
Small Language Models Need Strong Verifiers to Self-Correct Reasoning

Yunxiang Zhangα* Muhammad Khalifaα Lajanugen Logeswaranβ

Jaekyeom Kimβ Moontae Leeβγ Honglak Leeαβ Lu Wangα

University of Michiganα LG AI Researchβ University of Illinois at Chicagoγ

Abstract

Self-correction has emerged as a promising so-
lution to boost the reasoning performance of
large language models (LLMs), where LLMs
refine their solutions using self-generated cri-
tiques that pinpoint the errors. This work ex-
plores whether small (≤ 13B) language models
(LMs) have the ability of self-correction on rea-
soning tasks with minimal inputs from stronger
LMs. We propose a novel pipeline that prompts
smaller LMs to collect self-correction data that
supports the training of self-refinement abil-
ities. First, we leverage correct solutions to
guide the model in critiquing their incorrect
responses. Second, the generated critiques, af-
ter filtering, are used for supervised fine-tuning
of the self-correcting reasoner through solu-
tion refinement. Our experimental results show
improved self-correction abilities of two mod-
els on five datasets spanning math and com-
monsense reasoning, with notable performance
gains when paired with a strong GPT-4-based
verifier, though limitations are identified when
using a weak self-verifier for determining when
to correct.1

1 Introduction

Recent research shows that large language mod-
els (LLMs) (OpenAI, 2023) can self-correct their
responses to meet diverse user requirements, rang-
ing from diminishing harmful content to including
specific keywords and to debugging code (Madaan
et al., 2023; Chen et al., 2023b). Self-correction
is typically accomplished by first generating a cri-
tique that identifies the shortcomings of the initial
response, followed by revising it according to the
self-critique—a process that can be iterated.

Self-correction has emerged as an intriguing
paradigm for rectifying the flaws in LLM’s out-
puts (Pan et al., 2023). However, models that

* Correspondence to yunxiang@umich.edu
1Our implementation can be accessed at https://github.

com/yunx-z/SCORE.

are effective at self-correction are of very large
sizes, and many of them are proprietary and ac-
cessible only via APIs. In this work, we focus on
the self-correction abilities of small, open-source
language models (LMs).2 Previous studies have
shown that these smaller models can learn self-
correction in reasoning through distillation from
stronger LMs (Yu et al., 2023b; An et al., 2023;
Han et al., 2024). Yet this poses security risks for
high-stakes domains and hinders the scientific un-
derstanding of enhancing LMs’ ability to correct
errors. We thus ask the question: To which degree
do small LMs require guidance from strong LMs to
learn self-correction for reasoning?

We study this question by leveraging the small
model itself to generate supervised training data
to enhance its self-correction ability, instead of re-
sorting to stronger LMs. To this end, we draw
inspiration from the rejection sampling fine-tuning
(RFT) (Touvron et al., 2023; Yuan et al., 2023)
method where LLM’s reasoning skills are boot-
strapped via diverse chain-of-thought sampling and
supervised fine-tuning on the correct reasoning
chains. We propose SCORE—an approach to
bootstrap small LMs’ Self-COrrection ability in
REasoning tasks. Concretely, we devise a pipeline
for accumulating high-quality critique-correction
data from small LMs, which are used for super-
vised fine-tuning of self-correcting reasoners. First,
we leverage correct solutions as hints for the base
LMs to critique incorrect answers. By reverse-
engineering from the correct answer, the models
generate more effective critiques. Second, we filter
these critiques for correctness, well-formedness,
and clarity using simple rule-based and prompting
methods. Finally, we fine-tune the same LMs to be-

2While the distinction between small vs. large LMs is often
context-dependent (Saunders et al., 2022; Yu et al., 2023b),
in this work, we interchangeably use “small” or “weak” LMs
to refer to open models with a few billion parameters (e.g.,
LLaMA-7/13B (Touvron et al., 2023)).

https://github.com/yunx-z/SCORE
https://github.com/yunx-z/SCORE


come self-refining models using this curated data.
By avoiding the use of supervision from stronger
LMs, we ensure that our method enables a small
LM to bootstrap its self-correction capabilities.

We evaluate our SCORE fine-tuned refiner un-
der both extrinsic and intrinsic self-correction set-
tings (Huang et al., 2023b). The primary difference
between these two settings is whether the refiner is
allowed to use external signals to determine when
to self-correct (i.e., refine the initial solution only
when it is believed to be incorrect). Identifying
when to self-correct involves verifying the solu-
tions’ correctness, which is still challenging for
current state-of-the-art LLMs without proper ex-
ternal feedback (Huang et al., 2023b). We adopt
a simple baseline for the self-verification problem
following Cobbe et al. (2021). Specifically, we
fine-tune the same LMs to become verifiers with
labels based solely on the correctness of the final
answer, conditioning on the question and a can-
didate solution. As for the extrinsic setting, we
simulate strong verifiers with GPT-4 and oracle
labels, to show the effectiveness of small LMs as
self-correcting reasoners.

We test the SCORE method with the
LLaMA-2-13B-chat (Touvron et al., 2023) and
Gemma-7b-it (Team et al., 2024) models on five
datasets spanning math and commonsense reason-
ing. We find that our model with SCORE fine-
tuning outperforms the original model by an av-
erage of 14.6% when using a gpt-4-based veri-
fier. Nevertheless, the model struggles with self-
correction when subjected to a weak self-verifier
fine-tuned on self-generated solutions.

Our main contributions are summarized below:

1. We introduce SCORE, a novel pipeline to
generate self-correction data from a small LM,
and subsequently fine-tune the model to be a
self-correcting reasoner.

2. Our method effectively augments the self-
correction abilities of small LMs on math and
commonsense reasoning, when using strong
verifiers.

3. To the best of our knowledge, we are the first
to demonstrate the potential of small LMs to
bootstrap their abilities on self-corrective rea-
soning without distilling training data from
stronger LMs or using human annotation.

2 Problem Formulation of
Self-Correction

Self-Correct := (SELF-)VERIFY + SELF-
REFINE. We decompose the task of self-
correction into two phases: (SELF-)VERIFY and
SELF-REFINE. The LM first generates an initial
solution for a reasoning question. A verifier, ei-
ther the LM itself (intrinsic) or the external signal
(extrinsic), then judges the correctness of the ini-
tial solution. If correct, the initial solution will be
directly used as the final answer. If incorrect, a
refiner will revise the solution. While this process
can be iterated, we fix the times of iterations as
1 throughout this paper for efficiency and leave
multiple iterations as future studies.

Decoupling (SELF-)VERIFY and SELF-REFINE

brings two major advantages over a one-model-
does-all design. First, we can freely parameterize
each module—for example, by using a fine-tuned
and a few-shot prompted model. This allows us to
carefully examine the impact of strong vs. weak
verifiers on the refiners’ performance. On the con-
trary, previous work on self-correction with small
LMs (Yu et al., 2023b; An et al., 2023; Han et al.,
2024) conflates SELF-VERIFY and SELF-REFINE,
creating a barrier to fully understanding the distinct
capacities of these models in each skill. Second, it
reduces the difficulty of training each module, since
the model only needs to specialize in one kind of
ability, which is either verification or refinement.

SELF-REFINE := Critique + Correction. The
challenge for SELF-REFINE is that it can be dif-
ficult for language models to directly map an
initial solution to a revision without any guid-
ance (Welleck et al., 2023). Using critiques—
assessments that pinpoint the locations of errors
within the reasoning steps, explain the causes of
these errors, and offer guidance on how to cor-
rect them—can significantly enhance the perfor-
mance of language models when generating revi-
sions (Saunders et al., 2022; Madaan et al., 2023).
Therefore, we formulate refinement with two steps:
the model will first generate a critique for the initial
solutions determined as incorrect, followed by a
corrected version, in a single pass. Yet, it is still
non-trivial to obtain high-quality critiques to guide
the error correction. We address this problem us-
ing the correct solutions as hints to facilitate the
critique generation, detailed in Section 3.1.



𝑄!

𝑆!

𝑌!

Base LM

𝑄!

Co
T	
Pr
om

pt

𝑆!"

𝑆!#

𝑆!$

Sample and label
𝑁 solutions per Q

𝑌!"

𝑌!#

𝑌!$

…
✅

✅

❎

Refiner

𝑄! 𝑆!
%

❎

𝐶!
",$ 𝑆!

%&

✅

Supervised Finetuning
on critique-correction data

𝐶!

questions

solutions

labels

critiques

masks
(do not
contribute
to loss)

Base LM

𝑄!

Co
rr
ec
tio
n

Pr
om

pt

𝑆!
%

❎

𝐶!
",$

𝑆!
%& 𝑌!

%&

Check whether base LM
can recover the correct

solution with filtered critique

✅
❓

a. b. c. d.
Base LM

𝑄!

Cr
iti
qu
e
Pr
om

pt

𝑆!
%

𝑆!4
❎

✅

𝐶!
",$

Generate critique for
incorrect solutions using
correct solutions as hints

Figure 1: Illustration of the SCORE pipeline to generate critique-correction data from a small LM (step a-c) and
fine-tune the same LM to self-correct its reasoning errors (step d), without distilling any data from stronger LMs.

3 The SCORE Method

Our approach is inspired by rejection sampling fine-
tuning (RFT): sampling diverse solutions for each
question and fine-tune LLMs on the self-generated
solutions that lead to the correct final answer (Yuan
et al., 2023; Huang et al., 2023a; Zelikman et al.,
2022). We want to bootstrap the small LM’s inher-
ent ability to generate critiques for reasoning steps.
We design an end-to-end pipeline to collect self-
correction data generated by small LMs at scale,
without any distillation from stronger LMs. The
self-generated critiques, after filtering, are used
to fine-tune the smaller LM itself to bootstrap its
ability to self-correct. Concretely, the SCORE
pipeline consists of two stages shown in Figure 1
and described below.

Stage 1: Generating and Filtering Critiques.
We sample N solutions for each question in the
training set by few-shot chain-of-thought prompt-
ing a base LM (step a). To enable the base LM
to reflect on its incorrect solutions, we include a
correct solution for the same question (if exists) in
the prompt as a hint (step b). We then filter the
self-generated critiques based on their correctness
and clarity (step c). This process is detailed in
Section 3.1.

Stage 2: Supervised Fine-tuning of the Refiner.
The filtered critiques obtained from stage 1 are
used in the next stage for fine-tuning the small LM
itself. We train a refiner that generates critiques
and corrections conditioned on questions and initial
solutions (step d). We exclude the hints during fine-
tuning. More details are given in Section 3.2.

3.1 Generating and Filtering Critiques

Directly generating critique for an incorrect solu-
tion without external supervision signals is difficult.
In our preliminary experiments, we find it easier
for the LM to generate critiques using correct solu-
tions as hints, as the model only needs to compare
the different steps between these two solutions and
justify the correct ones. In Appendix B, we explain
this intuition from a mathematical perspective.

To leverage correct solutions as hints for LMs
to generate critiques on incorrect solutions, we la-
bel these solutions and collect all possible pairs of
incorrect-correct solutions for the same questions
(Cartesian product between the sets of incorrect
and correct solutions). We craft a few-shot critique
prompt (Appendix A) to instruct the base LM to
generate critiques for the incorrect solution using
the paired correct solution as hints.3 Step-level
critiques are more useful than solution-level ones
since they provide more precise and fine-grained
supervision (Lightman et al., 2023; Wu et al., 2023;
Uesato et al., 2022a) that mitigate the undesirable
behavior of LMs using incorrect reasoning to reach
the correct final answer (Khalifa et al., 2023; Ze-
likman et al., 2022). Therefore, we prompt the
model to provide feedback for each step of the
initial solution, either endorsing the initial answer
(e.g., “this step is correct”) or pinpointing the er-
rors (e.g., “there are errors in the step because ...”).
To ensure the LM-generated critique is grounded in
a specific step, we also ask the model to copy each
step before providing feedback on it. Considering

3The total number of incorrect-correct solution pairs could
be very large so we sample only one critique per pair. This has
already provided a sufficient amount of SCORE fine-tuning
data after filtering.



these requirements, we design the format of the
critique prompt as follows, with a detailed example
in Appendix A.

Critique Prompt

Q: {question}

Answer 1 (Incorrect):
Step 1: ...
...
Step n: The answer is x .

Answer 2 (Correct):
Step 1: ...
...
Step n: The answer is y .

There are reasoning errors in Answer 1.
Please go through each step in Answer 1,
use Answer 2 as a reference for the correct
approach, and provide feedback that helps
correct the errors in Answer 1. End your
response with [END].

Let’s go through the errors in Answer 1
and provide feedback:

Answer 1 (Incorrect):

Step 1: ...
Feedback: This step is correct.
...
Step i: ...
Feedback: This is incorrect. Because ...
...
Step n: The answer is x .
Feedback: The correct answer, based on
the corrected calculations, should be y .

[END]

Note that the model should suggest the corrected
final answer, taken from the hint solution, as part
of the feedback for the last step. This forces the
model to explicitly leverage the information from
the hint solution.

Filtering Generated Critiques. After obtaining
the raw self-generated critiques, we want to re-
move the low-quality ones and keep the rest for
fine-tuning LMs. Thanks to the well-designed for-
mat of critiques, we can apply rule-based filters to
remove generated critiques that do not follow the
desired format. These criteria include:

• The number of steps and feedbacks (counted
by the appearances of “Step {i}:” and
“Feedback:”) should be the same.

• Each step should be exactly copied from the
initial solution.

• The feedback for the last step should provide
the correct answer.

The first two criteria check for the well-formedness
of the critique and the third one focuses on the
correctness aspect. A critique will be removed if it
fails to meet any of the three criteria above.

Given that a critique could still contain errors
even if it suggests the correct final answer in the
last step, we add an additional stage of prompting-
based filtering besides the above rule-based heuris-
tics. Specifically, we prompt the base LM to revise
the incorrect solution given the critique that already
passes the aforementioned filtering rule. Assuming
the base LM has reasonable ability of following
instructions, it is expected to give a correct revision
if the generated critique is both clear and error-free.
We demonstrate such an example of the correction
prompt in Appendix A. In other words, we remove
critiques that do not result in a correctly revised
answer. After the ruled-based and prompting-based
filtering, we obtain the high-quality critiques for
fine-tuning LMs to self-refine.

3.2 Supervised Fine-tuning of the Refiner

We train the refiner to generate a critique and an
improved solution in one pass conditioned on a
question and an initial solution. We note that al-
though we provide the correct solutions as hints to
generate critiques during data collection, the model
is tasked to generate critiques without the hints
during fine-tuning and inference. Previously we
collected critiques for every step to ensure that we
can apply multiple filters to obtain high-quality cri-
tiques. But in this step, we truncate the critiques to
only keep the feedback for the first error step as the
fine-tuning target. This is because it is difficult to
ask the LMs to identify and correct all the errors in
one pass (Yu et al., 2023b) without referring to cor-
rect solutions as hints during inference. The refiner
is fine-tuned on truncated critiques and corrections
collected in the previous stages with cross-entropy
loss. We do not include few-shot demonstrations
during fine-tuning. We apply masks on the input
tokens so that they do not contribute to the loss.
Although we only do 1 iteration for the refinement
in this work, we later show that small LMs can
already achieve great improvement after 1 round of
self-correction when paired with a strong verifier.



GSM8K CSQA

# % # %

Base LM: LLaMA-2-13b-chat

Raw critiques 56,843 100.0 42,705 100.0
After rule-based filering 36,337 63.9 36,436 85.3
After prompting filtering

(for SCORE fine-tuning) 14,499 25.5 24,511 57.4

Base LM: Gemma-7b-it

Raw critiques 52,669 100.0 40,604 100.0
After rule-based filering 17,209 32.7 35,929 88.5
After prompting filtering

(for SCORE fine-tuning) 4,623 8.8 12,972 31.9

Table 1: Statistics of the critique data generated from
our SCORE pipeline. Although Gemma-7B has fewer
data left after filtering, it still achieves greater improve-
ment than LLaMA-13B by self-correction (Section 5.1),
suggesting that Gemma-7B is more effective at learning
self-correction from SCORE.

4 Experimental Setup

Self-Correction Data Collection. As stated in
Section 3.1, we sample N = 10 solutions from
the base model with the chain-of-thought (CoT)
prompts shown in Appendix A, label their correct-
ness, and formulate incorrect-correct solution pairs
for critique generation. We separately collect data
for each base LM and task. This results in the
number of raw critiques shown in Table 1. We se-
quentially apply rule-based filtering and prompting-
based filtering to obtain high-quality critiques for
the fine-tuning data.

Verifiers. We experiment with verifiers of dif-
ferent levels of capabilities to gauge their impacts
on self-correction performance. First, we adopt a
simple baseline for training a self-verifier follow-
ing Cobbe et al. (2021). The self-verifier is a model
with the same architecture as the base LM, con-
ditioned on the question and a candidate solution
to judge the probability that the solution is cor-
rect/incorrect. Specifically, we label the solutions
sampled from the base LM as incorrect (0) or cor-
rect (1) solely based on their final answers and fine-
tune the verifier with a binary classification head on
the last-layer representation of the last token in the
input sequence “Question: {q} \n Solution:
{s} \n Is this solution correct?”. Since the
fine-tuning data is imbalanced between correct and
incorrect solution, we re-weight the loss for each
class with regarding to its proportion. During infer-
ence, the verifier model outputs a probability of the
initial solution being incorrect, and the refinement

is introduced only when the confidence of the veri-
fier’s predictions exceeds a certain threshold, which
is automatically chosen in a way that maximizes
the accuracy on the dev set and then fixed during
test-time predictions. Since fine-tuned small LMs
are still weak verifiers that bottleneck the perfor-
mance of self-correction, we also experiment with
a second option by using gpt-4 as an off-the-shelf
strong verifier to demonstrate the potential of our
fine-tuned refiner. We do so by few-shot prompting
gpt-4 to predict the correctness of the initial so-
lution by smaller LMs, with the verifying prompt
shown in Appendix A. Finally, we directly use the
gold labels of the initial solutions as signals to de-
termine when to self-refine. This oracle verifier
setting provides an upper bound for the refiners’
performance.

Benchmarks and Base Models. To demonstrate
the effectiveness of the SCORE method, we
conduct experiments on two popular datasets:
GSM8K (Cobbe et al., 2021) for mathematical
reasoning and CommonsenseQA (Talmor et al.,
2018) for commonsense reasoning. We also con-
duct transferability studies and evaluate the gen-
eralization performance of our fine-tuned refiner
on MATH (Hendrycks et al., 2021) for mathemati-
cal reasoning, QASC (Khot et al., 2020) and Rid-
dleSense (Lin et al., 2021) for commonsense rea-
soning. Specifically, for mathematical reasoning,
we train self-verifiers and SCORE refiners using
only GSM8K training data and evaluate them on
the whole GSM8K test set and a subset of MATH
test set,4 following the practice of Hosseini et al.
(2024). Similarly, for commonsense reasoning, we
fine-tune our models using only CommonsenseQA
training data and evaluate them on the whole dev5

set of CommonsenseQA, QASC, and RiddleSense.
Since questions in CommonsenseQA, QASC, and
Riddlesense have a multiple-choice format, we also
include a random refiner baseline that randomly
picks a choice different from the initial answer,
following the practice of Huang et al. (2023b).

We explore two open-source smaller language
models, namely LLaMA-2-13B-chat (Touvron
et al., 2023) and Gemma-7B-it (Team et al., 2024)

4This subset includes a total 181 problems of Level 1 dif-
ficulty in MATH with question types of algebra, Counting
& probability, prealgebra and number theory, where the final
answer is a number and no latex exists in the question.

5The test labels of these datasets are hidden, so we use the
original dev set as our test set, following Kojima et al. (2022);
Kim et al. (2023).



Figure 2: Performance of SCORE models using LLaMA-2-13B-chat and Gemma-7B-it as base LMs. We show the
relationship between F1 scores of the verifiers and final answer accuracies. We also report the difference between the
final accuracy after refinement and the corresponding initial answer accuracy (Init. Accu.) by few-shot prompting
for each base LM. For the concrete numbers of these metrics, please see Table 6 in the appendix. We include test
results for training tasks (GSM8K and CommonsenseQA/CSQA), as well as transfer evaluation of GSM8K trained
models on MATH subset, CSQA trained models on QASC and RiddleSense. All models use greedy decoding
during inference.

as the base LMs to generate self-correction data
and evaluate their self-correction abilities. In Ap-
pendix C, we also investigate whether our self-
correction fine-tuning can be built on top of other
fine-tuning methods (e.g., rejection-sampling fine-
tuning) to further boost the reasoning performance.

Fine-tuning and Evaluation. We fine-tune the
base LM using the LLaMA-Factory library (Zheng
et al., 2024b) with LoRA (Hu et al., 2022). We set
the low-rank dimension as 32, the learning rate as
2e-5, training epochs as 3, batch size as 32. During
inference, we set the temperature as 0 (i.e., greedy
decoding) and the max sample length as 2,048. All
our experiments can be conducted on 4×A40 GPU
with 48GB of memory.

5 Results

In this section, we first present the experimental
findings of SCORE method on various models
and datasets (Section 5.1). To better understand
the performance changes after self-correction, we
then analyze the behaviors of verifiers and refin-
ers (Section 5.2) and further highlight several key
design decisions of our pipeline with ablation stud-

ies (Section 5.3). Lastly, we show the impact of
SCORE fine-tuning data size on self-correction
performance (Section 5.4).

5.1 Main Findings

Figure 2 presents the primary evaluation results for
our fine-tuned models compared to baseline models.
The results include two performance metrics: the
verifier F1, which assesses the precision and recall
of the verifier’s predictions; and the final accuracy,
which measures the accuracy of the final answer
after self-correction. We have four major findings.

1) The critique-correction data collected by our
SCORE pipeline enhances the base LM’s capabil-
ity for self-correction. Our fine-tuned models con-
sistently bring large improvements on the final ac-
curacy over the initial answer obtained by few-shot
prompting. However, the prompting-based self-
correction baseline (prompted verifier + prompted
refiner in Figure 2) proposed by Madaan et al.
(2023) deteriorates the final predictions, as LMs
struggle to identify errors in their reasoning (Huang
et al., 2023b) and possess limited self-correction
abilities before bootstrapping. On the multiple-



0

1Tr
ue

 la
be

l 229 599

24 467

verifier (self)

810 18

15 476

verifier (self)
+ refiner (SCORE)

0 1
Predicted label

0

1Tr
ue

 la
be

l 760 68

75 416

verifier (gpt-4)

0 1
Predicted label

721 107

52 439

verifier (gpt-4)
+ refiner (SCORE)

Figure 3: Confusion matrices of the predictions by the
verifier and the refiner on GSM8K test set. The base
LM is LLaMA-2-13B-chat. “True label” means the cor-
rectness of the initial solution. The predicted label of
the verifier represents whether the verifier judges it as
correct (1) or incorrect (0). The predicted label of the
verifier + refiner is the correctness of the final answer.
The strong verifier (gpt-4) makes fewer false positive
predictions than the weak self-verifier and unleashes the
potential of the small LM to revise an incorrect answer
into a correct one more likely than the other way around.

choice CommonsenseQA questions, our SCORE
fine-tuned refiner achieves much larger improve-
ment than the random baseline under oracle verifier,
indicating that our model is not simply making ran-
dom guess.

2) Our framework improves self-correction for
various base LMs on different types of reasoning
tasks. We validate the effectiveness of our SCORE
fine-tuning on both math reasoning and common-
sense reasoning tasks with two pretrained LMs.
In principle, our task-agonistic pipeline can be ap-
plied to a variety of datasets whose reasoning could
be expressed in a step-by-step format. We also ob-
serve that although the initial solutions proposed by
Gemma-7B are worse than LLaMA-13B (e.g., 67.2
< 69.7 on CommonsenseQA), Gemma-7B’s accu-
racy surpasses LLaMA-13B after self-correction
(e.g., 75.0 > 72.4 on CommonsenseQA). Consid-
ering that Gemma-7B is fine-tuned with even less
self-correction data (Table 1), we believe Gemma
is more effective at learning self-correction skills
from SCORE fine-tuning.

3) The self-correction performance is largely
bottlenecked by the verifier rather than the refiner.

Using the same fine-tuned refiner, the final accura-
cies vary a lot among different verifiers. The upper
bound performance suggested by an oracle veri-
fier demonstrate great potential for self-correction,
yet a weak self-verifier can only bring minor im-
provements, if not misguiding the refiner. Nev-
ertheless, when combined with a more advanced
verifier, such as GPT-4, our refiner achieves a sig-
nificant increase in final accuracy, e.g., an average
of +8.3 across five datasets for Gemma-7b-it. The
confusion matrices in Figure 3 show the system of
gpt-4-as-verifier + SCORE-refiner is more likely to
modify an incorrect answer to a correct one than the
other way round. This observation underscores the
necessity of effectively tackling the problem of rea-
soning verification before significant advances in
self-correction can be attained. Future work could
focus on the improvement of reasoning verification
that is built upon a mechanistic (Yüksekgönül et al.,
2023; Yang et al., 2024) and representational (Zou
et al., 2023; Zheng et al., 2024a) understanding of
LMs’ internal reasoning process.

4) The enhanced self-correction skills can trans-
fer across different datasets. When evaluating our
fine-tuned refiner on unseen datasets, it still demon-
strates consistent improvement over the baselines
(up to +12.1 by the GSM8K-trained Gemma-7B
on MATH subset). This shows that the model is
learning generalizable self-correction skills rather
than overfitting to a specific dataset. Additionally,
we find that the verifier does not transfer as well
as the refiner, reiterating the difficulty of reasoning
verification for LMs.

SCORE could be combined with oversample-
then-rerank, an orthogonal approach to further im-
prove reasoning (Cobbe et al., 2021; Li et al.,
2023b; Hosseini et al., 2024). By aggregating veri-
fications from multiple solutions, the weak verifiers
become stronger via ensembling and thus unleash
the power of refiner for better self-correction of
reasoning. Please refer to Appendix D for details.

5.2 Analysis of Self-Correction Behaviors
Following the methodology of Yu et al. (2023b), we
focus on two key metrics to understand the model’s
self-correction behaviors: 1) the frequency with
which the verifier decides to self-correct (Freq.),
and 2) the extent to which these self-correction
attempts enhance the model’s task performance
(Contrib.). Self-correction Freq. is measured by
the ratio of self-correction attempts to the size of
the test set, while self-correction Contrib. is deter-



Verifier Refiner GSM8K CSQA

Freq. Contrib. Freq. Contrib.

Base LM: LLaMA-2-13b-chat

prompted
prompted

3.7 10.2 17.5 19.6
self 2.7 2.9 1.2 40.0
oracle 62.8 4.0 30.3 46.2

self SCORE
(fine-tuned)

19.0 10.8 3.0 33.3
gpt-4 63.3 15.6 38.8 40.9
oracle 62.8 14.0 30.3 54.3

Base LM: Gemma-7b-it

prompted
prompted

18.7 21.5 20.2 45.3
self 9.9 9.9 2.9 42.9
oracle 63.7 2.1 32.8 22.4

self SCORE
(fine-tuned)

27.9 14.1 0.6 57.1
gpt-4 63.4 17.1 38.6 48.4
oracle 63.7 17.4 32.8 55.6

Table 2: Analysis of self-correction behaviors. The
settings are the same as those in Figure 2. Freq. (in
percentage) means the frequency with which the verifier
decides to self-correct. Contrib. (in percentage) refers
to the extent to which these self-correction attempts en-
hance the model’s task performance. A strong verifier
(e.g., gpt-4) maintains a balanced frequency of self-
correction, ideally similar to that of the oracle verifier,
and thus enhance the final accuracies in Figure 2. Addi-
tionally, the SCORE refiner possesses stronger refine-
ment capabilities, as indicated by a higher contribution
score than the prompted refiner.

mined by the number of instances in which these
attempts successfully resulted in the correct answer.

Table 2 presents a detailed analysis of the
model’s self-correction behaviors. Our analy-
sis demonstrates that our fine-tuned refiner has
a higher contribution to the final self-correction
performance, explaining why it outperforms the
prompting-based refiner (Madaan et al., 2023), as
shown in Figure 2. Additionally, we find that our
fine-tuned verifier and the gpt-4 verifier maintain a
more reasonable frequency of self-correction, strik-
ing a better balance between correction attempts
and accuracy.

5.3 Ablation Studies

In order to validate the various design decisions
made in constructing our pipeline, we have con-
ducted a series of ablation studies. The key findings
from Table 3 can be summarized as follows. 1) It is
easier for the LM to identify only the first erroneous
step, as the performance drops if we challenge it to
critique every step. 2) There is no need to separate
the SELF-REFINE process into two modules—one
for generating critiques and another for corrections.

Critique for
only the first
error step?

Generating
critique &
correction

in one pass?

Final
Accu.

Oracle
Accu.

Initial answers by
few-shot prompting 39.4 39.4

! ! 40.2 49.5
% ! 39.6 46.4
! % 39.4 43.6
% % 39.9 47.0

Table 3: Ablation study on the format of critique and
decoupling critique and correction generation. Results
are shown on GSM8K dev set with LLaMA-2-13B-chat
as base LM.

25 50 75 100
% of Refiner FT. Data Used

46

48

50

52
Fin

al
 A

cc
u.

GSM8K

verifier
initial
self
gpt-4
oracle

Figure 4: Final accuracy on GSM8K dev set w.r.t per-
centage of refiner fine-tuning data used and the type
of verifier. The base LM is LLaMA-2-13B-chat. Un-
der a strong verifier setting, our refiner brings greater
performance gain with more fine-tuning data. Yet the
performance plateaus with a weak verifier.

Such a separation not only increases the system’s
complexity and delays inference but also leads to a
diminished final accuracy.

5.4 Scaling with Fine-tuning Data Size
We investigate the data-efficiency for refiner fine-
tuning. Figure 4 plots the size of the refiner fine-
tuning data against the final accuracy with different
verification settings on GSM8K. We fine-tune the
LLaMA-2-13B-chat base model on a random sub-
set (varying from 25% to 75%) of the 14,499 total
critique-corrections as previously shown in Table 1.
We find that our refiner benefits from more fine-
tuning data when paired with strong verifiers (ora-
cle labels or gpt-4). Yet this effect is not observed
when using a weak self-verifier, again highlighting
the importance of verification for self-correction.
We find that increasing the fine-tuning dataset size



yields accuracy improvements up to a certain point.
For instance, beyond approximately 10k examples
(representing 75% of the SCORE fine-tuning data),
the performance does not further improve.

6 Related Work

Training Small Language Model to Self-Correct.
Recent work shows that smaller language model
can be fine-tuned on task-specific data to perform
self-correct. But existing methods rely either on
distilled data from stronger models (An et al.,
2023; Yu et al., 2023b; Han et al., 2024; Ye et al.,
2023; Zhang et al., 2024) or template-based cri-
tiques (Paul et al., 2023; Welleck et al., 2023).
Our approach differs from prior studies in this do-
main as we gather natural language critiques from
a small language model without relying on larger
models or task-specific heuristics. Furthermore,
we split the self-correction process into two phases:
(SELF-)VERIFY and SELF-REFINE. This separa-
tion contrasts with earlier approaches that often
merge the two skills, which not only obscures the
true abilities of these models in each respective
skill but also complicates the training process. In
a nutshell, we demonstrate that strong verifiers un-
leash the power of small LMs to SELF-REFINE.

Bootstrapping Reasoning in Language Mod-
els. As language models become more power-
ful, human supervision may not be sufficient to
improve these models. This trend calls for self-
improving LMs that provide training signals for
themselves (Zelikman et al., 2022; Gülçehre et al.,
2023; Yuan et al., 2023; Wang et al., 2023; Chen
et al., 2024). The bootstrapping methods often
involve iteratively fine-tuning a base LM on its self-
generated examples that obtain a high reward value
for correctness, helpfulness, or other desired prop-
erties. The bootstrapping process can further lever-
age label-free data (Huang et al., 2023a; Li et al.,
2023a; Yuan et al., 2024) by generating pseudo la-
bels using LLMs themselves. We draw inspiration
from this family of methods and bootstrap the self-
correction ability of smaller LMs. Our method is
complementary to the rejection-sampling finetun-
ing approach and can further improve reasoning
performance upon that.

Verifying Reasoning. Verification of reasoning
chains involves judging the correctness of the fi-
nal answer and each reasoning steps. The veri-
fier is often used to rerank multiple over-generated

solutions and select the best one as the final out-
put (Cobbe et al., 2021), or guide the LLM de-
coding through the search space for correct rea-
soning paths (Khalifa et al., 2023). We lever-
age a verifier to determine when to self-correct.
Verifiers come at different granularity, including
process/step-based (Uesato et al., 2022b; Li et al.,
2023b; Lightman et al., 2023) and outcome-based
supervision (Cobbe et al., 2021; Yu et al., 2023a;
Hosseini et al., 2024). We use the latter since it is
easier to construct labels automatically. Besides
training a verifier with supervision signals, LLMs
can also be few-shot prompted to become a veri-
fier (Weng et al., 2023; Madaan et al., 2023; Zhou
et al., 2023; Asai et al., 2023). We also explores
the possibility of LLM-as-verifier, and demonstrate
its usage for self-correction. We highlight the
importance of verification in the context of self-
correction, which echoes the recent finding that
LLMs can successfully solve a problem, but can-
not verify the reasoning (Gu et al., 2024; Oh et al.,
2024; West et al., 2023). This calls for more effort
for building evaluation benchmarks (Jacovi et al.,
2024; Chen et al., 2023a; Mao et al., 2024; Light-
man et al., 2023) and developing methods (Nguyen
et al., 2024; Xu et al., 2024; Hosseini et al., 2024)
to improve the reasoning verification.

7 Conclusion

In this study, we investigate how to leverage mini-
mal signals from strong LMs to teach small LMs
to self-correct their reasoning. We propose the
SCORE method to collect self-correction fine-
tuning data solely from small LMs. We find that
SCORE-fine-tuned small LMs become better re-
finer models without relying on knowledge distilla-
tion from stronger LMs, yet they still need strong
verifiers to be successful at self-correcting their
reasoning errors. Our results highlight that the
self-verification limitation of LMs currently poses
an obstacle to the advancement of intrinsic self-
correction in reasoning and thus warrants future
research.



Limitations

Generating large amounts of synthetic data from
smaller LMs requires intensive GPU computations,
yet it removes the reliance on proprietary API mod-
els. Comparing the cost-efficiency of these two
approaches will help us better trade-off between
data generated from smaller LMs and larger LMs.
Introducing the verifier and refiner during inference
also causes additional latency, which we discuss in
Appendix E.

Acknowledgements

This work is supported by LG AI Research. We
also thank ARR reviewers for their useful feedback.

References
Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,

Jian-Guang Lou, and Weizhu Chen. 2023. Learning
from mistakes makes LLM better reasoner. CoRR,
abs/2310.20689.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
CoRR, abs/2310.11511.

Shiqi Chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern,
Siyang Gao, Pengfei Liu, and Junxian He. 2023a.
FELM: benchmarking factuality evaluation of large
language models. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. CoRR, abs/2304.05128.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. CoRR, abs/2401.01335.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Alex Gu, Wen-Ding Li, Naman Jain, Theo X. Olaus-
son, Celine Lee, Koushik Sen, and Armando Solar-
Lezama. 2024. The counterfeit conundrum: Can
code language models grasp the nuances of their in-
correct generations? CoRR, abs/2402.19475.

Çaglar Gülçehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek

Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
CoRR, abs/2308.08998.

Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, and
Yanghua Xiao. 2024. Small language model can
self-correct. CoRR, abs/2401.07301.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C.
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. CoRR, abs/2402.06457.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023a. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 1051–1068. Association
for Computational Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023b. Large language
models cannot self-correct reasoning yet. CoRR,
abs/2310.01798.

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan
Herzig, Or Honovich, Michael Tseng, Michael
Collins, Roee Aharoni, and Mor Geva. 2024. A
chain-of-thought is as strong as its weakest link: A
benchmark for verifiers of reasoning chains. CoRR,
abs/2402.00559.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae
Lee, Honglak Lee, and Lu Wang. 2023. GRACE:
Discriminator-guided chain-of-thought reasoning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 15299–15328, Singa-
pore. Association for Computational Linguistics.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. QASC: A
dataset for question answering via sentence compo-
sition. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI

https://doi.org/10.48550/ARXIV.2310.20689
https://doi.org/10.48550/ARXIV.2310.20689
https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2310.11511
http://papers.nips.cc/paper_files/paper/2023/hash/8b8a7960d343e023a6a0afe37eee6022-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/8b8a7960d343e023a6a0afe37eee6022-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2401.01335
https://doi.org/10.48550/ARXIV.2401.01335
https://doi.org/10.48550/ARXIV.2401.01335
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2402.19475
https://doi.org/10.48550/ARXIV.2402.19475
https://doi.org/10.48550/ARXIV.2402.19475
https://doi.org/10.48550/ARXIV.2308.08998
https://doi.org/10.48550/ARXIV.2401.07301
https://doi.org/10.48550/ARXIV.2401.07301
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.48550/ARXIV.2402.06457
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67
https://doi.org/10.48550/ARXIV.2310.01798
https://doi.org/10.48550/ARXIV.2310.01798
https://doi.org/10.48550/ARXIV.2402.00559
https://doi.org/10.48550/ARXIV.2402.00559
https://doi.org/10.48550/ARXIV.2402.00559
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.1609/AAAI.V34I05.6319
https://doi.org/10.1609/AAAI.V34I05.6319
https://doi.org/10.1609/AAAI.V34I05.6319


2020, New York, NY, USA, February 7-12, 2020,
pages 8082–8090. AAAI Press.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023a. Self-alignment with instruction back-
translation. CoRR, abs/2308.06259.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023b. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 5315–5333. Association for
Computational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Har-
rison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl
Cobbe. 2023. Let’s verify step by step. CoRR,
abs/2305.20050.

Bill Yuchen Lin, Ziyi Wu, Yichi Yang, Dong-Ho Lee,
and Xiang Ren. 2021. Riddlesense: Reasoning about
riddle questions featuring linguistic creativity and
commonsense knowledge. In Findings of the Associ-
ation for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 1504–
1515. Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback. CoRR, abs/2303.17651.

Yujun Mao, Yoon Kim, and Yilun Zhou. 2024. CHAMP:
A competition-level dataset for fine-grained analyses
of llms’ mathematical reasoning capabilities. CoRR,
abs/2401.06961.

Minh-Vuong Nguyen, Linhao Luo, Fatemeh Shiri, Dinh
Phung, Yuan-Fang Li, Thuy-Trang Vu, and Gho-
lamreza Haffari. 2024. Direct evaluation of chain-
of-thought in multi-hop reasoning with knowledge
graphs. CoRR, abs/2402.11199.

Juhyun Oh, Eunsu Kim, Inha Cha, and Alice Oh. 2024.
The generative AI paradox on evaluation: What it can
solve, it may not evaluate. CoRR, abs/2402.06204.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies. CoRR, abs/2308.03188.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and Boi
Faltings. 2023. REFINER: reasoning feedback on in-
termediate representations. CoRR, abs/2304.01904.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
CoRR, abs/2206.05802.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. CoRR, abs/1811.00937.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022a. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

http://papers.nips.cc/paper_files/paper/2023/hash/7cc1005ec73cfbaac9fa21192b622507-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2308.06259
https://doi.org/10.48550/ARXIV.2308.06259
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.48550/ARXIV.2305.20050
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.131
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.131
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.131
https://doi.org/10.48550/ARXIV.2303.17651
https://doi.org/10.48550/ARXIV.2303.17651
https://doi.org/10.48550/ARXIV.2401.06961
https://doi.org/10.48550/ARXIV.2401.06961
https://doi.org/10.48550/ARXIV.2401.06961
https://doi.org/10.48550/ARXIV.2402.11199
https://doi.org/10.48550/ARXIV.2402.11199
https://doi.org/10.48550/ARXIV.2402.11199
https://doi.org/10.48550/ARXIV.2402.06204
https://doi.org/10.48550/ARXIV.2402.06204
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2308.03188
https://doi.org/10.48550/ARXIV.2308.03188
https://doi.org/10.48550/ARXIV.2308.03188
https://doi.org/10.48550/ARXIV.2304.01904
https://doi.org/10.48550/ARXIV.2304.01904
https://doi.org/10.48550/ARXIV.2206.05802
http://arxiv.org/abs/1811.00937
http://arxiv.org/abs/1811.00937
http://arxiv.org/abs/1811.00937
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288


Jonathan Uesato, Nate Kushman, Ramana Kumar,
H. Francis Song, Noah Y. Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. 2022b.
Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275.

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai
Lin, Yunbo Cao, Tianyu Liu, and Zhifang Sui. 2023.
Making large language models better reasoners with
alignment. CoRR, abs/2309.02144.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2023. Generating sequences by learning to
self-correct. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with self-verification. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, pages 2550–2575.
Association for Computational Linguistics.

Peter West, Ximing Lu, Nouha Dziri, Faeze Brah-
man, Linjie Li, Jena D. Hwang, Liwei Jiang, Jil-
lian Fisher, Abhilasha Ravichander, Khyathi Chandu,
Benjamin Newman, Pang Wei Koh, Allyson Ettinger,
and Yejin Choi. 2023. The generative AI paradox:
"what it can create, it may not understand". CoRR,
abs/2311.00059.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane
Suhr, Prithviraj Ammanabrolu, Noah A. Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. 2023. Fine-
grained human feedback gives better rewards for lan-
guage model training. CoRR, abs/2306.01693.

Xin Xu, Shizhe Diao, Can Yang, and Yang Wang. 2024.
Can we verify step by step for incorrect answer de-
tection? CoRR, abs/2402.10528.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor
Geva, and Sebastian Riedel. 2024. Do large language
models latently perform multi-hop reasoning? CoRR,
abs/2402.16837.

Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong
Kim, Hyeonbin Hwang, and Minjoon Seo. 2023.
Selfee: Iterative self-revising llm empowered by self-
feedback generation. Blog post.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a.
Outcome-supervised verifiers for planning in mathe-
matical reasoning. CoRR, abs/2311.09724.

Xiao Yu, Baolin Peng, Michel Galley, Jianfeng Gao, and
Zhou Yu. 2023b. Teaching language models to self-
improve through interactive demonstrations. CoRR,
abs/2310.13522.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. CoRR,
abs/2401.10020.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scaling
relationship on learning mathematical reasoning with
large language models. CoRR, abs/2308.01825.

Mert Yüksekgönül, Varun Chandrasekaran, Erik Jones,
Suriya Gunasekar, Ranjita Naik, Hamid Palangi, Ece
Kamar, and Besmira Nushi. 2023. Attention satis-
fies: A constraint-satisfaction lens on factual errors
of language models. CoRR, abs/2309.15098.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022.

Xinliang Frederick Zhang, Carter Blum, Temma Choji,
Shalin Shah, and Alakananda Vempala. 2024. Ultra:
Unleash llms’ potential for event argument extraction
through hierarchical modeling and pair-wise refine-
ment. ArXiv, abs/2401.13218.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie
Zhou, Kai-Wei Chang, Minlie Huang, and Nanyun
Peng. 2024a. Prompt-driven llm safeguarding via
directed representation optimization. arXiv preprint
arXiv:2401.18018.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, and Yongqiang Ma. 2024b. Lla-
mafactory: Unified efficient fine-tuning of 100+ lan-
guage models. arXiv preprint arXiv:2403.13372.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Solving
challenging math word problems using GPT-4 code
interpreter with code-based self-verification. CoRR,
abs/2308.07921.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan
Wang, Alex Mallen, Steven Basart, Sanmi Koyejo,
Dawn Song, Matt Fredrikson, J. Zico Kolter, and
Dan Hendrycks. 2023. Representation engineering:
A top-down approach to AI transparency. CoRR,
abs/2310.01405.

https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2309.02144
https://doi.org/10.48550/ARXIV.2309.02144
https://openreview.net/pdf?id=hH36JeQZDaO
https://openreview.net/pdf?id=hH36JeQZDaO
https://aclanthology.org/2023.findings-emnlp.167
https://aclanthology.org/2023.findings-emnlp.167
https://doi.org/10.48550/ARXIV.2311.00059
https://doi.org/10.48550/ARXIV.2311.00059
https://doi.org/10.48550/ARXIV.2306.01693
https://doi.org/10.48550/ARXIV.2306.01693
https://doi.org/10.48550/ARXIV.2306.01693
https://doi.org/10.48550/ARXIV.2402.10528
https://doi.org/10.48550/ARXIV.2402.10528
https://doi.org/10.48550/ARXIV.2402.16837
https://doi.org/10.48550/ARXIV.2402.16837
https://kaistai.github.io/SelFee/
https://kaistai.github.io/SelFee/
https://doi.org/10.48550/ARXIV.2311.09724
https://doi.org/10.48550/ARXIV.2311.09724
https://doi.org/10.48550/ARXIV.2310.13522
https://doi.org/10.48550/ARXIV.2310.13522
https://doi.org/10.48550/ARXIV.2401.10020
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2309.15098
https://doi.org/10.48550/ARXIV.2309.15098
https://doi.org/10.48550/ARXIV.2309.15098
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://api.semanticscholar.org/CorpusID:267199878
https://api.semanticscholar.org/CorpusID:267199878
https://api.semanticscholar.org/CorpusID:267199878
https://api.semanticscholar.org/CorpusID:267199878
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2310.01405
https://doi.org/10.48550/ARXIV.2310.01405


A Prompts

8-Shot CoT Prompts with 2 Shots Shown Below

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason
give to Denny?
Explain your reasoning step by step. Your final answer should be a single numerical number, in the form answer .
End your response with [END].

Step 1: Jason originally had 20 lollipops.
Step 2: After giving some to Denny, Jason has 12 lollipops.
Step 3: The number of lollipops Jason gave to Denny is the difference between the original number and the remaining
number, which is 20 - 12 = 8 lollipops.
Step 4: The answer is 8 lollipops. [END]

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be
21 trees. How many trees did the grove workers plant today?
Explain your reasoning step by step. Your final answer should be a single numerical number, in the form answer .
End your response with [END].

Step 1: Initially, there are 15 trees in the grove.
Step 2: After planting, the total number of trees in the grove is 21.
Step 3: The number of trees planted by the grove workers today is the difference between the final number and the
initial number of trees, which is 21 - 15 = 6 trees.
Step 4: The answer is 6 trees. [END]

2-Shot Critique Prompts with 1 Shot Shown Below

Q: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs. Her parents
decided to give her $15 for that purpose, and her grandparents twice as much as her parents. How much more money
does Betty need to buy the wallet?

Answer 1 (Incorrect):

Step 1: Betty needs $100 to buy the wallet.
Step 2: Her parents gave her $15, which is half of the remaining amount.
...
Step 7: The answer is $55 .

Answer 2 (Correct):

Step 1: Betty needs $100 to buy the wallet, but she currently has only half of the money, which is $50.
Step 2: Her parents gave her $15, so she now has $50 + $15 = $65.
...
Step 6: The answer is 5 dollars.

There are reasoning errors in Answer 1. Please go through each step in Answer 1, use Answer 2 as a reference for the
correct approach, and provide feedback that helps correct the errors in Answer 1. End your response with [END].

Let’s go through the errors in Answer 1 and provide feedback:

Answer 1 (Incorrect):

Step 1: Betty needs $100 to buy the wallet.
Feedback: This step is correct.

Step 2: Her parents gave her $15, which is half of the remaining amount.
Feedback: This is incorrect. Betty’s parents gave her $15, but it’s not necessarily half of the remaining amount. The
question states that Betty has only half of the money she needs, not half of the remaining amount after her parents’
contribution.

...

Step 7: The answer is $55 .

Feedback: The correct answer, based on the corrected calculations, should be $5 . [END]



2-Shot Correction Prompts with 1 Shot Shwon Below

Q: Kelly is grocery shopping at a supermarket and is making sure she has enough in her budget for the items in her
cart. Her 5 packs of bacon cost $10 in total and she has 6 packets of chicken which each cost twice as much as a
pack of bacon. She also has 3 packs of strawberries, priced at $4 each, and 7 packs of apples, each priced at half the
price of a pack of strawberries. If Kelly’s budget is $65 then how much money, in dollars, does she have left in her budget?

Step 1: Kelly spends $10 in total for 5 packs of bacon.
Feedback: This step is correct.

Step 2: Each packet of chicken costs twice as much as a pack of bacon, which is 2 x $10 = $20.
Feedback: Each pack of chicken costs twice as much as a pack of bacon, not the total cost of bacon. So we need to
calculate the cost of one pack of bacon first (total cost of bacon / total bags of bacon) and use that.

...

Step 7: The answer is $29 .

Can you correct the errors in your reasoning based on the feedback provided? Your final answer should be a single
numerical number, in the form answer . End your response with [END].

Step 1: Kelly spends $10 in total for 5 packs of bacon, so each pack of bacon costs $10 / 5 = $2.
Step 2: Each packet of chicken costs twice as much as a pack of bacon, which is 2 x $2 = $4. Since she has 6 packets of
chicken, she spends 6 x $4 = $24 on chicken.
...
Step 7: The answer is $5 . [END]

4-Shot Verifying Prompts with 2 Shots Shown Below

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs. Her
parents decided to give her $15 for that purpose, and her grandparents twice as much as her parents. How much more
money does Betty need to buy the wallet?

Solution:
Step 1: Betty needs $100 to buy the wallet.
Step 2: Her parents gave her $15, which is half of the remaining amount.
Step 3: Her grandparents gave her twice as much as her parents, which is 2 x $15 = $30.
Step 4: The total amount of money Betty has now is $15 + $30 = $45.
Step 5: The difference between the amount she needs and the amount she has is $100 - $45 = $55.
Step 6: Betty still needs $55 to buy the wallet.
Step 7: The answer is $55 .

Is this solution correct or not? Answer **correct** or **incorrect** and explain your reasoning. End your response
with [END].

The solution is **incorrect**. You’ve ignored the original amount that Betty had saved, which is half the wallet’s cost
($100/2 = $50). So, before receiving money from her parents and grandparents, she already had $50. [END]

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs. Her
parents decided to give her $15 for that purpose, and her grandparents twice as much as her parents. How much more
money does Betty need to buy the wallet?

Solution:
Step 1: Betty needs $100 to buy the wallet, but she currently has only half of the money, which is $50.
Step 2: Her parents gave her $15, so she now has $50 + $15 = $65.
Step 3: Her grandparents gave her twice as much as her parents, so she received $15 x 2 = $30 from her grandparents.
Step 4: Betty now has a total of $65 + $30 = $95.
Step 5: To find out how much more money Betty needs, subtract the amount she has from the amount she needs, which
is $100 - $95 = $5.
Step 6: The answer is 5 dollars.

Is this solution correct or not? Answer **correct** or **incorrect** and explain your reasoning. End your response
with [END].

This solution is **correct**. Betty only needs $5 more to buy the $100 wallet. This is because she started with $50,
received $15 from her parents, and received $30 from her grandparents, which totals $95. Subtracting that from the total
cost of the wallet leaves her with needing just $5. [END]



B Proof: Using Correct Solutions as Hints
Make Critique Generation Easier

Intuitively, if we provide the LM with a correct
solution, it will be easier for the LM to generate a
critique for the incorrect solution of the same ques-
tion. In fact, we can verify this intuition from a
mathematical perspective. Given a pair of incorrect-
correct solutions (s−, s+), our goal is to learn a
mapping from the incorrect solution to the cor-
rect one, which is modeled by M(s+|q, s−), where
M(·) is the probability distribution of the base LM.
By introducing critique c as intermediate genera-
tions, we have:

M(s+|q, s−) = M(c|q, s−) ·M(s+|q, s−, c) (1)

The optimal critique c∗ that we want to find should
be best at facilitating this two-phase generation
process, i.e.,

c∗ = argmax
c

M(c|q, s−) ·M(s+|q, s−, c) (2)

To obtain the optimal critique, we can first ask
the model to reverse-engineer a critique ĉ with the
correct solution s+ as a hint:

ĉ = argmax
c

M(c|q, s−, s+) (3)

With Bayes’ theorem, Equation 3 can be re-written
as:

ĉ = argmax
c

M(c|q, s−, s+)

= argmax
c

M(c|q, s−) ·M(s+|q, s−, c)
M(s+|q, s−)

= argmax
c

M(c|q, s−) ·M(s+|q, s−, c)

= c∗

(4)

which is exactly what we want.
This simple proof shows that in principle, the

critique generated with the correct solution as a
hint should be best at guiding the LM to recover
the correct solution from the incorrect one.

C Combining SCORE with Rejection
Sampling Fine-Tuning

Aside from self-correction upon the initial solution
generated by the base LM as shown in Figure 2, we
also explore whether our proposed self-correction
method can be combined with other fine-tuning
methods (e.g., rejection sampling fine-tuning) to
further improve reasoning performance. Here we

Verifier Refiner GSM8K

Verifier F1 Final Accu.

Initial solutions by RFT model N/A 42.7

ours

SCORE

47.3 42.8 (+0.1)
gpt-3.5-turbo 59.7 31.5 (-11.2)

w/ SC@10 63.6 38.1 (-4.6)
gpt-4 89.2 46.3 (+3.6)
oracle 100.0 51.4 (+8.7)

Table 4: Performance of self-correction with different
inputs on GSM8K test set using LLaMA-2-13B-chat
as base LM. The initial solution is generated by the
rejection-sampling fine-tuned model.

Verifier
param.

init.
from

Refiner
param.

init.
from

Refiner
ft. on

solutions
from

Final
Accu.

Oracle
Accu.

Initial solutions by RFT model 44.9 44.9

RFT base RFT 45.3 53.3
base base RFT 45.0 53.3
RFT RFT RFT 45.2 52.3
base RFT RFT 45.0 52.3
RFT base base 45.1 53.3

Table 5: Ablation study on parameter initialization and
refiner’s fine-tuning data source. Results are shown on
GSM8K dev set with LLaMA-2-13B-chat as base LM.

replace the base LM with the RFT model. Rejec-
tion sampling fine-tuning leverages correct gener-
ations for training. Yet it ignores rich information
in the large amounts of incorrect solutions. We
hope weaker LMs can also learn from its own mis-
takes to become better reasoners. Since we have
already obtained a stronger RFT model that avoids
some mistakes by base LMs that are easier to fix,
we want our refiner to learn to correct errors that
require more in-depth thinking. Consequently, to
collect the incorrect solutions to be reflected upon,
we resample 10 solutions for each question from
the RFT model, instead of reusing the sampled so-
lutions from the base LM in step (a) of Figure 1.
Then we follow the rest of the pipeline to collect
critique-correction data for refiner finetuning.

Table 4 shows that our method is complementary
to RFT. Concretely, RFT improves the final accu-
racy upon the few-shot prompting baseline from
37.2 to 42.7, while our self-correction system (gpt-
4 as verifier and our finetuned LLaMA as refiner)
can further improve the performance from 42.7 to
45.1, demonstrating the effectiveness of our method
over the few-shot prompting and RFT baselines.

Table 5 investigates the optimal approach for ini-



Verifier Refiner GSM8K GSM8K →
MATH Subset CSQA CSQA →

QASC
CSQA →

RiddleSense

V. F1 ACC V. F1 ACC V. F1 ACC V. F1 ACC V. F1 ACC

Base LM: LLaMA-2-13B-chat

Initial answers by
few-shot prompting - 37.2 - 23.8 - 69.7 - 65.9 - 57.6

prompted prompted 31.9 36.9 -0.3 20.0 23.8 +0.0 52.5 62.2 -7.5 53.1 63.3 -2.6 51.9 55.2 -2.4
oracle 100.0 39.7 +2.5 100.0 26.5 +2.7 100.0 83.7 +14.0 100.0 76.1 +10.2 100.0 72.7 +15.1

self SCORE
(fine-tuned)

51.1 37.5 +0.3 36.0 23.8 +0.0 47.1 69.7 +0.0 45.8 65.6 -0.3 42.1 57.5 -0.1
gpt-4 88.4 41.4 +4.2 82.9 26.5 +2.7 80.3 72.4 +2.7 85.9 68.1 +2.2 87.7 67.3 +9.7

oracle 100.0 46.0 +8.8 100.0 31.5 +7.7 100.0 86.2 +16.5 100.0 78.0 +12.1 100.0 76.4 +18.8

Base LM: Gemma-7B-it

Initial answers by
few-shot prompting - 36.3 - 27.1 - 67.2 - 65.0 - 57.1

prompted prompted 45.3 36.3 +0.0 39.2 28.2 +1.1 55.7 65.4 -1.8 61.0 65.1 +0.1 58.2 55.3 -1.8
oracle 100.0 37.7 +1.4 100.0 29.3 +2.2 100.0 74.5 +7.3 100.0 71.3 +6.3 100.0 62.3 +5.2

self SCORE
(fine-tuned)

56.8 36.7 +0.4 49.5 27.1 +0.0 42.0 67.5 +0.3 41.0 65.2 +0.2 38.1 56.8 -0.3
gpt-4 89.5 42.5 +6.2 82.8 39.2 +12.1 82.7 75.0 +7.8 89.9 72.8 +7.8 85.6 64.9 +7.8
oracle 100.0 47.4 +11.1 100.0 44.2 +17.1 100.0 85.4 +18.2 100.0 77.3 +12.3 100.0 72.7 +15.6

Table 6: Performance of SCORE models using LLaMA-2-13B-chat and Gemma-7B-it as base LM. We report F1
score of the verifiers (V. F1) and final answer accuracy (ACC). We include test results for training tasks (GSM8K
and CommonsenseQA/CSQA), as well as transfer evaluation of GSM8K trained models on MATH subset, CSQA
trained models on QASC and RiddleSense. All models use greedy decoding. We highlight the best-performing
system per model without using an oracle verifier. On each dataset, the superior model among the highlighted ones
is indicated in bold.

tializing the parameters of the refiner and verifier
during fine-tuning. Our empirical findings indicate
that initializing the verifier from the RFT model
and the refiner from the base language model re-
sults in superior performance. We hypothesize that
stronger reasoning capabilities of RFT model could
complement the verification skills. Furthermore,
when generating critiques of solutions, those cre-
ated using solutions by the RFT model outperform
those based on the base model.

D Combining SCORE with
Oversample-then-Rerank

Self-correction could be combined with
oversample-then-rerank, an orthogonal ap-
proach to further improve reasoning (Cobbe et al.,
2021; Li et al., 2023b; Hosseini et al., 2024). The
oversample-then-rerank approach first samples k
solutions per question by few-shot prompting, then
leverages a trained verifier to score the correctness
of each solution, and selects the final answer based
on a weighted voting scheme (Li et al., 2023b) as
follows:

ŷ = argmax
y

k∑
i=1

1yi=y · pv(q, si,yi),

where q is the question, si is the i-th sampled solu-
tions, yi is the final answer extracted from si, and
1yi=y is an indicator function that returns 1 (or
0) if yi = y (or not), and pv(·) is the probability
produced by the verifier6

To integrate self-correction with the oversample-
then-rerank approach, we apply the SCORE refiner
to solutions predicted to be correct with a proba-
bility below a certain threshold. This threshold is
automatically determined to maximize accuracy
on the development set and is then fixed for use
during test-time predictions. The refiner greedily
decodes one refined solution for each solution. Sub-
sequently, we combine the refined solutions with
the original solutions predicted as correct to arrive
at the final answer using weighted voting for aggre-
gation:

ŷ = argmax
y

k∑
i=1

(
1yi=y · piv · 1piv≥C

+ 1y′
i=y · pi′v · 1piv<C

)
,

6We find that for answer aggregation, weighted voting
performs better than majority voting and selecting the top-
1 solution, which echoes the findings of Li et al. (2023b).
Therefore, we report the weighted voting results in this section.



# Candidate
Solutions

Refine w/
SCORE? GSM8K GSM8K→

MATH Subset

Base LM: LLaMA-2-13B-chat

1 % 37.2 23.8
1 ! 37.5 +0.3 23.8 +0.0

10 % 44.3 +7.1 30.9 +7.1

10 ! 46.0 +8.8 29.8 +6.0

Base LM: Gemma-7B-it

1 % 36.3 27.1
1 ! 36.7 +0.4 27.1 +0.0

10 % 39.5 +3.2 34.3 +7.2

10 ! 41.1 +4.8 35.9 +8.8

Table 7: Self-correction combined with the oversample-
then-rerank strategy (Cobbe et al., 2021) yield bet-
ter results than using either one alone. We show
results on GSM8K test set and transfer evaluation
of GSM8K trained models on MATH subset using
LLaMA-2-13B-chat and Gemma-7B-it as base LMs.

where piv = pv(q, si,yi) is the verifier probability
for the original solution si, pi

′
v = pv(q, s

′
i,y

′
i) is

the verifier probability for the refined solution s′i
coming from si, and C is a threshold for determin-
ing when to self-refine.

We sample k = 10 solutions for each question
with a temperature of 0.9 and use the same fine-
tuned self-verifier (not gpt-4 or oracle verifier)
across all the settings in Table 7 that involve a
verifier. As shown by previous work, oversample-
then-rerank improves performance upon few-shot
prompting with only greedy decoding by a large
margin, because it better explores the solution
space by sampling multiple solutions. Our self-
correction method is both orthogonal to and syner-
gistic with the oversample-then-rerank. By incorpo-
rating our self-correction method into the baseline,
with only a weak self-verifier, we still observe an
improvement in accuracy compared to the baseline:
+1.7 for LLaMA-2-13B-chat on GSM8K, and +1.6
for GSM8K-trained Gemma-7B-it on MATH. By
aggregating verifications from multiple solutions,
the weak verifiers become stronger via ensembling
and thus unleash the power of refiner for better
self-correction of reasoning.

E Inference Overhead by SCORE

Although we employ three models for inference
(few-shot prompted solution generator, self-verifier,
self-refiner), it will not necessarily triple the latency.
The self-verifier’s latency is minimal because it
classifies rather than generates, and the refiner is

invoked only if the verifier flags the initial solu-
tion as incorrect. The increased inference time
of our pipeline over the base model is modest, at
x1.3 times for LLaMA-2-13B-chat and x1.4 times
for Gemma-7B-it. Comparatively, the oversample-
then-rerank baseline (Appendix D) results in a 4.5
times increase in latency when sampling 10 solu-
tions per question.


	Introduction
	Problem Formulation of Self-Correction
	The SCORE Method
	Generating and Filtering Critiques
	Supervised Fine-tuning of the Refiner

	Experimental Setup
	Results
	Main Findings
	Analysis of Self-Correction Behaviors
	Ablation Studies
	Scaling with Fine-tuning Data Size

	Related Work
	Conclusion
	Prompts
	Proof: Using Correct Solutions as Hints Make Critique Generation Easier
	Combining SCORE with Rejection Sampling Fine-Tuning
	Combining SCORE with Oversample-then-Rerank
	Inference Overhead by SCORE

