EECS 498-004: Introduction to Natural Language Processing

Instructor: Prof. Lu Wang Computer Science and Engineering University of Michigan https://web.eecs.umich.edu/~wangluxy/ Two methods for getting short dense vectors

- Neural Language Model (word2vec)
- Singular Value Decomposition (SVD)

Two methods for getting short dense vectors

- Neural Language Model (word2vec)
- Singular Value Decomposition (SVD)

Sparse versus dense vectors

- Why dense vectors?
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

3 4

Rank of a Matrix

• What is the rank of a matrix A?

Rank of a Matrix

- What is the rank of a matrix A?
- Number of linearly independent columns or rows of A

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

Rank of a Matrix

- What is the rank of a matrix A?
- Number of linearly independent columns or rows of A

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

- Rank is 2
- We can rewrite A as two "basis" vectors: [1 2 1] [-2 -3 1]

Rank as "Dimensionality" Cloud of points 3D space: Think of point positions as a matrix: [1 2

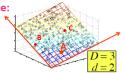
7

8

Rank as "Dimensionality"

Cloud of points 3D space:

Think of point positions as a matrix: $\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$ A B C



- Rewrite the coordinates in a more efficient way!
 Old basis vectors: [1 0 0], [0 1 0], [0 0 1]
- New basis vectors: [1 2 1], [-2 -3 1]

9

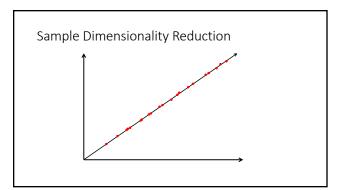
Intuition of Dimensionality Reduction

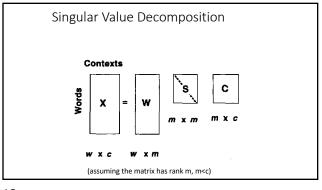
- Approximate an N-dimensional dataset using fewer dimensions
- By first rotating the axes into a new space
- In which the highest order dimension captures the most variance in the original dataset
- And the next dimension captures the next most variance, etc.

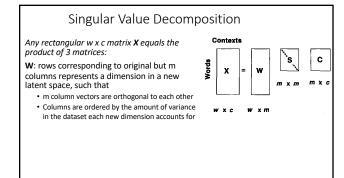
10

Sample Dimensionality Reduction

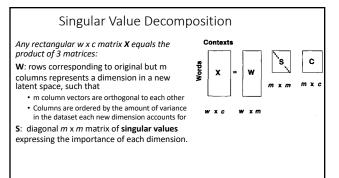
11







13 14



Singular Value Decomposition

Any rectangular w x c matrix X equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a dimension in a new latent space, such that

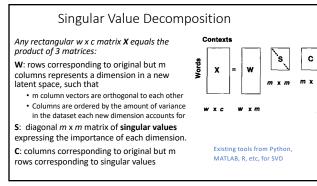
• m column vectors are orthogonal to each other
• Columns are ordered by the amount of variance in the dataset each new dimension accounts for

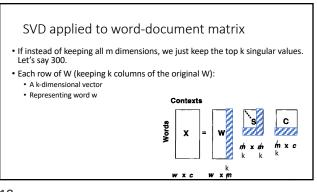
S: diagonal m x m matrix of singular values expressing the importance of each dimension.

C: columns corresponding to original but m rows corresponding to singular values

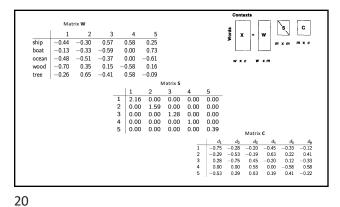
16

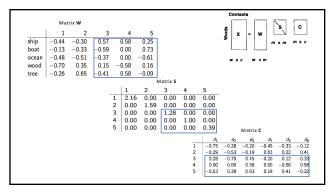
15

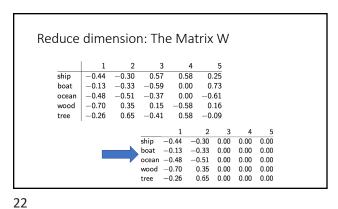




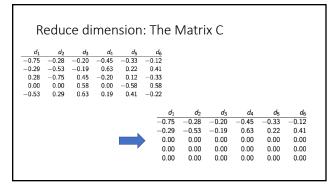
SVD on Word-Document Matrix: Example • The matrix X d_3 d_4 d_5 d_1 d_2 d_6 ship boat ocean wood tree





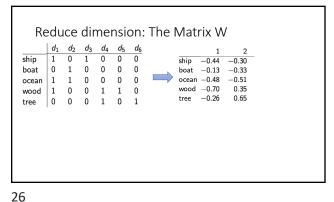


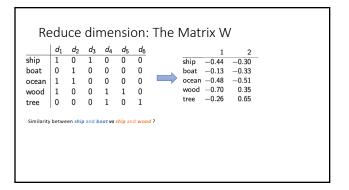
1	2	3	4	5					
2.16	0.00	0.00	0.00	0.00					
0.00	1.59	0.00	0.00	0.00					
0.00	0.00	1.28	0.00	0.00					
0.00	0.00	0.00	1.00	0.00					
0.00	0.00	0.00	0.00	0.39					
					1	2	3	4	5
					2.16	0.00	0.00	0.00	0.00
				- K	0.00	1.59	0.00	0.00	0.00
					0.00	0.00	0.00	0.00	0.00
				,	0.00	0.00	0.00	0.00	0.00
					0.00	0.00	0.00	0.00	0.00

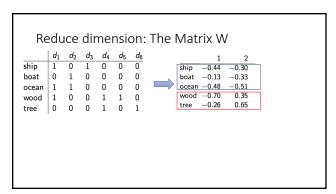


3/9/21

Reduce dimension: The Matrix W d_1 d_2 d_3 d_4 d_5 d_6 ship 0 0 0 ship -0.44 -0.30 0.00 0.00 0.00 0 1 0 0 0 0 boat -0.13 -0.33 0.00 0.00 0.00 ocean -0.48 -0.51 0.00 0.00 0.00 boat ocean 1 1 0 0 0 0 wood -0.700.35 0.00 0.00 0.00 wood 1 0 0 1 1 0 tree -0.26 0.65 0.00 0.00 0.00 0 0 0 1 0 1







27 28

More details

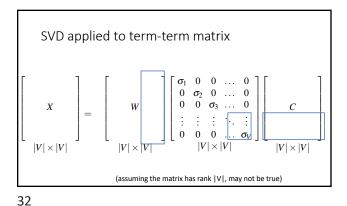
25

- 300 dimensions are commonly used
- The cells are commonly weighted by a product of two weights (TF-IDF)
 - Local weight: term frequency (or log version)
 - Global weight: idf

Let's return to PPMI word-word matrices

• Can we apply SVD to them?

 $\begin{bmatrix} X \\ |V| \times |V| \end{bmatrix} = \begin{bmatrix} W \\ |V| \times |V| \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_V \end{bmatrix} \begin{bmatrix} C \\ |V| \times |V| \end{bmatrix}$ (assuming the matrix has rank |V|, may not be true)



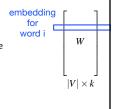
31

Truncated SVD on term-term matrix

$$\left[\begin{array}{c} X \\ \\ |V| \times |V| \end{array}\right] = \left[\begin{array}{c} W \\ W \\ |V| \times |V| \end{array}\right] \left[\begin{array}{cccc} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_k \end{array}\right] \left[\begin{array}{c} C \\ k \times |V| \end{array}\right]$$

Truncated SVD produces embeddings

- Each row of W matrix is a k-dimensional representation of each word w
- k might range from 50 to 1000
- Generally we keep the top k dimensions, but some experiments suggest that getting rid of the top 1 dimension or even the top 50 dimensions is helpful (Lapesa and Evert 2014).



33

34

Embeddings versus sparse vectors

- Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity
 - Denoising: low-order dimensions may represent unimportant information
 - Truncation may help the models generalize better to unseen data.
 - Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.
 - Dense models may do better at capturing higher order cooccurrence.