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EECS 498-004: Introduction to Natural 
Language Processing

Instructor: Prof. Lu Wang
Computer Science and Engineering

University of Michigan
https://web.eecs.umich.edu/~wangluxy/
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Outline

• What is part-of-speech (POS) and POS tagging?
• Hidden Markov Model (HMM) for POS tagging
• Learning an HMM
• Prediction with an learned HMM (inference)
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Parts of Speech

• Perhaps starting with Aristotle in the West (384–
322 BCE), there was the idea of having parts of 
speech (POS)
• a.k.a lexical categories, word classes, “tags”

• Lowest level of syntactic analysis 
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English Parts of Speech (POS) Tagsets

• Original Brown corpus used a large set of 87 POS 
tags.
• Most common in NLP today is the Penn Treebank 

set of 45 tags.
• Tagset used in the slides.
• Reduced from the Brown set for use in the context of a 

parsed corpus (i.e. Penn Treebank).
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English Parts of Speech
• Noun (person, place or thing)

• Singular (NN):  dog, fork
• Plural (NNS):  dogs, forks
• Proper (NNP, NNPS): John, Springfields
• Personal pronoun (PRP): I, you, he, she, it
• Wh-pronoun  (WP): who, what

• Verb (actions and processes)
• Base, infinitive (VB):  eat
• Past tense (VBD):  ate
• Gerund (VBG):  eating
• Past participle (VBN):  eaten
• Non 3rd person singular present tense (VBP): eat
• 3rd person singular present tense: (VBZ): eats
• Modal (MD): should, can
• To (TO): to (to eat) 5
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English Parts of Speech (cont.)
• Adjective (modify nouns)

• Basic (JJ): red, tall
• Comparative (JJR): redder, taller
• Superlative (JJS): reddest, tallest

• Adverb (modify verbs)
• Basic (RB): quickly
• Comparative (RBR): quicker
• Superlative (RBS): quickest

• Preposition (IN): on, in, by, to, with
• Determiner:

• Basic (DT) a, an, the
• WH-determiner (WDT): which, that

• Coordinating Conjunction (CC): and, but, or,
• Particle (RP): off (took off), up (put up)
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Open vs. Closed classes

• Open vs. Closed classes
• Closed: 
• determiners: a, an, the
• pronouns: she, he, I
• prepositions: on, under, over, near, by, …
• Why “closed”?

• Open: 
• Nouns, Verbs, Adjectives, Adverbs. 

7

7

Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Modals

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM
Italy

cat / cats
snow

see
registered

can
had

old   older   oldest

slowly

to with

off   up

the some

and or

he its

Numbers
122,312
one

Interjections Ow Eh
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Ambiguity in POS Tagging

• “Like” can be a verb or a preposition
• I like/VBP candy.
• Time flies like/IN an arrow.

• “Around” can be a preposition, particle, or adverb
• I bought it at the shop around/IN the corner.
• I never got around/RP to getting a car.
• A new Prius costs around/RB $25K.
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POS Tagging

• The POS tagging problem is to determine the POS 
tag for a particular instance of a word.
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POS Tagging

• Input:   plays        well                  with  others
• Ambiguity:  NNS/VBZ UH/JJ/NN/RB    IN      NNS
• Output: Plays/VBZ well/RB with/IN others/NNS
• Uses:
• Text-to-speech (how do we pronounce “lead”?)
• Can write regexps over the output for phrase extraction

• Noun phrase: (Det) Adj* N+ 
• As input to or to speed up a full parser

NN*: noun
VB*: verb
UH: interjection
JJ: adjective
RB: adverb
IN: preposition
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POS tagging performance

• How many tags are correct?  (Tag accuracy)
• About 97% currently
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POS tagging performance

• How many tags are correct?  (Tag accuracy)
• About 97% currently
• But baseline is already 90%

• Baseline is performance of stupidest possible method
• Take an annotated corpus (or a dictionary), tag every word with 

its most frequent tag
• Tag unknown words as nouns

• Partly easy because
• Many words are unambiguous
• You get points for them (the, a, etc.) and for punctuation 

marks!
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How difficult is POS tagging?

• Word types: roughly speaking, unique words

• About 11% of the word types in the Brown corpus 
are ambiguous with regard to part of speech
• But they tend to be very common words. E.g., that
• I know that he is honest = IN (preposition)
• Yes, that play was nice = DT (determiner)
• You can’t go that far = RB (adverb)

• 40% of the word tokens are ambiguous
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Sources of information

• What are the main sources of information for POS 
tagging? “Bill saw that man yesterday”
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Sources of information

• What are the main sources of information for POS 
tagging? “Bill saw that man yesterday”
• Contextual: Knowledge of neighboring words

• Bill    saw     that  man yesterday
• NNP NN        DT    NN   NN
• VB     VB(D)  IN      VB    NN

• Local: Knowledge of word probabilities
• man is rarely used as a verb….

• The latter proves the most useful, but the former also 
helps
• Sometimes these preferences are in conflict:

• The trash can is in the garage
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More and Better Features è
Feature-based tagger
• Can do surprisingly well just looking at a word by 

itself:
• Word the: the ®DT
• Lowercased word Importantly: importantly ®RB
• Prefixes unfathomable: un-® JJ
• Suffixes Importantly: -ly®RB
• Capitalization Meridian: CAP ®NNP
• Word shapes 35-year: d-x ® JJ
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POS Tagging Approaches
• Rule-Based: Human crafted rules based on lexical and 

other linguistic knowledge.
• Learning-Based: Trained on human annotated corpora 

like the Penn Treebank.
• Statistical models:  Hidden Markov Model (HMM) – this 

lecture!, Maximum Entropy Markov Model (MEMM), 
Conditional Random Field (CRF)

• Rule learning: Transformation Based Learning (TBL)
• Neural networks: Recurrent networks like Long Short Term 

Memory (LSTMs), Transformers
• Generally, learning-based approaches have been found 

to be more effective overall, taking into account the 
total amount of human expertise and effort involved.
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Outline

• What is part-of-speech (POS) and POS tagging?
• Hidden Markov Model (HMM) for POS tagging
• Learning an HMM
• Prediction with an learned HMM (inference)
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Hidden Markov Model
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Markov Model / Markov Chain

• A finite state machine with probabilistic state 
transitions.
• Makes Markov assumption that next state only 

depends on the current state and independent of 
previous history.
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Sample Markov Model for POS 
(a finite state machine)
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Sample Markov Model for POS
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P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076
23

23

Hidden Markov Model
• Probabilistic generative model for sequences.
• Assume an underlying set of hidden (unobserved) 

states in which the model can be (e.g. part-of-
speech).
• Assume probabilistic transitions between states over 

time (e.g. transition from POS to another POS as 
sequence is generated).
• Assume a probabilistic generation of tokens from 

states (e.g. words generated for each POS).
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation

PropNoun

JohnMary
AliceJerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that
a thea

Verb

bit

ate saw
played

hit

0.95
0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

Johnstart
0.1

0.5
0.4

28

28

Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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Formally, Markov Sequences
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The Markov Assumption
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Homogeneous Markov Chains
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Homogeneous Markov Chains

“the Markov Chains follows the Markov assumption”
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Markov Models
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Probabilistic Models for Sequence 
Pairs – words and POS tags
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Probabilistic Models for Sequence 
Pairs – words and POS tags

Words Part-of-Speech tags
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Firstly, why would we want to model the joint distribution?

Words Part-of-Speech tags
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Hidden Markov Models (HMMs)

Words Part-of-Speech tags
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Independence Assumptions in HMMs

e.g. Part-of-Speech tags
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Formally
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Outline

• What is part-of-speech (POS) and POS tagging?
• Hidden Markov Model (HMM) for POS tagging
• Learning an HMM
• Prediction with an learned HMM (inference)

48

48



2/2/21

9

HMM

• Parameter estimation
• Learning the probabilities from training data
• P(verb|noun)?, P(apples|noun)?

• Inference: Viterbi algorithm (dynamic 
programming)
• Given a new sentence, what are the POS tags for the 

words?
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HMM

• Parameter estimation

• Inference: Viterbi algorithm (dynamic 
programming)
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Parameter Estimation with Fully 
Observed Data
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Parameter Estimation: Transition 
Parameters
• P(verb|noun)?
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Parameter Estimation: Emission 
Parameters
• P(apples|noun)?
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Outline

• What is part-of-speech (POS) and POS tagging?
• Hidden Markov Model (HMM) for POS tagging
• Learning an HMM
• Prediction with an learned HMM (inference)
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HMM

• Parameter estimation

• Inference: Viterbi algorithm (dynamic 
programming)
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Most Likely State Sequence
• Given an observation sequence, X, and a model, what 

is the most likely state sequence, S=s1,s2,…sm, that 
generated this sequence from this model?
• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 
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Most Likely State Sequence

John gave the dog an apple. 

Det Noun PropNoun Verb 

• Given an observation sequence, X, and a model, what 
is the most likely state sequence, S=s1,s2,…sm, that 
generated this sequence from this model?
• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.
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Most Likely State Sequence

John gave the dog an apple. 

Det Noun PropNoun Verb 

• Given an observation sequence, X, and a model, what 
is the most likely state sequence, S=s1,s2,…sm, that 
generated this sequence from this model?
• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.
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Most Likely State Sequence

John gave the dog an apple. 

Det Noun PropNoun Verb 

• Given an observation sequence, X, and a model, what 
is the most likely state sequence, S=s1,s2,…sm, that 
generated this sequence from this model?
• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.
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Most Likely State Sequence

John gave the dog an apple. 

Det Noun PropNoun Verb 

• Given an observation sequence, X, and a model, what 
is the most likely state sequence, S=s1,s2,…sm, that 
generated this sequence from this model?
• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.
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Most Likely State Sequence

John gave the dog an apple. 

Det Noun PropNoun Verb 

• Given an observation sequence, X, and a model, what 
is the most likely state sequence, S=s1,s2,…sm, that 
generated this sequence from this model?
• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.
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Most Likely State Sequence

John gave the dog an apple. 

Det Noun PropNoun Verb 

• Given an observation sequence, X, and a model, what 
is the most likely state sequence, S=s1,s2,…sm, that 
generated this sequence from this model?
• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.

66

66



2/2/21

12

•
•
•

•
•
•

start 
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end 
state

•
•
•

•
•
•

•
•
•

• • •

• • •

• • •

• • •

• Continue forward in time until reaching final time 
point.

• The goal: find a path with highest probability

Each column contains all possible POS tags

x1 x2 x3 xm-1 xm
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Why do we need this data structure?
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Viterbi Backpointers 
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Viterbi Backtrace 
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Most likely Sequence: s0 sN s1 s2 …s2 sF

x1 x2 x3 xm-1 xm
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Homework

• Reading J&M Ch5.1-5.5, Ch6.1-6.5
• For 3rd Edition:
https://web.stanford.edu/~jurafsky/slp3/8.pdf

• HMM notes
• http://www.cs.columbia.edu/~mcollins/hmms-

spring2013.pdf
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