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Outline

• Vector Semantics
• Sparse representation
• Pointwise Mutual Information (PMI)

• Dense representation 
• Neural Language Model (Word2Vec)
• Singular Value Decomposition (SVD)
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Why vector models of meaning?
computing the similarity between words
“fast” is similar to “rapid”
“tall” is similar to “height”

Question answering:
Q: “How tall is Mt. Everest?”
Candidate A: “The official height of Mount Everest is 29029 feet”
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• Automatically constructed clusters of semantically similar words 
(Charniak, 1997):
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Smoothing for statistical language models
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Distributional models of meaning
= vector-space models of meaning 
= vector semantics

Intuitions:  Zellig Harris (1954):
• “oculist and eye-doctor … occur in almost the same 

environments”
• “If A and B have almost identical environments we say that 

they are synonyms.”

Firth (1957): 
• “You shall know a word by the company it keeps!”
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Intuition of distributional word similarity

• Example:
• What is tesgüino?
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Intuition of distributional word similarity

• Example:
A bottle of tesgüino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.

• From context words humans can guess tesgüinomeans
• an alcoholic beverage like beer

• Intuition for algorithm: 
• Two words are similar if they have similar word contexts.
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What vector representation does?

• Model the meaning of a word by “embedding” in a vector space
• The meaning of a word is a vector of numbers
• Vector models are also called “embeddings”
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Sample Lexical Vector Space
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Outline

• Vector Semantics
• Sparse representation
• Pointwise Mutual Information (PMI)

• Dense representation
• Neural Language Model (Word2Vec)
• Singular Value Decomposition (SVD)
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Term-context matrix for word similarity
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As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

Word-document matrix

•Each cell: count of word t in document d:  tft,d
• Each document is a count vector in ℕv: a column below 
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The words in a word-document matrix

•Each word is a count vector in ℕD: a row below 

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0
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The words in a word-document matrix

•Two words are similar if their vectors are similar

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0
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Word-word matrix for word similarity
•Two words are similar in meaning if their context vectors 

are similar

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0
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tors of numbers representing the terms (words) that occur within the collection
(Salton, 1971). In information retrieval these numbers are called the term weight, aterm weight

function of the term’s frequency in the document.
More generally, the term-document matrix X has V rows (one for each word

type in the vocabulary) and D columns (one for each document in the collection).
Each column represents a document. A query is also represented by a vector q of
length |V |. We go about finding the most relevant document to query by finding
the document whose vector is most similar to the query; later in the chapter we’ll
introduce some of the components of this process: the tf-idf term weighting, and the
cosine similarity metric.

But now let’s turn to the insight of vector semantics for representing the meaning
of words. The idea is that we can also represent each word by a vector, now a row
vector representing the counts of the word’s occurrence in each document. Thus
the vectors for fool [37,58,1,5] and clown [5,117,0,0] are more similar to each other
(occurring more in the comedies) while battle [1,1,8,15] and soldier [2,2,12,36] are
more similar to each other (occurring less in the comedies).

More commonly used for vector semantics than this term-document matrix is an
alternative formulation, the term-term matrix, more commonly called the word-term-term

matrix
word matrix oro the term-context matrix, in which the columns are labeled by
words rather than documents. This matrix is thus of dimensionality |V |⇥ |V | and
each cell records the number of times the row (target) word and the column (context)
word co-occur in some context in some training corpus. The context could be the
document, in which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to use smaller contexts,
such as a window around the word, for example of 4 words to the left and 4 words
to the right, in which case the cell represents the number of times (in some training
corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 17.2 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.2 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). Note that a
real vector would be vastly more sparse.

The shading in Fig. 17.2 makes clear the intuition that the two words apricot
and pineapple are more similar (both pinch and sugar tend to occur in their window)
while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
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The word-word matrix
• Instead of entire documents, use smaller contexts
• Paragraph
• Window of ± k (e.g. k=4) words

•A word is now defined by a vector over counts of context 
words
• Instead of each vector being of length D (number of 

docs)
•Each vector is now of length |V|
•The word-word matrix is |V|x|V|

18
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Word-Word matrix
Sample contexts ± 7 words
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tors of numbers representing the terms (words) that occur within the collection
(Salton, 1971). In information retrieval these numbers are called the term weight, aterm weight

function of the term’s frequency in the document.
More generally, the term-document matrix X has V rows (one for each word

type in the vocabulary) and D columns (one for each document in the collection).
Each column represents a document. A query is also represented by a vector q of
length |V |. We go about finding the most relevant document to query by finding
the document whose vector is most similar to the query; later in the chapter we’ll
introduce some of the components of this process: the tf-idf term weighting, and the
cosine similarity metric.

But now let’s turn to the insight of vector semantics for representing the meaning
of words. The idea is that we can also represent each word by a vector, now a row
vector representing the counts of the word’s occurrence in each document. Thus
the vectors for fool [37,58,1,5] and clown [5,117,0,0] are more similar to each other
(occurring more in the comedies) while battle [1,1,8,15] and soldier [2,2,12,36] are
more similar to each other (occurring less in the comedies).

More commonly used for vector semantics than this term-document matrix is an
alternative formulation, the term-term matrix, more commonly called the word-term-term

matrix
word matrix oro the term-context matrix, in which the columns are labeled by
words rather than documents. This matrix is thus of dimensionality |V |⇥ |V | and
each cell records the number of times the row (target) word and the column (context)
word co-occur in some context in some training corpus. The context could be the
document, in which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to use smaller contexts,
such as a window around the word, for example of 4 words to the left and 4 words
to the right, in which case the cell represents the number of times (in some training
corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 17.2 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.2 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). Note that a
real vector would be vastly more sparse.

The shading in Fig. 17.2 makes clear the intuition that the two words apricot
and pineapple are more similar (both pinch and sugar tend to occur in their window)
while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
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Sample Word-Word matrix

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0
… …
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Word-word matrix

• We showed only 4x6, but the real matrix might be 50,000 x 50,000
• So it’s very sparse

• Most values are 0.
• That’s OK, since there are lots of efficient algorithms for sparse matrices.
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Word-word matrix

• We showed only 4x6, but the real matrix might be 50,000 x 50,000
• So it’s very sparse

• Most values are 0.
• That’s OK, since there are lots of efficient algorithms for sparse matrices.

• The size of windows depends on your goals
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Word-word matrix

• We showed only 4x6, but the real matrix might be 50,000 x 50,000
• So it’s very sparse

• Most values are 0.
• That’s OK, since there are lots of efficient algorithms for sparse matrices.

• The size of windows depends on your goals
• The shorter the windows , the more syntactic the representation

± 1-3 very syntacticy
You may see playing is similar to cooking or singing, played is similar to cooked or sang

• The longer the windows, the more semantic the representation
± 4-10 more semanticy
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Positive Pointwise Mutual Information (PPMI)

24
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Problem with raw counts

•Raw word frequency is not a great measure of 
association between words
• It’s very skewed

• “the” and “of” are very frequent, but maybe not the most discriminative
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Problem with raw counts

•Raw word frequency is not a great measure of 
association between words
• It’s very skewed

• “the” and “of” are very frequent, but maybe not the most discriminative

• We’d rather have a measure that asks whether a context word is 
particularly informative about the target word.
• Positive Pointwise Mutual Information (PPMI)

26

Pointwise Mutual Information

Pointwise mutual information: 
Do events x and y co-occur more than if they were independent?

PMI(X,Y ) = log2
P(x,y)
P(x)P(y)
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Pointwise Mutual Information

Pointwise mutual information: 
Do events x and y co-occur more than if they were independent?

PMI between two words:  (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent? 

PMI 𝑤𝑜𝑟𝑑", 𝑤𝑜𝑟𝑑# = log#
𝑃(𝑤𝑜𝑟𝑑", 𝑤𝑜𝑟𝑑#)
𝑃 𝑤𝑜𝑟𝑑" 𝑃(𝑤𝑜𝑟𝑑#)

PMI(X,Y ) = log2
P(x,y)
P(x)P(y)
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PMI 𝑤! , 𝑤" = log"
𝑃(𝑤! , 𝑤")
𝑃 𝑤! 𝑃(𝑤")
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Positive Pointwise Mutual Information
• PMI ranges from −∞ to +∞
• But the negative values are problematic
• Things are co-occurring less than we expect by chance
• Unreliable without enormous corpora
• Imagine w1 and w2 whose probability is each 10-6

• Hard to be sure p(w1,w2) is significantly different than 10-12

• Plus it’s not clear people are good at “unrelatedness”

30
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Positive Pointwise Mutual Information
• PMI ranges from −∞ to + ∞
• But the negative values are problematic
• Things are co-occurring less than we expect by chance
• Unreliable without enormous corpora
• Imagine w1 and w2 whose probability is each 10-6

• Hard to be sure p(w1,w2) is significantly different than 10-12

• Plus it’s not clear people are good at “unrelatedness”
• So we just replace negative PMI values by 0
• Positive PMI (PPMI) between word1 and word2:

PPMI 𝑤𝑜𝑟𝑑- , 𝑤𝑜𝑟𝑑. = max log.
𝑃(𝑤𝑜𝑟𝑑- , 𝑤𝑜𝑟𝑑.)
𝑃 𝑤𝑜𝑟𝑑- 𝑃(𝑤𝑜𝑟𝑑.)

, 0
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Computing PPMI on a term-context matrix

• Matrix F with W rows (words) and C columns (contexts, e.g. in the form of 
words)
• fij is number of times wi occurs in context cj

pij =
fij

fij
j=1

C

∑
i=1

W

∑
pi* =

fij
j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

pmiij = log2
pij

pi*p* j
ppmiij =

pmiij if  pmiij > 0

0 otherwise

!
"
#

$#
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p(w=information,c=data) = 
p(w=information) =
p(c=data) = p(w,context) p(w)

computer data pinch result sugar
apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

= .326/19
11/19 = .58

7/19 = .37

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi ) =
fij

j=1

C

∑

N
p(cj ) =

fij
i=1

W

∑

N
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pmiij = log2
pij

pi*p* j

• pmi(information,data) = log2 (

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1

.32 / (.37*.58) ) = .57
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Weighting PMI

•PMI is biased toward infrequent events
•Very rare words have very high PMI values

•Two solutions:
•Give rare words slightly higher probabilities
•Use add-k smoothing (which has a similar effect)
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Weighting PMI: Giving rare context words 
slightly higher probability
•Raise the context probabilities to 𝛼 = 0.75:

•This helps because 𝑃4 𝑐 > 𝑃 𝑐 for rare c
•Consider two events, count(a)=99, count(b)=1
• P(a) = .99 and P(b)=.01
• 𝑃4 𝑎 = 55$.&'

55$.&'67$.&' = .97 𝑃4 𝑏 = 7$.&'

55$.&'67$.&' = .03

6 CHAPTER 19 • VECTOR SEMANTICS

p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (19.8)

Pa(c) =
count(c)a

P
c count(c)a (19.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.
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Add-k smoothing
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Add#2%Smoothed%Count(w,context)
computer data pinch result sugar

apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2

p(w,context),[add02] p(w)
computer data pinch result sugar

apricot 0.03 0.03 0.05 0.03 0.05 0.20
pineapple 0.03 0.03 0.05 0.03 0.05 0.20
digital 0.07 0.05 0.03 0.05 0.03 0.24
information 0.05 0.14 0.03 0.10 0.03 0.36

p(context) 0.19 0.25 0.17 0.22 0.17

38

PPMI versus add-2 smoothed PPMI

PPMI(w,context).[add22]
computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56
pineapple 0.00 0.00 0.56 0.00 0.56
digital 0.62 0.00 0.00 0.00 0.00
information 0.00 0.58 0.00 0.37 0.00

PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1
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Measuring similarity

• Given 2 target words v and w
• We’ll need a way to measure their similarity.
• Most measure of vectors similarity are based on the:
Dot product or inner product from linear algebra (raw counts)

• High when two vectors have large values in same dimensions. 
• Low (in fact 0) for orthogonal vectors with zeros in complementary distribution

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
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Problem with dot product

• Dot product is longer if the vector is longer. Vector length:

• Vectors are longer if they have higher values in each dimension
• That means more frequent words will have higher dot products
• That’s bad: we don’t want a similarity metric to be sensitive to word frequency

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7
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Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.
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the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX
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v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:
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computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
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For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
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Solution: cosine similarity

• Just divide the dot product by the length of the two vectors!

• This turns out to be the cosine of the angle between them!
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computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.
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Cosine for computing similarity

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

Dot product Unit vectors

vi is the PPMI value for word v in context i
wi is the PPMI value for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3
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Cosine as a similarity metric

• -1: vectors point in opposite directions 
• +1: vectors point in same directions
• 0: vectors are orthogonal

• Raw frequency or PPMI are non-negative, so  
cosine range 0-1
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large data computer
apricot 2 0 0
digital 0 1 2
information 1 6 1

Which pair of words is more similar?
cosine(apricot,information) = 

cosine(digital,information) =

cosine(apricot,digital) =

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+36+1

1+36+1

0+1+ 4

0+1+ 4
     0+ 6+ 2    

     0+ 0+ 0    

=
8
38 5

= .58

= 0

2 + 0 + 0

4 + 0 + 0
=

2
4 38

= .23

4 + 0 + 0
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Visualizing vectors and angles

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’

large data
apricot 2 0
digital 0 1
information 1 6
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Clustering vectors to 
visualize similarity in co-
occurrence matrices

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 8: Multidimensional scaling for three noun classes.
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Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.
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Rohde et al. (2006)
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Other possible similarity measures
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Using syntax to define a word’s context
• Zellig Harris (1968)

“The meaning of entities, and the meaning of grammatical 
relations among them, is related to the restriction of combinations 
of these entities relative to other entities”

• Two words are similar if they have similar syntactic contexts
Duty and responsibility have similar syntactic distribution:

Modified by 
adjectives

additional, administrative, assumed, collective, 
congressional, constitutional …

Objects of verbs assert, assign, assume, attend to, avoid, become, 
breach..
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Co-occurrence vectors based on syntactic dependencies

• Each dimension: a context word in one of R grammatical relations
• Subject-of- “absorb”

• Instead of a vector of |V| features, a vector of R|V|
• Example: counts for the word cell :

Dekang Lin, 1998 “Automatic Retrieval and Clustering of Similar Words”
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Syntactic dependencies for dimensions

• Alternative (Padó and Lapata 2007):
• Instead of having a |V| x R|V| matrix
• Have a |V| x |V| matrix
• Counts of words that occur in one of R dependencies (subject, object, etc).
• So M(“cell”,”absorb”) = 
count(subj(cell,absorb)) 
+ count(obj(cell,absorb)) 
+ count(pobj(cell,absorb))+…
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PMI applied to dependency relations

• “Drink it” more common than “drink wine”
• But “wine” is a better “drinkable” thing than “it”

Object of “drink” Count PMI
it 3 1.3
anything 3 5.2

wine 2 9.3
tea 2 11.8

liquid 2 10.5

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL

Object of “drink” Count PMI
tea 2 11.8

liquid 2 10.5
wine 2 9.3
anything 3 5.2

it 3 1.3
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Alternative to PPMI for measuring association

• The combination of two factors
• Term frequency (Luhn 1957): frequency of the word (can be logged)
• Inverse document frequency (IDF) (Spark Jones 1972)

• N is the total number of documents

• dfi = “document frequency of word i”
• = number of documents with word i

• wij : for word i in document j

wij=tfij !idfi
idfi = log

N
dfi

!

"

#
#

$

%

&
&
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tf-idf not generally used for word-word 
similarity
• But is by far the most common weighting when we are considering 

the relationship of words to documents
• More often used in information retrieval (e.g. detecting documents 

relevant to users’ interests)
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Evaluating similarity (Revisit)

• Extrinsic (task-based, end-to-end) Evaluation:
• Question Answering
• Spell Checking
• Essay grading

• Intrinsic Evaluation:
• Correlation between algorithm and human word similarity ratings

• Wordsim353: 353 noun pairs rated 0-10.   sim(plane,car)=5.77
• Taking TOEFL multiple-choice vocabulary tests

• Levied is closest in meaning to:

imposed, believed, requested, correlated
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Outline

• Vector Semantics
• Sparse representation
• Pointwise Mutual Information (PMI)

• Dense representation
• Neural Language Model (Word2Vec)
• Singular Value Decomposition (SVD)
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