EECS 498-004: Introduction to Natural Language Processing

Instructor: Prof. Lu Wang
Computer Science and Engineering
University of Michigan
https://web.eecs.umich.edu/~wangluxy/

Outline
- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
- Learning an HMM
- Prediction with an learned HMM (inference)

Parts of Speech
- Perhaps starting with Aristotle in the West (384–322 BCE), there was the idea of having parts of speech (POS)
 - a.k.a lexical categories, word classes, “tags”
 - Lowest level of syntactic analysis

English Parts of Speech (POS) Tagsets
- Original Brown corpus used a large set of 87 POS tags.
- Most common in NLP today is the Penn Treebank set of 45 tags.
- Tagset used in the slides.
- Reduced from the Brown set for use in the context of a parsed corpus (i.e. Penn Treebank).

English Parts of Speech
- Noun (person, place or thing)
 - Singular (NN): dog, fork
 - Plural (NNS): dogs, forks
 - Proper (NNP, NNPS): John, Springfields
 - Personal pronoun (PRP): I, you, he, she, it
 - Wh-pronoun (WP): who, what
- Verb (actions and processes)
 - Base, infinitive (VB): eat
 - Past tense (VBD): ate
 - Gerund (VBG): eating
 - Past participle (VBN): eaten
 - Non 3rd person singular present tense (VBP): eat
 - 3rd person singular present tense: (VBZ): eats
 - Modal (MD): should, can
 - To (TO): to (to eat)

English Parts of Speech (cont.)
- Adjective (modify nouns)
 - Basic (JJ): red, tall
 - Comparative (JJR): redder, taller
 - Superlative (JJR): reddest, tallest
- Adverb (modify verbs)
 - Basic (RB): quickly
 - Comparative (RBR): quicker
 - Superlative (RBS): quickest
- Preposition (IN): on, in, by, to, with
- Determiner:
 - Basic (DT): a, an, the
 - WH-determiner (WDT): which, that
- Coordinating Conjunction (CC): and, but, or,
- Particle (RP): off (took off), up (put up)
Open vs. Closed classes

- Open vs. Closed classes
 - Closed:
 - determiners: a, an, the
 - pronouns: she, he, I
 - prepositions: on, under, over, near, by, ...
 - Why “closed”?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

Ambiguity in POS Tagging

- “Like” can be a verb or a preposition
 - I like/VBP candy.
 - Time flies like/IN an arrow.
- “Around” can be a preposition, particle, or adverb
 - I bought it at the shop around/IN the corner.
 - I never got around/RP to getting a car.
 - A new Prius costs around/RB $25K.

POS Tagging

- Input: plays well with others
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS
- Output: Plays/VBZ well/RB with/IN others/NNS
- Uses:
 - Text-to-speech (how do we pronounce “lead”?)
 - Can write regexps over the output for phrase extraction
 - Noun phrase: (Det) Adj* N+
 - As input to or to speed up a full parser

POS tagging performance

- How many tags are correct? (Tag accuracy)
 - About 97% currently
POS tagging performance

• How many tags are correct? (Tag accuracy)
 • About 97% currently
 • But baseline is already 90%
 • Baseline is performance of stupidest possible method
 • Take an annotated corpus (or a dictionary), tag every word with its most frequent tag
 • Tag unknown words as nouns
 • Partly easy because
 • Many words are unambiguous
 • You get points for them (the, a, etc.) and for punctuation marks!

How difficult is POS tagging?

• Word types: roughly speaking, unique words
 • About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
 • But they tend to be very common words. E.g., *that*
 • I know *that* he is honest = IN (preposition)
 • Yes, *that* play was nice = DT (determiner)
 • You can’t go *that* far = RB (adverb)
 • 40% of the word tokens are ambiguous

Sources of information

• What are the main sources of information for POS tagging? “Bill saw that man yesterday”
 • Contextual: Knowledge of neighboring words
 • Bill saw that man yesterday
 • NNP NN DT NN NN
 • VB VB(D) IN VB NN
 • Local: Knowledge of word probabilities
 • *man* is rarely used as a verb.
 • The latter proves the most useful, but the former also helps
 • Sometimes these preferences are in conflict:
 • The trash can is in the garage

More and Better Features ➔ Feature-based tagger

• Can do surprisingly well just looking at a word by itself:
 • Word the: the → DT
 • Lowercased word Importantly: importantly → RB
 • Prefixes unfathomable: un → JJ
 • Suffixes Importantly: -ly → RB
 • Capitalization Meridian: CAP → NNP
 • Word shapes 35-year: d-x → JJ

POS Tagging Approaches

• Rule-Based: Human crafted rules based on lexical and other linguistic knowledge.
• Learning-Based: Trained on human annotated corpora like the Penn Treebank.
 • Statistical models: Hidden Markov Model (HMM) – this lecture, Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF)
 • Rule learning: Transformation Based Learning (TBL)
 • Neural networks: Recurrent networks like Long Short Term Memory (LSTMs), Transformers
• Generally, learning-based approaches have been found to be more effective overall, taking into account the total amount of human expertise and effort involved.
Outline

• What is part-of-speech (POS) and POS tagging?
• Hidden Markov Model (HMM) for POS tagging
 • Learning an HMM
 • Prediction with a learned HMM (inference)

Hidden Markov Model

Markov Model / Markov Chain

• A finite state machine with probabilistic state transitions.
• Makes Markov assumption that next state only depends on the current state and independent of previous history.

Sample Markov Model for POS

(a finite state machine)

Hidden Markov Model

• Probabilistic generative model for sequences.
• Assume an underlying set of hidden (unobserved) states in which the model can be (e.g. part-of-speech).
• Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
• Assume a probabilistic generation of tokens from states (e.g. words generated for each POS).
Formally, Markov Sequences

- Consider a sequence of random variables X_1, X_2, \ldots, X_m where m is the length of the sequence.
- Each variable X_i can take any value in $\{1, 2, \ldots, k\}$.
- How do we model the joint distribution

$$P(X_1 = x_1, X_2 = x_2, \ldots, X_m = x_m)$$
The Markov Assumption

\[
P(X_1 = x_1, X_2 = x_2, \ldots, X_m = x_m) = P(X_1 = x_1) \prod_{j=2}^{m} P(X_j = x_j | X_1 = x_1, \ldots, X_{j-1} = x_{j-1})
\]

\[
= P(X_1 = x_1) \prod_{j=2}^{m} P(X_j = x_j | X_{j-1} = x_{j-1})
\]

- The first equality is exact (by the chain rule).
- The second equality follows from the Markov assumption: for all \(j = 2 \ldots m\),

\[P(X_j = x_j | X_1 = x_1, \ldots, X_{j-1} = x_{j-1}) = P(X_j = x_j | X_{j-1} = x_{j-1})\]

Homogeneous Markov Chains

- In a homogeneous Markov chain, we make an additional assumption, that for \(j = 2 \ldots m\),

\[
P(X_j = x_j | X_{j-1} = x_{j-1}) = q(x_j | x_{j-1})
\]

where \(q(x'|x)\) is some function

- Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index \(j\))

Markov Models

- Our model is then as follows:

\[
p(x_1, x_2, \ldots, x_m; \theta) = q(x_1) \prod_{j=2}^{m} q(x_j | x_{j-1})
\]

- Parameters in the model:

 - \(q(x)\) for \(x = \{1, 2, \ldots, k\}\)
 - Constraints: \(q(x) \geq 0\) and \(\sum_{x=1}^{k} q(x) = 1\)

 - \(q(x'|x)\) for \(x = \{1, 2, \ldots, k\}\) and \(x' = \{1, 2, \ldots, k\}\)
 - Constraints: \(q(x'|x) \geq 0\) and \(\sum_{x'=1}^{k} q(x'|x) = 1\)

Probabilistic Models for Sequence Pairs – words and POS tags

- We have two sequences of random variables: \(X_1, X_2, \ldots, X_m\) and \(S_1, S_2, \ldots, S_m\)

- Intuitively, each \(X_i\) corresponds to an “observation” and each \(S_i\) corresponds to an underlying “state” that generated the observation. Assume that each \(S_i\) is in \(\{1, 2, \ldots, k\}\), and each \(X_i\) is in \(\{1, 2, \ldots, o\}\)

- How do we model the joint distribution

\[
P(X_1 = x_1, \ldots, X_m = x_m, S_1 = s_1, \ldots, S_m = s_m)
\]

Probabilistic Models for Sequence Pairs – words and POS tags

- We have two sequences of random variables: \(X_1, X_2, \ldots, X_m\) and \(S_1, S_2, \ldots, S_m\)

- Words

- Part-of-Speech tags

- Intuitively, each \(X_i\) corresponds to an “observation” and each \(S_i\) corresponds to an underlying “state” that generated the observation. Assume that each \(S_i\) is in \(\{1, 2, \ldots, k\}\), and each \(X_i\) is in \(\{1, 2, \ldots, o\}\)

- How do we model the joint distribution

\[
P(X_1 = x_1, \ldots, X_m = x_m, S_1 = s_1, \ldots, S_m = s_m)
\]
Firstly, why would we want to model the joint distribution?

\[
P(X_1 = x_1, \ldots, X_m = x_m, S_1 = s_1, \ldots, S_m = s_m)
\]

Hidden Markov Models (HMMs)

- In HMMs, we assume that:

\[
P(X_1 = x_1, \ldots, X_m = x_m, S_1 = s_1, \ldots, S_m = s_m) = P(S_1 = s_1) \prod_{j=2}^{m} P(S_j = s_j | S_{j-1} = s_{j-1}) \prod_{j=1}^{m} P(X_j = x_j | S_j = s_j)
\]

Independence Assumptions in HMMs

- By the chain rule, the following equality is exact:

\[
P(X_1 = x_1, \ldots, X_m = x_m, S_1 = s_1, \ldots, S_m = s_m)
\]

- \[= P(S_1 = s_1, \ldots, S_m = s_m) \times P(X_1 = x_1, \ldots, X_m = x_m | S_1 = s_1, \ldots, S_m = s_m)
\]

- Assumption 1: the state sequence forms a Markov chain

- Assumption 2: each observation depends only on the underlying state

\[
P(X_1 = x_1 | S_1 = s_1, \ldots, S_m = s_m, X_1 = x_1, \ldots, X_{m-1} = x_{m-1}) = P(X_1 = x_1 | S_1 = s_1)
\]

Formally

- The model takes the following form:

\[
p(x_1, \ldots, x_m; \theta) = \pi(s_1) \prod_{j=2}^{m} t(s_j | s_{j-1}) \prod_{j=1}^{m} \epsilon(x_j | s_j)
\]

- Parameters in the model:

1. Initial state parameters \(\pi(s)\) for \(s \in \{1, 2, \ldots, k\}\)
2. Transition parameters \(t(s'|s)\) for \(s, s' \in \{1, 2, \ldots, k\}\)
3. Emission parameters \(\epsilon(x|s)\) for \(s \in \{1, 2, \ldots, k\}\) and \(x \in \{1, 2, \ldots, o\}\)

Outline

- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
 - Learning an HMM
 - Prediction with an learned HMM (inference)
Parameter Estimation with Fully Observed Data

- We'll now discuss parameter estimates in the case of fully observed data: for \(i = 1 \ldots n \), we have pairs of sequences \(x_{i,j} \) for \(j = 1 \ldots m \) and \(s_{i,j} \) for \(j = 1 \ldots m \). (i.e., we have \(n \) training examples, each of length \(m \).)

- Assume we have fully observed data: for \(i = 1 \ldots n \), we have pairs of sequences \(x_{i,j} \) for \(j = 1 \ldots m \) and \(s_{i,j} \) for \(j = 1 \ldots m \).

- Define \(\text{count}(i, s \rightarrow s') \) to be the number of times state \(s' \) follows state \(s \) in the \(i \)'th training example. More formally:

\[
\text{count}(i, s \rightarrow s') = \sum_{j=1}^{m-1} [s_{i,j} = s \land s_{i,j+1} = s']
\]

(We define \([\pi]\) to be 1 if \(\pi \) is true, 0 otherwise.)

- The maximum-likelihood estimates of transition probabilities are then

\[
t(s' | s) = \frac{\sum_{j=1}^{m-1} \text{count}(i, s \rightarrow s')}{\sum_{s'} \sum_{j=1}^{m} \text{count}(i, s \rightarrow s')}
\]
Outline

- What is part-of-speech (POS) and POS tagging?
- Hidden Markov Model (HMM) for POS tagging
- Learning an HMM
- Prediction with an learned HMM (inference)

Parameter Estimation: Initial State Parameters

- Assume we have fully observed data: for \(i = 1 \ldots n \), we have pairs of sequences \(x_{i,j} \) for \(j = 1 \ldots m \) and \(s_{i,j} \) for \(j = 1 \ldots m \)
- Define \(\text{count}(i, s \rightarrow x) \) to be the number of times state \(s \) is paired with emission \(x \). More formally:

\[
\text{count}(i, s \rightarrow x) = \sum_{j=1}^{m} [s_{i,j} = s \land x_{i,j} = x]
\]

- The maximum-likelihood estimates of emission probabilities are then:

\[
\epsilon(x|s) = \frac{\sum_{i=1}^{n} \text{count}(i, s \rightarrow x)}{\sum_{i=1}^{n} \sum_{s} \text{count}(i, s \rightarrow x)}
\]

HMM

- Parameter estimation
- Inference: Viterbi algorithm (dynamic programming)

The Viterbi Algorithm

- Goal: for a given input sequence \(x_1 \ldots x_m \), find

\[
\arg \max_{s_1 \ldots s_m} p(x_1 \ldots x_m, s_1 \ldots s_m; \theta)
\]

- This is the most likely state sequence \(s_1 \ldots s_m \) for the given input sequence \(x_1 \ldots x_m \)

Most Likely State Sequence

- Given an observation sequence, \(X \), and a model, what is the most likely state sequence, \(S = s_1 s_2 \ldots s_m \), that generated this sequence from this model?
- Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.
Most Likely State Sequence

• Given an observation sequence, X, and a model, what is the most likely state sequence, $S=s_1,s_2,...,s_m$, that generated this sequence from this model?

• Used for sequence labeling, assuming each state corresponds to a tag, it determines the globally best assignment of tags to all tokens in a sequence using a principled approach grounded in probability theory.
Each column contains all possible POS tags

- Continue forward in time until reaching final time point.
- **The goal**: find a path with highest probability

The Viterbi Algorithm

- **Goal**: for a given input sequence \(x_1, \ldots, x_m \), find
 \[
 \arg \max_{\sigma_1, \ldots, \sigma_m} p(x_1 \ldots x_m, \sigma_1 \ldots \sigma_m; \theta)
 \]

- The **Viterbi algorithm** is a dynamic programming algorithm. Basic data structure:
 \[
 \pi[j, s]
 \]
 will be a table entry that stores the maximum probability for any state sequence ending in state \(s \) at position \(j \). More formally: \(\pi[1, s] = t(s)c(x_1|s) \), and for \(j > 1 \),

Viterbi Backpointers

Viterbi Backtrace

Most likely Sequence: \(s_0 s_N s_1 s_2 \ldots s_2 s_f \)
The Viterbi Algorithm: Backpointers

- Initialization: for \(s = 1 \ldots k \)
 \[
 \pi[1, s] = t(s)c(x_1|s)
 \]

- For \(j = 2 \ldots m, s = 1 \ldots k \):
 \[
 \pi[j, s] = \max_{s' \in \{1 \ldots k\}} [\pi[j-1, s'] \times t(s'|s) \times c(x_j|s)]
 \]
 and
 \[
 bp[j, s] = \arg \max_{s' \in \{1 \ldots k\}} [\pi[j-1, s'] \times t(s'|s) \times c(x_j|s)]
 \]

- The \(bp \) entries are backpointers that will allow us to recover the identity of the highest probability state sequence.

Homework

- Reading J&M Ch5.1-5.5, Ch6.1-6.5
- For 3rd Edition:
- HMM notes

- Highest probability for any sequence of states is
 \[
 \max_s \pi[m, s]
 \]

- To recover identity of highest-probability sequence:
 \[
 s_m = \arg \max_s \pi[m, s]
 \]
 and for \(j = m \ldots 2 \),
 \[
 s_{j-1} = bp[j, s_j]
 \]

- The sequence of states \(s_1 \ldots s_m \) is then
 \[
 \arg \max_{s_1 \ldots s_m} p(x_1 \ldots x_m, s_1 \ldots s_m; \theta)
 \]