates when [EOS] is produced.
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Figure 8.3: Our content-controlled text generation framework, PAIR, which is
built on BART. Decoding is executed iteratively. At each iteration, the encoder
consumes the input prompt x, the keyphrase assignments m′, as well as a par-
tially masked template (t(r−1) for the r-th iteration, [M] for masks). The autore-
gressive decoder produces a complete sequence y(r), a subset of which is further
masked, to serve as the next iteration’s template t(r).

8.2.2 Adding Content Plan with a Template Mask-and-Fill Pro-

cedure

Given a content planning model, we invoke it to output keyphrase assignments

to different sentences (m′), their corresponding positions s, along with each

sentence’s length (based on the prediction of [SEN]). We first employ a post-

processing step to convert between different tokenizers, and correct erroneous

position predictions that violate the assignment ordering or break the consecu-

tivity of the phrase. We then convert the plan into a template t(0) as follows: For

each sentence, the assigned keyphrases are placed at their predicted positions,

and empty slots are filled with [MASK] symbols. Figure 8.3 illustrates the tem-

plate construction process and our seq2seq generation model. In Table 8.1, we

show statistics on the constructed templates. Specifically, we show the statistics

on the automatically created templates based on the planner’s output. As we

can see, our system predicted templates approach human reference in terms of

length, per sentence keyphrase count, and the average keyphrase spacing. Sen-

tence segmentation occurs more often in our templates than the reference text,
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ARGGEN OPINION NEWS
sys ref sys ref sys ref

# tokens 133.3 130.2 228.5 246.3 424.5 435.5
# sentences 8.6 5.6 11.1 8.2 19.2 13.5
# KP per sent. 2.96 3.77 2.22 2.49 3.40 3.24
KP distance 2.61 2.95 5.70 6.02 3.76 5.08

Table 8.1: Statistics on generated templates by our content planner. Tokens are
measured in units of WordPiece (Sennrich et al., 2016). KP distance denotes
the average number of tokens between two keyphrases that are in the same
sentence. Both system output (sys) and human reference (ref ) are reported.

likely due to the frequent generation of [SEN] tokens.

The input prompt x, keyphrase assignments m′, and template t(0) are con-

catenated as the input to the encoder. The decoder then generates an output y(1)

according to the model’s estimation of p(y(1)|x,m′, t(0)). y(1) is treated as a draft,

to be further refined as described in the next section.

Our method is substantially different from prior work that uses constrained

decoding to enforce words to appear at specific positions (Hokamp and Liu,

2017; Post and Vilar, 2018; Hu et al., 2019), which is highly biased by the sur-

rounding few words and suffers from disfluency. Since BART is trained to de-

noise the masked input with contextual understanding, it naturally benefits our

method.

Decoding. We employ the nucleus sampling strategy (Holtzman et al., 2019),

which is shown to yield superior output quality in long text generation. In

addition to the standard top-k sampling from tokens with the highest proba-

bilities, nucleus sampling further limits possible choices based on a cumula-

tive probability threshold (set to 0.9 in all experiments below). We also require

the keyphrases to be generated at or nearby their predicted positions. Concretely, for
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positions that match any keyphrase token, we force the decoder to copy the

keyphrase unless it has already been generated in the previous five tokens. We

sample three times to choose the one with the lowest perplexity, as estimated by

GPT-2base (Radford et al., 2019).

8.2.3 Iterative Refinement

Outputs generated in a single pass may suffer from incorrectness and incoher-

ence (see Figure 8.1), therefore we propose an iterative refinement procedure to

improve the quality. In each pass, tokens with low generation confidence are

masked (Algorithm 1). This is inspired by iterative decoding designed for in-

ference acceleration in non-autoregressive generation (Lee et al., 2018; Lawrence

et al., 2019), though their refinement mostly focuses on word substitution and

lacks the flexibility for other operations. Moreover, our goal is to improve flu-

ency while ensuring the generation of given keyphrases.

At each iteration, the n least confident tokens are replaced with [MASK].2

Similar as the mask-predict algorithm (Ghazvininejad et al., 2019), we gradually

reduce the number of masks. In our experiments, each sample is refined for 5

iterations, with n decaying linearly from 80% of |y(r)| to 0.

Training the Generator. Our training scheme is similar to masked language

model pre-training. Given the training corpus D = {(xi,m′i , yi)}, we consider

two approaches that add noise to the target yi by randomly masking a subset

of (1) any tokens, or (2) tokens that are not within the span of any keyphrase.

The latter is better aligned with our decoding objective, since keyphrases are

2Note that we force the keyphrases to not be replaced during refinement.
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Algorithm 1: Iteratively refinement via template mask-and-fill. The
sample with the lowest perplexity (thus with better fluency) is selected
for each iteration.

Data: prompt x, keyphrase assignments m′, keyphrase positions s, R
refinement iterations, ρ nucleus sampling runs

Result: final output y(R)

Construct template t(0) based on m′ and s ;
for r = 1 to R do

Run encoder over x ⊕ m′ ⊕ t(r−1) ;
Y ← ∅ ;
for i = 1 to ρ do

Run nucleus sampling to generate yi with keyphrase position
enforcement;

Append yi to Y;

y(r) ← argminyi∈Y
GPT2-PPL(yi);

n← |y(r)| × (1 − r/R);
Mask n tokens with the lowest probabilities to create new template

t(r);

never masked. We concatenate xi, m′i , and the corrupted target ỹi as input, and

fine-tine BART to reconstruct the original yi with a cross-entropy loss.

8.3 Experiment Setups

8.3.1 Tasks and Datasets

We evaluate our generation and planning models on datasets from three dis-

tinct domains for multi-paragraph-level text generation: (1) argument genera-

tion (ARGGEN) (Hua et al., 2019a), to produce a counter-argument to refute a

given proposition; (2) writing opinionated articles (OPINION), e.g., editorials

and op-eds, to show idea exchange on a given subject; and (3) composing news

reports (NEWS) to describe events. The three domains are selected with diverse

126



# Sample |Prompt| |Target| # KP KP Cov.

ARGGEN 56,504 19.4 116.6 20.6 30.5%
OPINION 104,610 6.1 205.6 19.0 26.0%
NEWS 239,959 7.0 282.7 30.3 32.6%

Table 8.2: Statistics of the three datasets. We report average lengths of the
prompt and the target generation, number of unique keyphrases (# KP) used
in the input, and the percentage of content words in target covered by the
keyphrases (KP Cov.).

levels of subjectivity and various communicative goals (persuading vs. inform-

ing), with statistics shown in Table 8.2.

Task 1: Argument Generation. We first evaluate our models on per-

suasive argument generation, based on a dataset collected from Reddit

r/ChangeMyView (CMV) in our prior work (Hua et al., 2019a) (Chapter 6).

This dataset contains pairs of original post (OP) statement on a controversial is-

sue about politics and filtered high-quality counter-arguments, covering 14, 833

threads from 2013 to 2018. We use the OP title, which contains a proposition

(e.g. the minimum wage should be abolished), to form the input prompt x. In

our prior work, only the first paragraphs of high-quality counter-arguments are

used for generation. Here we consider generating the full post, which is signifi-

cantly longer. Keyphrases are identified as noun phrases and verb phrases that

contain at least one topic signature word (Lin and Hovy, 2000a), which is de-

termined by a log-likelihood ratio test that indicates word salience. Following

our prior work, we expand the set of topic signatures with their synonyms, hy-

ponyms, hypernyms, and antonyms according to WordNet (Miller, 1994). The

keyphrases longer than 10 tokens are further discarded.

Task 2: Opinion Article Generation. We collect opinion articles from the

New York Times (NYT) corpus (Sandhaus, 2008). An article is selected if its
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taxonomies label has a prefix of Top/Opinion. We eliminate articles with an

empty headline or less than three sentences. Keyphrases are extracted in a sim-

ilar manner as done in argument generation. Samples without any keyphrase

are removed. The article headline is treated as the input, and our target is to

construct the full article. Table 8.2 shows that opinion samples have shorter in-

put than arguments, and the keyphrase set also covers fewer content words in

the target outputs, requiring the model to generalize well to capture the unseen

tokens.

Task 3: News Report Generation. Similarly, we collect and process news re-

ports from NYT, filtering by taxonomy labels starting with “Top/News”, remov-

ing articles that have no content word overlap with the headline, and ones with

material-types labeled as one of “statistics”, “list”, “correction”, “biography”,

or “review.” News reports describe events and facts, and in this domain we aim

to study and emphasize the importance of faithfully reflecting content plans

during generation and refinement.

Data Split and Preprocessing. For argument generation, we split the data into

75%, 12.5%, and 12.5% for training, validation, and test sets. To avoid test set

contamination, the split is conducted on thread level. For opinion and news

generation, we reserve the most recent 5k articles for testing, another 5k for

validation, and the rest (23k for news and 10k for opinion) are used for training.

We apply the BPE tokenization (Sennrich et al., 2016) for the generation model as

BART does, and use WordPiece (Wu et al., 2016) for BERT-based planner. To fit

the data into our GPUs, we truncate the target size to 140 tokens for argument,

sizes of 243 and 335 are applied for opinion and news, for both training and

inference.
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8.3.2 Implementation Details

Our code is written in PyTorch (Paszke et al., 2017) using the Huggingface

Transformer library (Wolf et al., 2020). For fine-tuning, we adopt the standard

linear warmup and inverse square root decaying scheme for learning rates, with

a maximum value of 5 × 10−5. Adam (Kingma and Ba, 2015) is used as the opti-

mizer, with a batch size of 10 for refinement and 20 for content planning, and a

maximum gradient clipped at 1.0. All hyperparameters are tuned on validation

set, with early stopping used to avoid overfitting.

Model Sizes. Our generation model has the same architecture as BART (Lewis

et al., 2020a) with 406M parameters. The content planner is built on top of

BERTbase, which has 110M parameters.

Running Time. For both training and decoding, we utilize the Titan RTX GPU

card with 24 GB memory. Training the generation model takes 2.5 hours for

argument, 5 hours for opinion, and 24 hours for news. The content planning

model converges in 2.5-4 hours for three domains.

Decoding Settings. At inference time, we set k = 50, temperature=1.0, and

p = 0.9 for nucleus sampling. The relatively large k value is determined based

on a pilot study, where we find that the refinement lacks diversity if k is set to

small values. Moreover, since the Transformer states need to be cached during

autoregressive decoding and we perform three complete nucleus sampling runs

in each refinement iteration, the GPU memory consumption is substantially in-

creased. We therefore limit the maximum generation steps to 140 for argument,

243 and 335 for opinion and news.
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8.3.3 Baselines and Comparisons

We consider two baselines, both are fine-tuned from BART as in our models:

(1) SEQ2SEQ directly generates the target from the prompt; (2) KPSEQ2SEQ en-

codes the concatenation of the prompt and the unordered keyphrase set. To study

if using only sentence-level keyphrase assignments helps, we include a model

variant (PAIRlight) by removing keyphrase position information (s) from the in-

put of our generator and using an initial template with all [MASK] symbols.

Our model with full plans is denoted as PAIRfull. We first report generation re-

sults using ground-truth content plans constructed from human-written text, and

also show the end-to-end results with predicted content plans by our planner.

8.4 Results

8.4.1 Automatic Evaluation

We report scores with BLEU (Papineni et al., 2002), which is based on n-gram

precision (up to 4-grams); ROUGE-L (Lin, 2004), measuring recall of the longest

common subsequences; and METEOR (Denkowski and Lavie, 2014), which ac-

counts for paraphrase. For our models PAIRfull and PAIRlight, we evaluate both

the first draft and the final output after refinement. Table 8.3 lists the results

when ground-truth content plans are applied.

First, our content-controlled generation model with planning consistently outper-

forms comparisons and other model variants on all datasets, with or without iterative

refinement. Among our model variants, PAIRfull that has access to full con-
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BLEU-4 ROUGE-L METEOR Length
ARGGEN

SEQ2SEQ 0.76 13.80 9.36 97
KPSEQ2SEQ 6.78 19.43 15.98 97
PAIRlight 26.38 47.97 31.64 119
PAIRlight w/o refine 25.17 46.84 31.31 120
PAIRfull 36.09 56.86 33.30 102
PAIRfull w/o refine 34.09 55.42 32.74 101

OPINION
SEQ2SEQ 1.42 15.97 10.97 156
KPSEQ2SEQ 11.38 22.75 18.38 164
PAIRlight 16.27 33.30 24.32 210
PAIRlight w/o refine 15.45 32.35 24.11 214
PAIRfull 23.12 40.53 24.73 167
PAIRfull w/o refine 22.17 39.71 24.65 169

NEWS
SEQ2SEQ 1.11 15.60 10.10 242
KPSEQ2SEQ 11.61 21.05 18.61 286
PAIRlight 28.03 43.39 27.70 272
PAIRlight w/o refine 27.32 43.08 27.35 278
PAIRfull 34.37 51.10 29.50 259
PAIRfull w/o refine 33.48 50.27 29.26 260

Table 8.3: Key results on argument generation, opinion article writing, and news
report generation. BLEU-4 (B-4), ROUGE-L (R-L), METEOR (MTR), and aver-
age output lengths are reported (for references, the lengths are 100, 166, and 250,
respectively). PAIRlight, using keyphrase assignments only, consistently out-
performs baselines; adding keyphrase positions, PAIRfull further boosts scores.
Improvements by our models over baselines are all significant (p < 0.0001, ap-
proximate randomization test). Iterative refinement helps on both setups.

tent plans obtains significantly better scores than PAIRlight that only includes

keyphrase assignments but not their positions. Lengths of PAIRfull’s outputs are

also closer to those of human references. Both imply the benefit of keyphrase

positioning.

Table 8.3 also shows that the iterative refinement strategy can steadily boost per-

formance on both of our setups. By inspecting the performance of refinement

in different iterations (Figure 8.4), we observe that both BLEU and ROUGE-L
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Figure 8.4: Results on iterative refinement with five iterations. Both BLEU and
ROUGE-L scores steadily increase, with perplexity lowers in later iterations.
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Figure 8.5: End-to-end generation results with automatically predicted content
plans. Our models outperform KPSEQ2SEQ in both metrics, except for BLEU-4
on opinion articles where results are comparable.

scores gradually increase while perplexity lowers as the refinement progresses.

This indicates that iterative post-editing improves both content and fluency.

Results with Predicted Content Plans. We further report results by using con-

tent plans predicted by our BERT-based planner. Figure 8.5 compares PAIRfull

and PAIRlight with KPSEQ2SEQ. Our models yield better METEOR scores on

all three domains. That said, the improvement from predicted plans is not as

pronounced as that from ground-truth plans. Upon inspection, we find that our

planner often falls short of accurately positioning the given keyphrases, lead-
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ARGGEN Fluency Coherence Relevance

KPSEQ2SEQ 4.63 3.28 2.79
PAIRlight 4.75 3.97∗ 3.85∗

PAIRfull 4.46 3.76∗ 3.79∗

Table 8.4: Human evaluation for argument generation on fluency, coherence,
and relevance, with 5 as the best. The Krippendorff’s α are 0.28, 0.30, and 0.37,
respectively. Our model outputs are significantly more coherent and relevant
than KPSEQ2SEQ (∗: p < 0.0001), with comparable fluency.

ing to degraded generation performance. This points to a potential direction for

future work where better positioning model should be developed.

8.4.2 Human Evaluation

We hire four proficient English speakers3 to rate three aspects of the generated

arguments on a scale of 1 (worst) to 5 (best): fluency, coherence—if the informa-

tion organization is natural and logical, and relevance—if the topic is related to

the prompt and whether the stance is correct. 50 samples are randomly selected,

with system outputs by KPSEQ2SEQ, PAIRfull and PAIRlight shown to human

judges in random order.

Table 8.4 shows that both of our models are rated with better coherence and

relevance than KPSEQ2SEQ which uses the same but unordered keyphrases as

input. Interestingly, outputs by PAIRlight are regarded as more fluent and coher-

ent, though the difference is not significant. However, discourse analysis in § 8.5

reveals that clauses produced by PAIRlight are more locally related, compared to

PAIRfull, which can be perceived as easier to read. In addition to the sample ar-

gument in Figure 8.1, Table 8.5 shows PAIRfull’s output in the news and opinion

3They are all US-based college students. Each of them is paid $15 hourly for the task.
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Prompt (News): 4 Arrested in Theft of Baby Jesus Figurines

PAIRfull: Four New Jersey teenagers arrested yesterday were accused of steal-
ing more than 25 plastic baby Jesus figurines from a church before they burn
in a bonfire, the police said. The police in Sayreville, N.J., arrested Michael
Payne, 18, and T.J. Jones, 18, of Union City; Nicholas M. Hess, 18, of Matawan;
and Jason L. O’Neill, 18, of Port New York, N.J., and charged them with bur-
glary. Their vandals removed more than 100 figurines of Jesus from a cemetery
outside St. Stanislaus Kostka Church in Sayreville, the police said. Detectives
said the four had taken their flashlights to the cemetery and jotted down the
license plates of several cars in the vicinity [. . . ]

Prompt (Opinion): Drowning in a Sea of College Debt

PAIRfull: Once again, the appalling problem of increasing debt in financing
higher education that has taken place is more intolerable, particularly because
of the arrogance of our colleges and universities. The burden of saddling col-
lege students with debt in the middle of their teenage years, when they were
in debt, is essential for a good education. Our educational system is designed
to allow kids to develop the skills necessary, but it does not create optimal
conditions for mature students who know they will not be able [. . . ]

Table 8.5: Sample outputs in the news and opinion domain. Keyphrases as-
signed to different sentences are in boldface and color-coded.

domains. More samples by different systems are in the supplementary material.

Effect of Refinement and Keyphrase Enforcement. We further ask whether hu-

man judges prefer the refined text and whether enforcing keyphrases to be generated

yields noticeable content improvement. In a second study, we present the same 50

prompts from the previous evaluation on argument generation, and an addi-

tional 50 samples for opinion article writing to the same group of human judge.

For each sample, PAIRfull’s outputs with and without refinement are shown in

random order. Judges indicate their preference based on the overall quality.

The same procedure is conducted to compare with a version where we do not

enforce keyphrases to be copied at their predicted positions during decoding.

Table 8.6 demonstrates that the refined text is preferred in more than half of the

cases, for both domains. Enforcing keyphrase generation based on their posi-
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PAIRfull w/o refine PAIRfull w/o enforce
ARGGEN 52.7% 33.3% 45.3% 40.0%
OPINION 52.7% 30.7% 50.0% 29.3%

Table 8.6: Percentages of samples preferred by human judges before and after
refinement [Left]; with and without enforcing keyphrases to appear at the pre-
dicted positions [Right]. Ties are omitted.

tions is also more favorable than not enforcing such constraint.

What is updated during iterative refinement? Since refinement yields better

text, we compare generations before and after the refinement. First, we find

that masks are regularly put on “functional” words and phrases. For example,

stopwords and punctuation along with their bigrams are often swapped out,

with new words filled in to improve fluency. Moreover, about 85% of the refine-

ment operations result in new content being generated. This includes changing

prepositions and paraphrasing, e.g., replacing “a research fellow” with “a graduate

student.” On both news and opinion domains, numerical and temporal expres-

sions are often incorrectly substituted, suggesting that better fact control needs

to be designed to maintain factuality.

8.5 Further Discussions on Discourse

Prior work’s evaluation mainly focuses on fluency and content relevance, and

largely ignores the discourse structure exposed by the generated text. However,

unnatural discourse and lack of focus are indeed perceived as major problems

of long-form neural generations, as identified by human experts.4 Here, we aim

to investigate whether content-controlled generation with ground-truth content

4https://www.economist.com/open-future/2019/10/01/
how-to-respond-to-climate-change-if-you-are-an-algorithm

135

https://www.economist.com/open-future/2019/10/01/how-to-respond-to-climate-change-if-you-are-an-algorithm
https://www.economist.com/open-future/2019/10/01/how-to-respond-to-climate-change-if-you-are-an-algorithm


0

5

10

15

RS
T 

Tr
ee

 D
ep

th

ArgGen

KPSeq2seq PAIRlight PAIRfull Human

5

10

15
Opinion

5

10

15
News

Figure 8.6: Distributions of RST tree depth. PAIRfull better resembles the pat-
terns in human-written texts.

plans resembles human-written text by studying discourse phenomena.

Are PAIR generations similar to human-written text in discourse structure?

We utilize DPLP (Ji and Eisenstein, 2014), an off-the-shelf Rhetorical Structure

Theory (RST) discourse parser. DPLP converts a given text into a binary tree,

with elementary discourse units (EDUs, usually clauses) as nucleus and satellite

nodes. For instance, a relation NS-elaboration indicates the second node as

a satellite (S) elaborating on the first nucleus (N) node. DPLP achieves F1 scores

of 81.6 for EDU detection and 71.0 for relation prediction on news articles from

the annotated RST Discourse Treebank (Carlson et al., 2001). We run this trained

model on our data for both human references and model generations.

First, we analyze the depth of RST parse trees, which exhibits whether the text

is more locally or globally connected. For all trees, we truncate at a maximum

number of EDUs based on the 90 percentile of EDU count for human references.

Distributions of tree depth are displayed in Figure 8.6. As can be seen, gener-

ations by PAIRfull show similar patterns to human-written arguments and arti-

cles. We also find that trees by PAIRlight tend to have a more “linear” structure,

highlighting the dominance of local relations between adjacent EDUs, com-

pared with PAIRfull which uses knowledge of keyphrases positions. This implies
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Figure 8.7: Discourse markers that are correctly and incorrectly (shaded) gener-
ated by PAIRfull, compared to aligned sentences in human references. Discourse
markers are grouped (from left to right) into senses of CONTINGENCY (higher
marker generation accuracy observed), COMPARISON, and EXPANSION. y-axis:
# of generated sentences with the corresponding marker.

that content positioning helps with structure at a more global level. We further

look into the ratios of NS, NN, SN relations, and observe that most model outputs

have similar trends as human-written texts, except for KPSEQ2SEQ which has

more SN relations, e.g., it produces twice as many SNs than others on arguments.

Can PAIR correctly generate discourse markers? Since discourse markers are

crucial for coherence (Grote and Stede, 1998; Callaway, 2003) and have received

dedicated research efforts in rule-based systems (Reed et al., 2018; Balakrish-

nan et al., 2019), we examine if PAIRfull can properly generate them. For each

sample, we construct sentence pairs based on content word overlaps between

system generation and human reference. We manually select a set of unam-

biguous discourse markers from Appendix A of the Penn Discourse Treebank

manual (Prasad et al., 2008). When a marker is present in the first three words

in a reference sentence, we check if the corresponding system output does the

same.

Figure 8.7 displays the numbers of generated sentences with markers pro-

duced as the same in human references (correct) or not (wrong). The markers

are grouped into three senses: CONTINGENCY, COMPARISON, and EXPANSION.
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The charts indicates that PAIRfull does better at reproducing markers for CON-

TINGENCY, followed by COMPARISON and EXPANSION. Manual inspections

show that certain missed cases are in fact plausible replacements, such as using

at the same time for in addition, or also for further, while in other

cases the markers tend to be omitted. Overall, we believe that content control

alone is still insufficient to capture discourse relations, motivating future work

on discourse planning.

8.6 Conclusion

We present a novel content-controlled generation framework that adds content

planning to large pre-trained Transformers without modifying model architec-

ture. A BERT-based planning model is first designed to assign and position

keyphrases into different sentences. We then investigate an iterative refinement

algorithm that works with the sequence-to-sequence models to improve gen-

eration quality with flexible editing. Both automatic evaluation and human

judgments show that our model with planning and refinement enhances the

relevance and coherence of the generated content.
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CHAPTER 9

DYPLOC: DYNAMIC PLANNING OF CONTENT USING

MIXED LANGUAGE MODELS FOR TEXT GENERATION

In this chapter, we introduce an efficient generation framework that conducts

dynamic planning of content while generating the output based on a novel de-

sign of mixed language models. To enrich the generation with diverse content,

we further propose to use large pre-trained models to predict relevant concepts

and to generate claims.

This work is published at ACL 2021 (Hua et al., 2021). The relevant resources

are at: https://xinyuhua.github.io/Resources/acl21/

9.1 Introduction

Opinion articles serve as an important media to convey the authors’ values, be-

liefs, and stances on important societal issues. Automatically generating long-

form opinion articles has the potential of facilitating various tasks, such as essay

writing assistance and speech drafting, and it is the focus of this work. Though

opinion generation has been investigated for constructing arguments (Hua and

Wang, 2018), writing reviews (Ni and McAuley, 2018), and producing emotional

dialogue responses (Song et al., 2019), those outputs are relatively short. While

impressive progress in generation has been achieved by using large pre-trained

Transformers (Radford et al., 2019; Lewis et al., 2020a), directly adopting them

for long-form opinion text generation poses distinct challenges.

First, large models still fall short of producing coherent text due to the lack of
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United_States, Intelligence      knowledge, 
attack     America was never prepared and had a 
bad intelligence system.

President_of_the_U.S., Bill_Clinton, 9/11_attacks     
 make, happen, mistake, administration 

George_W._Bush, 9/11_attacks, Iraq     
existence

1) 

 -> 
 

2) 

-> 
 

3) 

 -> 

Figure 9.1: Sample argument on Reddit ChangeMyView. Our generator con-
siders an input containing (1) a title and (2) an unordered set of content items.
Each content item consists of elements of an entity set [ENT], a concept set [CON],
and an optional sentence-level claim [CLAIM]. Each output token is generated
by conditioning on all content items, and the best aligned ones (learned by our
model) are highlighted in corresponding colors. We also underline words that
reflect the input concepts and entities.

efficient content control and planning (Ko and Li, 2020; Wu et al., 2020; Tan et al.,

2021). A common solution is to use concatenated phrases or semantic represen-

tations to guide the generation process (Yao et al., 2019b; Harkous et al., 2020;

Ribeiro et al., 2020; Goldfarb-Tarrant et al., 2020), where content planning, in-

cluding both content selection and ordering, is expected to be learned by at-

tention mechanisms. However, attentions have only achieved limited improve-

ments. Recent work also explores training a separate planning module to pro-

duce sorted content, which is then fed into a generator (Fan et al., 2019b; Hua

and Wang, 2020; Goldfarb-Tarrant et al., 2020). Nonetheless, this strategy results

in a disconnection between planning and realization, and the output is not guar-
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anteed to respect the planning results (Castro Ferreira et al., 2019; Prabhumoye

et al., 2020).

The second challenge for opinion generation resides in the diversity of in-

formation that is needed to produce an output with consistent stances and sup-

ported by pertinent facts. Though large models memorize significant amounts

of knowledge, they cannot retrieve and operate with them precisely (Lewis

et al., 2020b). Due to the argumentative nature of opinion text, simply including

knowledge bases (Guan et al., 2020; Zhou et al., 2020) is insufficient to uphold

the desired quality, as it requires the combination of subjective claims and ob-

jective evidence as supports.

To this end, we propose a novel generation framework, DYPLOC (dynamic

planning of content), to conduct content selection and ordering as text is pro-

duced. Concretely, given a set of unordered content items, as displayed in

Figure 9.1, we design mixed language models, with each implemented as a

sequence-to-sequence model to encode one item and the input statement. At

each decoding step, our system selects which items to reflect, and predicts

a word based on probabilities marginalized over all language models. Cru-

cially, our end-to-end trained framework (1) enables the generator to access

multiple content items at all times and select content based on what has been

generated so far, (2) can be directly built on large pre-trained Transformers,

e.g., BART (Lewis et al., 2020a), with planning and generation modules jointly

trained, and (3) outputs learned content selection scores to provide an interface

for system decision interpretation.

Furthermore, to ensure that our framework can be applied to a broad range

of generation tasks, we design content items to cover three critical elements:
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entities and concepts that are central to many generation applications,

and claims that are building blocks for opinion text. We show an example

for counter-argument generation in Figure 9.1. Importantly, we employ BART

to predict additional relevant concepts, derived from ConceptNet (Speer et al.,

2017), and generate claims, as central propositions, to enrich the generated text

with both objective and subjective content.

For experiments, we collect two datasets: (1) posts from Reddit Change-

MyView for argument generation, and (2) articles from the New York Times

Opinion section (Sandhaus, 2008) for opinion article writing. Our proposed

framework outperforms competitive comparisons, such as fine-tuning BART

with the same content items, based on automatic metrics of BLEU, ROUGE, and

METEOR. Human assessment further confirms that our system outputs have

richer content and are more coherent in both tasks.

Our main contributions are summarized as below:

• We present a dynamic content planning generation framework, which is

directly built on top of BART. Our design of mixed language models overcomes

the lack of control by existing models that use implicit planning with attentions

or hard copying.

• We propose content plan augmentation by automatically generating rele-

vant concepts and claims.

•We construct two opinion text generation datasets with content plans that

capture prominent entities and concepts.
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   “CMV. I believe 9/11 
would not have happened if 
Al Gore were elected 
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Figure 9.2: Our proposed text generation framework, DYPLOC. [Left] For each
input content item (a title t, an entity set Ei, and a core concept set Ci), we first
expand it with more relevant concepts, i.e., C+

i . For sentences to be realized as
claims, we employ a separate generator to produce one draft claim, mi. [Right]
The augmented content items, denoted as {xi}, are encoded in parallel. At each
decoding step, a plan scoring network estimates a distribution d(xi|y<t) for all
content items and decides on relevant content. A word is predicted based on
probabilities marginalized over all content item-conditioned language models,
i.e., p(yt|y<t, xi) for the i-th model.

9.2 Model

Task Formulation. Our opinion text generation framework takes as input a

set of content items. Each content item consists of a title t, a set of entities Ei
1,

such as {United States, 9/11 attacks}, and a set of core concepts Ci, such

as {attack, knowledge}, that are often abstract notions. Our model first expands Ci

by predicting additional relevant concepts C+
i and optionally generates a perti-

nent claim mi, and then outputs the final text with multiple sentences as y = {yt},

to faithfully reflect the content items with a coherent structure. An overview of

our system is illustrated in Figure 9.2.

Below we first describe the content item augmentation methods (Sec-

tion 9.2.1), followed by our generator with mixed language models that con-

dition on expanded content items (Section 9.2.2).

1Note that i distinguishes the items. Their order is random.
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9.2.1 Content Item Augmentation

Concept Expansion. With limited number of entities and concepts as input,

generation systems are often incapable of producing long text with rich con-

tent, resulting in hallucination (Wiseman et al., 2017; Tian et al., 2019). There-

fore, from the often-abstract core concepts, we aim to predict more specific

concepts that are also relevant to the given title. For instance, as displayed

in Figure 9.1, for core concepts {make, happen} and entities {Bill Clinton,

9/11 attacks}, we grow the input with more concrete concepts of {mistake,

administration}.

We thus consider a concept expansion module g(·), which predicts additional

relevant concepts, denoted as C+
i , by conditioning on the original content item:

C+
i = g(t, Ei,Ci) (9.1)

While g(·) can be any conditional predictor, our experiment shows that fine-

tuned BART model performs best on our tasks, where it generates C+
i word-by-

word by consuming the content item.2 Training data construction is described

in Section 9.3.1.

Claim Generation. As discussed in Section 9.1, opinion text generation should

be controlled with consistent propositions, which cannot be effectively ex-

pressed by disconnected concepts. Therefore, we argue that natural languages

are more suitable for delivering central claims, since they better encode stylistic

languages, e.g., persuasion strategies.

2We also exploited a model that uses the structure of knowledge bases, e.g., ConceptNet,
for learning to expand concepts, but it yields lower precision and recall than fine-tuning BART
does.
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Concretely, we fine-tune another BART model by taking in the title t and

the entities Ei, which then produces a claim with nucleus sampling for decod-

ing (Holtzman et al., 2019). In this work, we assume the subset of content items

that can be used to generate claims is known. Possible future work includes

predicting such subsets and filtering claims with quality measurement.

9.2.2 Content Realization via Mixed Conditioning

After obtaining the augmented content items, we leverage pre-trained BART

models to encode each of them as a sequence, as illustrated in Figure 9.2. Seg-

menter <s> is added to indicate the change of elements in a content item. Our

encoders run over all items {xi} in parallel, from which we extract content item

representations {hi}, based on the last layer’s hidden states of the first token.

The standard sequence-to-sequence (seq2seq) framework models output

probabilities by taking a single sequence as input. It is challenging to ex-

tend seq2seq to consider multiple sequences simultaneously, and conduct con-

tent planning concurrently. Therefore, we introduce a plan scoring network,

d(xi|y<t), which learns to dynamically select and order content based on what

has been produced previously while generating the outputs. As outlined in

Figure 9.2, our generator is informed of all content items during generation.

At each decoding step t, the probabilities of output words are estimated as a

weighted sum of all content item-conditioned language models as follows:

p(yt|y<t) =
∑

i

d(xi|y<t)p(yt|y<t, xi) (9.2)

d(xi|y<t) = softmaxi(eit) (9.3)
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where p(yt|y<t, xi) corresponds to the i-th language model with xi as the input.

Crucially, d(xi|y<t) determines the importance of xi when generating token yt

and thus achieves the effect of content planning. We design a two-layer feed-

forward network to estimate eit:

eit = Wo tanh(Wd[hi; st]) (9.4)

where hi denotes the representation of content item xi, st the decoder state, and

Wo and Wd learnable parameters. Although mixed language models have been

used by Lewis et al. (2020b) to include retrieved documents for question an-

swering, their relevance scores are given by external retrieval models, whereas

our plan scorer d(xi|y<t) is learned together with the generator.

Training and Decoding. Our model is end-to-end trained with both the stan-

dard cross-entropy loss Lgen over the tokens in the target generations and a sep-

arate loss Lplan for learning d(xi|y<t):

L(θ) = Lgen(θ) +Lplan(θ) (9.5)

To create labels for Lplan, we leverage the correspondence between content

items and target tokens, i.e., d(xi|y<t) is optimized to approach 1 if yi is in the

sentence that derives xi, otherwise 0.3 Details about training data construction

is in Section 9.3.2.

At each decoding step, the individual language models, p(yt|y<t, xi), and the

distribution scores, d(xi|y<t), are first calculated in parallel. We then decode each

token greedily based on the mixed language models in an autoregressive way.

3We also experimented with a training objective consisting of the generation loss only, but
the performance degraded significantly. Future directions include removing the training signals
for planning.
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9.3 Experiment Setups

We experiment with the tasks of argument generation and opinion article writ-

ing (Section 9.3.1). Both tasks require generating multi-sentence output, and

contain a substantial amount of opinions and factual content. We describe the

construction of initial content items and the training data for generating ex-

panded concepts and claims in Section 9.3.2. We present models for comparison

in Section 9.3.3.

9.3.1 Tasks and Datasets

Argument Generation. We collect arguments from Reddit’s ChangeMyView

(CMV) community, an online forum that features argumentative discussions.

Each thread begins with an original post (OP) stating an opinion towards a

controversial topic, e.g., “The U.S. is too big for one government”. High-quality

replies with community endorsement are collected from our prior work (Hua

and Wang, 2020) (Chapter 8), covering content posted from 2013 to 2018, In this

work, we extend the data collection to 2019. Our goal is to generate the en-

tire reply (i.e., the target) given the OP title. Statistics about the CMV dataset

are listed in Table 9.1. We reserve the most recent 1, 000 samples for test and

another 1, 000 for validation.

Opinion Article Writing. Our second task is to generate opinion articles, as

collected from the New York Times (NYT) corpus (Sandhaus, 2008). We retain

articles whose taxonomy labels include Top/Opinion. To ensure that articles can

be processed by our computing resource, we only keep the ones with at most
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CMV NYT

# Samples 77,245 113,616
Avg. Title Length 19.2 5.9
Avg. # Content Items (% w/ Claims) 6.8 (76.5%) 9.3 (38.9%)
Avg. # Core Concepts 3.6 4.8
Avg. # Predicted Concepts 4.2 4.3
Avg. # Entities 0.8 0.7
Avg. Target Generation Length 142.0 218.9
Cov. by Core Concepts 13.2% 14.9%
Cov. by Augmented Concepts 16.9% 18.7%
Cov. by Augmented Content Items 52.4% 39.1%

Table 9.1: Statistics of the two datasets. We report average numbers of concepts
and entities per content item, and the coverage of words in target generations
by different input options.

20 sentences, representing 60% of all opinion articles. As shown in Table 9.1,

NYT outputs tend to be significantly longer and contain less claims than CMV.

Similarly, we keep 1, 000 examples each for test and validation sets.

9.3.2 Content Item Construction

From target references, we describe how to automatically construct the input

content items consisting of entities and core concepts, and how to collect train-

ing data to fine-tune BART to predict more specific concepts and additional

claims. Prior work has demonstrated the benefits of incorporating knowledge

bases for text generation (Clark et al., 2018; Puduppully et al., 2019; Guan et al.,

2020). We thus consider two sources of knowledge: (1) entities from Wikipedia,

which are useful for modeling events and opinion targets, and (2) concept words

from ConceptNet (Speer et al., 2017), that covers more related details.
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Entity Linking. We first segment a reference into sentences. The ones with

fewer than 5 tokens are discarded for content item construction. For the rest,

we extract entity mentions using Stanford CoreNLP (Manning et al., 2014), and

further include nominal noun phrases. For entity linking, we adopt Cross-

Wiki (Spitkovsky and Chang, 2012), which can process our large-scale data

within a reasonable amount of time. CrossWiki maps a mention to a list of

frequently linked Wikipedia entries. We further manually verify and correct the

linking results for the top 500 most frequent mentions.

Concept Extraction. To identify concepts in a reference, we match the lem-

matized unigrams and their part-of-speech (POS) tags against all ConceptNet

entries. To create a reasonably challenging task, we only keep a subset of the

matches for inclusion in the core concept set (i.e., Ci), with the rest used as C+
i ,

to be generated by our concept expansion model. Furthermore, we conjecture

that an opinion article author tends to start with high-level topics that cover

more abstract topical words. We thus leverage a lexicon (Brysbaert et al., 2014)

with concreteness scores, ranging from 0 (abstract) to 5 (concrete), for over 40k

English words. We keep concepts that are verbs or have a concreteness score

lower than 3.0. Word coverage of references by using core concepts and addi-

tionally with augmented concepts are 13.2% and 16.9% on CMV respectively,

and similarly on NYT (Table 9.1). Finally, we train a concept generator with

BART to produce C+
i , conditional on Ci, the title, and the entities.

Claim Detection and Generation. Claims are indispensable for opinion arti-

cles. As described in Section 9.2.1, we aim to enrich content items with claims

targeting the given entities within the title’s context.
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To this end, we first train a claim detector by fine-tuning a BERTbase (Devlin

et al., 2019) sequence classifier with a dataset consisting of sentences of claims

and facts. Concretely, we collect 54, 802 claim sentences from Kialo4, a repos-

itory for debate arguments. We then sample 50, 000 sentences from Wikipedia,

which are treated as facts. This classifier is applied on a reference, and sentences

that are labeled as claims become the target for our claim generator.

We then learn a claim generator using BART, which takes in the title and

the entities, and outputs the claim. We augment our training data with replies

collected from 30 active subreddits related to political discussions, with details

in Table 9.2. In total, 80, 566 sentences, which contain at least one entity and are

labeled by our classifier as claims, are kept to train the generator.

Anarchism AmericanPolitics
Capitalism Anarcho Capitalism
Conservative democracy
democrats feminisms
government GreenParty
IWW labor
Liberal Libertarian
LibertarianLeft LibertarianSocialism
Marxism moderatepolitics
Objectivism PoliticalDiscussion
politics progressive
Republican republicans
socialdemocracy socialism
ukpolitics uspolitics
worldpolitics PoliticalPhilosophy

Table 9.2: List of subreddit ids used to construct training data for claim genera-
tor.

4https://www.kialo.com/
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BLEU-2 ROUGE-2 METEOR Length
Argument Generation (CMV)

RETRIEVAL 6.29 3.68 10.00 78
SENTPLANNER 7.78 3.23 7.69 114
SEQ2SEQ 16.71 9.53 13.34 100
SEQ2SEQFULL 29.11 17.71 20.27 145

DYPLOC (ours) 32.60 25.69 22.61 101
w/o All Concepts 7.80 3.68 7.21 107
w/o Augmented Concepts 22.39 15.90 16.91 99
w/o Claims 31.62 25.03 22.09 100
w/o Entities 32.11 25.36 22.42 101
Random Selection 12.96 8.25 10.05 103
Greedy Selection 32.33 25.60 22.53 100

Opinion Article Generation (NYT)
RETRIEVAL 9.68 7.96 9.98 99
SENTPLANNER 7.45 5.06 6.62 106
SEQ2SEQ 21.44 14.92 14.93 119
SEQ2SEQFULL 31.06 29.74 23.10 121

DYPLOC (ours) 40.63 36.93 25.76 122
w/o All Concepts 11.32 6.01 8.33 132
w/o Augmented Concepts 26.94 21.56 18.39 117
w/o Claims 39.44 35.43 25.25 122
w/o Entities 39.66 35.82 25.11 122
Random Selection 5.32 5.29 6.00 72
Greedy Selection 40.61 36.88 25.77 122

Table 9.3: Automatic evaluation results on both tasks. We report BLEU-2,
ROUGE-2, METEOR, and output length. Best scores are in bold. Our DYPLOC
model statistically significantly outperforms all baselines and comparisons (ran-
domization approximation test (Noreen, 1989), p < 0.0005).

9.3.3 Baselines and Comparisons

We compare with three baselines: (1) RETRIEVAL first calculates the TF-IDF

weighted bag-of-words vectors for each content item, which is then used to

query the training set sentences. The one with the highest cosine similar-

ity is picked for each query, which are then ordered by a trained Pointer-

Network (Vinyals et al., 2015a) as described in Gong et al. (2016). (2) SENT-
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PLANNER (Hua and Wang, 2019) is an LSTM-based seq2seq model with a sepa-

rate sentence planning decoder, where the planner selects keyphrases by using

attentions and the generator reflects the selections. We treat our entities and

concepts as keyphrases to feed to this model. (3) SEQ2SEQ is a fine-tuned BART

model, whose input is the original content items without augmentation, thus does

not have access to the predicted concepts and claims.

Additionally, we consider a strong comparison SEQ2SEQFULL, by fine-

tuning BART with the same augmented content items as inputs as in our model.

The difference is that the content items are concatenated before being used as

input.

9.3.4 Reproducibility

We implement all models using the Huggingface Transformers library (Wolf

et al., 2020) with PyTorch (Paszke et al., 2017). We use the base model for BART,

which has 768 dimensional states and 6 layers for both encoder and decoder

(140M parameters in total). Our newly added plan scoring network only con-

tains 1.2M parameters, less than 1% of the pre-trained model. Our generation

model is optimized using Adam (Kingma and Ba, 2015), with a batch size of 3.

To improve efficiency, we adopt the mixed-precision (FP16) to train each model,

using one NVIDIA Titan RTX GPU card with 24GB memory. The number of con-

tent items is limited to 10 per sample, and the numbers of entities and concepts

per content item are capped at 20, respectively. We also truncate the target out-

put to at most 200 tokens during training. Early stopping is applied over valida-

tion loss. Our model converges after being trained for 38 hours (19 epochs) on
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CMV, and 45 hours (15 epochs) on NYT. The best validation perplexity reaches

about 6.1 after model convergence on both datasets.

9.4 Results

9.4.1 Automatic Evaluation

Here we report results on test sets with standard automatic metrics: BLEU (Pa-

pineni et al., 2002) measures the n-gram precision (here we consider up to

bigrams); ROUGE (Lin, 2004), calculated based on n-gram recall; and ME-

TEOR (Denkowski and Lavie, 2014), which also accounts for synonyms. In

Table 9.3, we first present the results when gold-standard concept expansion

is used.

Our proposed DYPLOC model achieves significantly higher performance

across all metrics on both datasets. In particular, the substantial lead over

SEQ2SEQFULL, which has access to the same content items as ours, indicates

that dynamic content planning with mixed language models produces superior gen-

erations. Among comparison models, the gap between SEQ2SEQFULL and

SEQ2SEQ shows the effectiveness of content item augmentation. We also ob-

serve a significant drop for baselines without using large models, highlighting

the importance of pre-training.

Ablation Study. To verify the effect of each element in content items, we fur-

ther train ablated models by removing concepts, claims, or entities. The results

are also displayed in Table 9.3. In general, scores decrease when using only
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CMV NYT
BLEU-2 ROUGE-2 METEOR BLEU-2 ROUGE-2 METEOR

RETRIEVAL 8.30 4.39 9.64 8.85 6.64 9.21
SENTPLANNER 7.84 3.24 7.76 7.75 5.12 6.80
SEQ2SEQFULL 18.06 8.83 15.96 16.20 8.83 15.25
DYPLOC 22.84 11.83 17.13 24.54 15.46 17.41

Table 9.4: BLEU-2, ROUGE-2, and METEOR results on systems with predicted
concepts as input.

partial content items, among which removing all concepts lead to the biggest

performance drop, suggesting that entities and claims alone are insufficient to

produce informative outputs.

Effect of Hard Selection of Content Items. To test the necessity of using

weighted-sum marginalization (Eq. 9.2), we experiment with two comparisons

with hard selections, i.e., either randomly choosing a content item, or using the

one with the highest predicted plan score (greedy selection). For both cases,

we set the selected content item’s plan score as 1.0, with the rest of the candi-

dates having a score of 0.0, to ensure the probabilities summed up to 1.0. As

can be seen from the bottom two rows of Table 9.3, not surprisingly, random

selection performs much worse. We observe that its generations lack coherence

and fluency, implying the effectiveness of our learnable content planner. On the

other hand, using greedily selected content items obtains comparable results

with DYPLOC, where a weighted sum of content items is considered. Indeed,

we find that DYPLOC’s plan scores are often sharp where one content item has

much higher weight than others, and in these scenarios, it is almost equivalent

to the greedy selection setup.
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Data System Gram. Coh. Rel. Cont. Top-1

CMV SEQ2SEQ 4.19 3.12 3.19 2.89 25.1%
SEQ2SEQFULL 4.24 3.19 3.23 3.13 30.2%
DYPLOC 4.26 3.35 3.35 3.28 44.7%

NYT SEQ2SEQ 4.38 3.82 4.20 4.01 25.2%
SEQ2SEQFULL 4.48 3.99 4.30 4.14 28.9%
DYPLOC 4.55 4.14 4.31 4.28 45.9%

Table 9.5: Human evaluation results on grammaticality (Gram.), relevance
(Rel.), coherence (Coh.), and content richness (Cont.). For each sample, out-
puts by all three systems are ranked based on the overall preference. We show
the percentage each system is ranked as the best.

Results with Generated Concepts. Table 9.4 lists generation results with our

system generated concepts as expansion. While all systems yield worse results

compared to using gold-standard concepts, our DYPLOC still outperforms other

models by substantial margins, showing its robustness when input concepts are

noisy. Yet it also suggests the importance of having more accurate and compre-

hensive concept expansion, which should be explored in the future work.

9.4.2 Human Evaluation

We hire three proficient English speakers to evaluate four key aspects of the

generated outputs: (1) grammaticality; (2) coherence, measuring if the text is

logical and cohesive; (3) relevance, gauging topic relatedness to the input title;

and (4) content richness, assessing the specificity and whether there is enough

details in the outputs. Each aspect is rated on a scale of 1 (worst) to 5 (best). In

addition, judges also rank the system outputs by their overall preferences.

We randomly select 50 samples from the test sets for both tasks, and present

outputs by SEQ2SEQ, SEQ2SEQFULL, and DYPLOC in random orders. Table 9.5
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shows that DYPLOC receives higher scores across all aspects and tasks. In par-

ticular, the considerable difference in coherence and content richness indicates

our framework yields better content organization as well as retains more useful infor-

mation. Overall, our system outputs are ranked best for 44.7% and 45.9% of the

time in two tasks, significantly more than the comparisons.

Analysis on Argumentative Quality. In the ablation study, we find that our

full model’s performance is similar to the version without having claims as in-

put. We suspect this is because claims are often paraphrased or even not directly

used when delivering an argument, which cannot be captured by the automatic

metrics. To better understand how claims are used for generation, we randomly

select 50 examples by DYPLOC and its variant without claims, and ask the same

human judges to decide whether there is a clear central argument conveyed by

each generated argument on CMV.

We observe that 66.7% of the outputs by our full model are recognized as

successfully delivering arguments with consistent stances, whereas only 61.3% are

true for the model variant without claims. This gap confirms that claim drafts

can indeed promote the argumentative quality as perceived by human readers.

9.5 Further Discussions

Evaluation results on generation quality have shown the effectiveness of our

mixed language models. In this section, we aim to further understand the be-

havior of the plan scoring network, d(x|y<t), such as how it affects the usage of

content items for generation. Specifically, we adopt the following procedure to
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construct alignment between each sentence in the output and content items: for

each token yt, we establish a mapping yt 7→ xi if xi is the most important item

for producing yt, i.e., xi = argmaxx d(x|y<t), and d(xi|y<t) > 0.5. If all tokens in an

entire sentence is mapped to the same xi, we consider this sentence is aligned to

that content item. Based on this rule, we show sample output and correspond-

ing alignments in Figure 9.3.
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Content Items (a) [ENT] CO2 [CON] death, ensue, toll, staggering (b)[CON] leave, stop, com-
pare, change, denialism, issue, simply, risk (c)[ENT] Fossil fuel [CON] drive,
paralyze, deal, humanity, industry [CLAIM] Coal is not a reliable source of energy,
and it’s been driven by unreliable sources of energy and unreliable sources to date.
(d)[CON] win, consequence, remotely, dire

DYPLOC Climate change denial is driven by fossil fuel industries that are paralyzing
the humanities in attempting to deal with the problem. The death toll from
ensuing CO2 is staggering. There is no winning consequence for anything re-
motely dire that climate change denialism has. Leaving aside the issue of GM
risk, simply comparing climate change denialism to climate change protesters
is not going to stop anything.

SEQ2SEQFULL World wide civilisation is threatened with catastrophe by climate change de-
nial. Climate change denial is driven by the fossil fuel industry, which is paral-
yseed by the humanities. Any attempt to deal with the problem of climate
change is going to cause death tolls that ensue, staggering. Leaving aside the
issue of GM, the risk is is simply too much to compare.

Content Items (a)[ENT] President of the U.S., George W. Bush, Richard Nixon [CON]

omit, list (b)[ENT] George W. Bush, [CON] bring, people, world, honor, dig-
nity, respect (c) [ENT] Bill Clinton, Ronald Reagan [CON] harm, respect,
demonstrate, damage, office, state (d) [CON] owe, correction, omission, apol-
ogy, readers

DYPLOC President Clinton “has done more harm to the respect of the Presidency than
Presidents Presidents Ford, Carter and Reagan have demonstrated,” and that
“the failure of Presidents Clinton and Reagan has caused permanent damage
to the office.” You omit President Bush from your list of Presidents. Mr. Bush
has brought honor, dignity and respect to the office of the Presidency in the
eyes of the American people and the world at large. We owe your readers an
apology and a correction of your editorial’s glaring omission, which created
an erroneous impression.

SEQ2SEQFULL “The Picture of Bill Clinton” (editorial, Dec. 5) states that President Clin-
ton “has done more harm to our respect for the Presidency than Presidents
Reagan, Ford, Carter and Bush.” This demonstrates that President Reagan’s
failure to do more damage to our honor than President Bush’s failure in of-
fice. You omitted from your list President Clinton’s achievements that brought
honor and dignity to the eyes of the American people [...]

Figure 9.3: Sample generations on CMV [Upper] and NYT [Lower]. System
generated concepts and claims are in italics. For DYPLOC, we highlight sentence
to content item alignment using colors.

For the rest of this section, we conduct analyses based on this alignment

result. We first examine whether the model learns to utilize enough content

items, i.e., high coverage. Then we provide insights on whether the generation
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Figure 9.4: The percentage of content items that are aligned to at least one output
sentence.

faithfully reflects the argumentative claims using entailment relation labeling

by human inspection.

How many content items are used by the output? Human judges have rated

our model output to contain more relevant information (Table 9.5). We believe

this can be attributed to the enhanced capacity to access and reflect the input

data with dynamic content planning, as a result of mixed language models.

To verify this hypothesis, we calculate the percentage of content items that are

aligned to at least one output sentence. Figure 9.4 shows that, using our system,

the coverage reaches over 87.25% on CMV and 83.89% for NYT. If we replace the

generated concepts with gold-standard concepts (as extracted from references)

instead, the coverage exceeds 90% on both tasks. These observations indicate

that our model can indeed adequately utilize the input data, with more accurate concepts

further encouraging higher coverage.

How are claim content items realized? Claims are the central elements for

opinion text construction. As mentioned in Section 9.3.2, a subset of the content

items are supplied with claim sentences. In order to examine whether they are
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realized as claim sentences in the outputs, we leverage the fine-tuned BERT

classifier (Section 9.3.2) to label all output sentences. 90.96% of the sentences

that are aligned to a claim element in the input are also labeled as claim on

CMV. The percentage is only 69.41% for NYT, though, likely because the NYT

opinion articles still contain more objective information.

Furthermore, we conduct a human evaluation study to assess the semantic

relations between claim input and its aligned generated sentence. We randomly

sample 50 outputs from test sets, and ask four human judges to read each. For

each sample, we highlight one output sentence that is aligned to a content item

with claim element. The judges determine a three-way (ENTAIL, NEUTRAL,

CONTRADICTORY) entailment relation between the input claim (premise) and

the output (hypothesis). Results show that ENTAIL accounts for 49.06% of all

instances, while only 3.77% are deemed CONTRADICTORY. Upon inspection,

the contradictory pairs are usually disagreements with regard to implicit senti-

ments, e.g., “Journalist is the most responsible for the problem” vs. “Media coverage is

a good thing.”. This suggests that while our conditional language model achieves

reasonable semantic control in most cases, it is still not guaranteed to capture

more nuanced semantics encoded in opinions and arguments. Future work in-

cludes designing representations that can better model stances in opinions as

well as argumentative structures.

9.6 Conclusion

We present a novel text generation framework that enables dynamic content

planning based on mixed conditional language models. We further employ
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large models to augment system inputs with diverse content that covers both

objective and subjective information. The experiments on two distinct opin-

ion text generation tasks show that our proposed model compares favorably

against strong comparisons based on fine-tuned BART models with the same

input. Human evaluation further confirms that our model generations have

richer information and better content organization.
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CHAPTER 10

BIAS AND ETHICAL CONSIDERATIONS

Online forums such as Reddit are known to present various types of biases,

which are further amplified by neural language models. In this chapter, we

first mention the dataset biases caused by the topic distribution and user demo-

graphics (Section 10.1), followed by the ethical concerns regarding discrimina-

tive and toxic content (Section 10.2). Finally, we discuss the risk of unfaithful

generation and potential misuse of our model to spread misinformation (Sec-

tion 10.3).

10.1 Potential Biases in the Dataset

In this dissertation, the argument generation models are all trained over the

Reddit ChangeMyView corpus, as it is one of the few publicly available large

datasets with diverse arguments. However, Reddit is known to encode various

biases such as the word usage (Ferrer et al., 2020), popular topics being dis-

cussed (Soliman et al., 2019), and user demographics (Duggan and Smith, 2013;

Gjurković et al., 2020). For training text generation models in general, limited

exposures to different topics and language style harm the model’s generaliz-

ability. In our work, we aim to mitigate this issue by introducing massive and

generic external resources, such as Wikipedia pages and news articles (Chap-

ter 5, Chapter 6). We make them accessible to the generation pipeline so that the

relevant information can be utilized even for unseen topics. But since the train-

ing and test set are both sampled from the CMV subreddit, it is unclear whether

our model can readily adapt to new domains.
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For our argument generation task, the inclusion of diverse perspectives for

a given topic is particularly important. For example, to counter-argue the input

argument “death penalty is necessary.”, one could emphasize the risk of wrongful

conviction and that death penalty is irreversible. Alternatively, others might point

out that death penalty does not deter crimes and therefore is unnecessary. Users

with different backgrounds, such as their ethnicity, political and religious ideol-

ogy, tend to adopt different perspectives, which consequently affects the com-

munity endorsement towards the arguments they make (Durmus and Cardie,

2019). The study by Duggan and Smith (2013) reveals that young males who

reside in urban area are by far more likely to use Reddit. Unfortunately, the

anonymous nature of Reddit makes it challenging to quantify such overrepre-

sentation for specific subcommunity. We believe more work needs to be done

to automatically categorize the argument perspectives in training data to mini-

mize the dataset bias.

10.2 Ethical Concerns

Another risk associated with the online user-generated data is the abundance

of offensive and discriminative content (Kwok and Wang, 2013; Wang et al.,

2014). Generation models trained over such data often exhibit these undesired

languages as well. Model deployment in real world can reach millions of users

instantly, making it unrealistic to manually filter the undesired languages. To

date, the automatic detection of toxic language has proved challenging (Djuric

et al., 2015; Burnap and Williams, 2015; Malmasi and Zampieri, 2018). Simply

filtering posts using lexicon-based rules is insufficient. Because “cursing words”

are frequently used in social media, and that the implicit harmful content re-
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quires deeper understanding of the semantics and social backgrounds (David-

son et al., 2017). Another line of work aims to curb the generation model to

avoid generating the undesired language (Nogueira dos Santos et al., 2018; Tran

et al., 2020; Gehman et al., 2020), only with limited successes. In future work,

we could explore categorizing offensive content and studying the context that

triggers them, to design more accurate detection models and better algorithms

to avoid generating them.

10.3 Unfaithful Generation and Misinformation

A major weakness of neural generation models is their tendency to produce

unfaithful output. Prior work has reported such behavior in numerous gener-

ation tasks (Wiseman et al., 2017; Weng et al., 2020; Maynez et al., 2020). The

root cause is likely due to the token-level optimization which does not account

for the content selection and semantic representation. One theme of our work

in Chapter 7, Chapter 8, and Chapter 9 is to enable better controllability over

the content. But our systems still have limitations such as their insensitivity

towards numerical expressions and rare named entities. This is problematic in

practice especially for high-stake applications, such as financial and legal re-

ports. We believe a crucial future step would be developing better automatic

evaluation metrics that can capture factual errors beyond lexical overlap. Ad-

ditionally, generation models that are grounded on symbolic knowledge-graph

would be another direction to mitigate such issues.

Recently, the NLP community has become more aware of the threats of fake

news and intentional misinformation spread by text generation models (Shao
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et al., 2017; Pérez-Rosas et al., 2018; Fernandez and Alani, 2018; Zellers et al.,

2019; Oshikawa et al., 2020). Studies have shown that social media bots have

been deployed to interfere with the US election (Bessi and Ferrara, 2016; Grin-

berg et al., 2019; Bovet and Makse, 2019) as well as spreading rumors during

the COVID-19 pandemic (Yang et al., 2020; Ferrara, 2020; Uyheng and Carley,

2020). We recognize that our controllable text generation models can be poten-

tially misused. We therefore urge cautious examination of the ethical implica-

tions and responsible use in real world applications.
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CHAPTER 11

CONCLUSION AND FUTURE DIRECTIONS

11.1 Conclusion

In this dissertation, we present various studies on argument mining, argument

generation, and controllable text generation in general. We motivate this line of

research with the ubiquity and impact of argumentation in the real world, and

highlight the major challenges of both the argument understanding itself and

the text generation stack.

In Chapter 3 and Chapter 4, we investigate the argument component extrac-

tion, classification, and the support relation identification. We start with argu-

ments in the online debate forum and explore the effect of different feature sets

for the above tasks. Then we study the much more nuanced peer review do-

main, and benchmark state-of-the-art neural models. Our findings consolidate

the importance of diversity of argument composition, and characterize their in-

teractions with the supporting arguments.

In Chapter 5 and Chapter 6, we introduce two neural argument genera-

tion pipelines. Our model design is enabled by two key components: (1) a

knowledge retrieval system that indexes a large set of existing arguments from

diverse sources, and (2) a neural generation model that selects the most rele-

vant retrieval results for realization. We showcase our systems over the Reddit

ChangeMyView dataset, which we also release to facilitate future research on

argument generation.

In Chapter 7, we demonstrate that our text generation system can be gen-
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eralized to new domains. Our main innovation is to integrate a sentence-level

content selection component into the neural decoder, which is also end-to-end

trainable. Apart from argument generation, we evaluate over Wikipedia intro-

duction generation and paper abstract generation. Our model marked better

performance than strong comparisons in both settings. Interestingly, our analy-

sis has revealed a strong positive correlation between the accuracy of keyphrase

selection and the overall output quality, which quantitatively shows the impact

of text planning.

In Chapter 8 and Chapter 9, we discuss two controllable generation frame-

work tailored for large pre-trained Transformers. The PAIR system repurposes

the masked language model as template representation with fine-grained con-

trol on content. The iterative refinement strategy operates seamlessly with

this framework to generate coherent natural language output. On the other

hand, DYPLOC offers an alternative solution to content ordering and realization,

which leverages the mixed language model. Its content selection operations are

also easily interpretable, to better understand the system decisions.

Throughout this dissertation, we also witness the revolution of pre-trained

Transformers in NLP community. In particular, the BART (Lewis et al., 2020a)

and GPT-2 (Radford et al., 2019) model, which can be natively used for gen-

eration tasks, have attained unparalleled performance in terms of the output

fluency. Although it is not our focus to compare the Transformers and LSTM-

based models, we note a key difference that affects the model design: the

typical method to condition the LSTM model is through the state transforma-

tion (Hoang et al., 2016), whereas the Transformers rely on self-attention over

explicit natural language prompts (Keskar et al., 2019). This property motivates
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our PAIR model, which utilizes the masked keyphrase templates to achieve fine-

grained content control without hurting the output fluency.

11.2 Future Directions

Throughout the development of this dissertation, we have witnessed the rapid

growth of argument related research in NLP community. There have been nu-

merous argument mining workshops, and dedicated tracks for the major NLP

conferences. This not only produces more diverse solutions to existing prob-

lems, but also identifies numerous new challenges.

First, understanding argumentative structures is still hard, yet it is necessary

in order to inform the generation model of the proper content organization. Ex-

isting work on student essays (Stab and Gurevych, 2017; Persing and Ng, 2016)

and online user comments (Niculae et al., 2017) have shown promising results,

but both rely heavily on feature-engineering. One key issue lies in the difficulty

to collect high-quality annotations, especially for domains that require expert

knowledge. The data scarcity problem limits the utilization of neural network

models. We believe it is imperative to develop more data efficient models and

training techniques. For example, transfer learning has the potential to adapt

useful representations learned through a large labeled source domain to a more

difficult domain with less annotations. The active learning strategies can further

help significantly reduce the annotation requirement by automatically selecting

the informative samples. Both techniques are being investigated in our upcom-

ing manuscripts.

Moreover, the pre-trained Transformers have revolutionized text generation
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research. Models such as BART (Lewis et al., 2020a) and GPT-2 (Radford et al.,

2019) are capable to produce long documents with almost human-level fluency.

However, despite efforts (Keskar et al., 2019; Dathathri et al., 2020; Hua and

Wang, 2020) to gain more control over these large models, how to ensure the

output factuality is still an open question. Recent work has found that the mod-

els pre-trained over large heterogeneous data tend to amplify the biases towards

marginalized groups (Sheng et al., 2019; McGuffie and Newhouse, 2020), and

they can be easily rewired to create false and hateful content (Wallace et al.,

2019). To mitigate the above issues and ensure more ethical use of large models,

we need both methods to detect false and biased content, as well as knowledge-

grounded systems that can inform and constrain the neural language model.

Finally, the ultimate judges of text generation systems are the human users.

Collecting meaningful user feedback at scale is time-consuming and involves

added ethical concerns. As a result, the current research in NLG mostly focuses

on improving over automatic metrics. We believe more work needs to be done

to understand the human-factors in the generation pipeline, e.g., to assist es-

say or news article writing, what type of information should be automated and

what should be left to the user; how to present the system output in an explain-

able way. Conversely, we are also interested to learn what neural generators can

tell us about human cognition.
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