2/16/21

EECS 498-004: Introduction to Natural
Language Processing

Instructor: Prof. Lu Wang
Computer Science and Engineering
University of Michigan
https://web.eecs.umich.edu/~wangluxy/

Two views of linguistic structure:
1. Constituency (phrase structure)

* Phrase structure organizes words into nested constituents.
* Fed raises interest rates

Two views of linguistic structure:
1. Constituency (phrase structure)

* Phrase structure organizes words into nested constituents.

S
NP VP
/\
I‘\T v NP
2N
Fed raises N N

interest rates

Two views of linguistic structure: e
: N
1. Constituency (phrase structure) R §

* Phrase structure organizes words into nested constituents. |

interest rates|
* How do we know what is a constituent? (Not that linguists don’t
argue about some cases.)
« Distribution: a constituent behaves as a unit that can appear in different
places:
* John talked [to the children] [about drugs].
* John talked [about drugs] [to the children].
* *John talked drugs to the children about
* Substitution/expansion/pronoun:
* I sat [on the box/right on top of the box/there].

-

NPSE) VP,

ws o om !
- %
R it
Ll e T
AN

running OT NN

the company

Headed phrase structure TR
AN

« Context-free grammar fed  raises T \‘

© VP> .. VB* ..

¢ NP — .. NN* ..
¢ ADJP — .. JJ* .
¢ ADVP — ... RB* ...

*S—> ..NPVP..

* Plus minor phrase types:
. QP) (ckuantifier phrase in NP: some people), CONJP (multi word constructions: as well
as),

INTJ (interjections: aha), etc.



https://web.eecs.umich.edu/~wangluxy/

2/16/21

Two views of linguistic structure:
2. Dependency structure

* Dependency structure shows which words depend on (modify or are
arguments of) which other words.

The boy put the tortoise on the rug

Two views of linguistic structure:
2. Dependency structure

* Dependency structure shows which words depend on (modify or are
arguments of) which other words.

put
o~
boy tortoise on
h ol rug
1
e the P

The boy put the tortoise on the rug ;
the

7 8
QOutline Phrase Chunking
m) * Phrase Chunking * Find all non-recursive noun phrases (NPs) and verb phrases (VPs) in a
« (Probabilistic) Context-Free Grammars sentence.
. ch v N IF * [NP 1] [VP ate] [NP the spaghetti] [PP with] [NP meatballs].
omsky Normal Form * [NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to
* CKY Parsing 1[NP only 1.8 billion ] [PP in ] [NP September ] .
9 10
Phrase Chunking as Sequence Labeling Evaluating Chunking
Per token accuracy does not evaluate finding correct full chunks.
Instead use:
* Tag individual words with one of 3 tags
* B (Begin) word starts new target phrase Precision = Number of correct chunks found
« | (Inside) word is part of target phrase but not the first word Total number of chunks found
* O (Other) word is not part of target phrase Recall Number of correct chunks found
. ecall =
* Sample for NP chunking Total number of actual chunks
* He reckons the current account deficit will narrow to only 1.8
billion in September. Fmeasure: p — 1 _2PR
L1y, P+R
Begin Inside Other (;Jr%)
11 12



Current Chunking Results

2/16/21

* Best system for NP chunking: F1=96%

task: NP, VP, PP, ADV, SBAR, ADJP) is F1=92-94%

13

« Typical results for finding range of chunk types (CoNLL 2000 shared

Outline

* Phrase Chunking

== « (Probabilistic) Context-Free Grammars
* Chomsky Normal Form
* CKY Parsing

14

Syntactic Parsing

* Produce the correct syntactic parse tree for a sentence.

S

o

- Y
T R T
Dél N PP
Det Prep NP
‘ BN / /ow\mu
N \
I

ate the spaghetti with che

psticks.

I afe thespaghetti with meatballs

15

Annotated data:
The Penn Treebank

(s
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)
e
(NP (DT a) (NN round))
(PP (IN of)
e
(NP (13 similar) (NNS increases))
(PP (IN by)
(NP (11 other) (NNS lenders))
(PP (IN against)
(NP (NNP Arizona) (3 real) (NN estate] (NNS loans))))))
(]
(s-a0V
(NP-5BJ (-NONE- *))
(VP (VBG reflecting)

(NP (DT 2) (VBG continuing) (NN decline])
(PP-LOC (IN in]

)
(NP (DT that) (NN market)))))
(0]

16

. Two problems to solve for parsing:
The rise of annotated data
1. Repeated work...
s “Cats scratch people with cats with claws”
« Starting off, building a treebank seems a lot slower and less useful - : - w w —
than building a grammar K ® + e N w
w v w v > Ve - s orton w e
) ) srach N i NP v peose v Ne B )
* But a treebank gives us many things peopie Nor oW NP W A ]
peose i
 Reusability of the labor s owih N s vin " ais
* Many parsers, POS taggers, etc. S claws s
* Valuable resource for linguistics NB w NP e
* Broad coverage N v e N VP )
* Frequencies and distributional information cats b w B NP as NP Poow
* A way to evaluate systems v e PN wih N seratch NP w with N
NP oW claws
scratch N with N claws
people cats people - with N
"




2/16/21

Two problems to solve for parsing:
1. Repeated work...

“Cats scratch people with cats with claws”

people | with

Two problems to solve for parsing:
2. Choosing the correct parse

* How do we work out the correct attachment:

* She saw the man with a telescope

* Words are good predictors of attachment, even absent full
understanding

* Moscow sent more than 100,000 soldiers into Afghanistan ...

 Sydney Water breached an agreement with NSW Health ...

« Our statistical parsers will try to exploit such statistics.

Statistical parsing applications (Probabilistic) Context-Free Grammars
Statistical parsers are now robust and widely used in larger NLP applications: * CFG
* High precision question answering [Pasca and Harabagiu SIGIR 2001] * PCFG
* Improving biological named entity finding [Finkel et al. INLPBA 2004]
* Syntactically based sentence compression [Lin and Wilbur 2007]
« Extracting opinions about products [Bloom et al. NAACL 2007]
* Improved interaction in computer games [Gorniak and Roy 2005]
* Helping linguists find data [Resnik et al. BLS 2005]
* Source sentence analysis for machine translation [xu et al. 2009]
+ Relation extraction systems [Fundel et al. Bioinformatics 2006]
Phrase structure grammars
A phrase structure grammar
= context-free grammars (CFGs)
*G=(TN,S,R) S—>NPVP N — people
* Tis a set of terminal symbols VP> VNP N — fish
* Nis a set of nonterminal symbols VP — VNP PP
* Sis the start symbol (S € N) NP — NP NP N — tanks
* Ris a set of rules/productions of the form X —y NP — NP PP N — rods
+ XENandy€(NUT)* PN V — people
NP —>e
PP —>P NP V — fish
V — tanks
people fish tanks .
people fish with rods P —> with



2/16/21

Phrase structure grammars
= context-free grammars (CFGs)
*G=(T,N,S,R)

* Tis a set of terminal symbols

* Nis a set of nonterminal symbols

* Sis the start symbol (S € N)

* Ris a set of rules/productions of the form X — y
« XENandy€e (NUT)*

* A grammar G generates a language L.

Sentence Generation

« Sentences are generated by recursively rewriting the start symbol
using the productions until only terminals symbols remain.

7

vP
Verb P

book Det  Nominal

the Nominal

Noun PTep NP
flight through Proper-Noun
Houston
25 26
Phrase structure grammars in NLP A phrase structure grammar
*G=(TLCN,S,LR)
* Tis a set of terminal symbols S—>NPVP N — people
« Cis a set of preterminal symbols VP —> VNP -
N — fish
« N is a set of nonterminal symbols VP — VNP PP
« Sis the start symbol (S € N) NP — NP NP N — tanks
« Lis the lexicon, a set of items of the form X — x NP — NP PP N — rods
* XeCandx€T NP —> N
* Ris the grammar, a set of items of the form X — y NP s e V — people
* XENandy€E(NUC* PP —> P NP V — fish
* By usual convention, S is the start symbol, but in statistical NLP, V = tank
we usually have an extra node at the top (ROOT, TOP) people fish tanks - a‘n S
* We usually write e for an empty sequence, rather than nothing people fish with rods P — with
27 28
Probabilistic — or stochastic — context-free
A PCFG
grammars (PCFGs)
S— NP VP 1.0 N — people 0.5
*G=(TN,5R,P) VP —> VNP 06 N —> fish 0.2
* Tis a set of terminal symbols
* N is a set of nonterminal symbols VP — VNP PP 0.4 N — tanks 0.2
* Sis the start symbol (S € N) NP — NP NP 0.1 N — rods 0.1
* Ris aset of rules/productions of the form X — y NP — NP PP 0.2 V — people 0.1
* P is a probability function ,
. PR 0] NP —> N 0.7 V — fish 0.6
*VXEN, YP(X—=p)=1 PP — P NP 1.0 V — tanks 0.3
o P > with 1.0
* A grammar G generates a language model L.
29 30



2/16/21

The probability of trees and strings n S1.0 & 510
. . NP_/\VP , NPo.7 VPos
« P(t) - The probability of a tree t is the product of the 0.7 0.4 |
probabilities of the rules used to generate it. | Nos Voo NP2
« P(s) - The probability of the string s is the sum of the Nos  Vos NPo7 PPro | ’ | ’ :
probabilities of the trees which have that string as their | | | AN people fish  Npos  BPLo
yield people fish Noo» Pig NPy7 | ) ’
P(s) = 2t P(s, t) where tis a parse of s ta,\,ks w:!th IL(” TO'Z Pro N|PU'7
| tanks with  Np1
rods |
rods
31 32
Tree and String Probabilities QOutline
* s = people fish tanks with rods
«P(t;) =1.0% 0.7 X 0.4 X 0.5 0.6 x 0.7  Verb attach * Phrase Chunking
X 1.0 X 0.2 X 1.0 X 0.7 X 0.1 * (Probabilistic) Context-Free Grammars
= 0.0008232 =) « Chomsky Normal Form
«P(t) =1.0x0.7X0.6X0.5X%06X0.2 Noun attach « CKY Parsi
X 0.7 X 1.0 X 0.2 X 1.0 X 0.7 X 0.1 arsing
=0.00024696 u S0 510
*P(s) = Pt + Plts) NP7 Vo e
=0.0008232 + 0.00024696 LT, I
=0.00107016 e oz Flo Ny T e T
e o s I
ks with No
rods N
33 34
Chomsky Normal Form A phrase structure grammar
* All rules are of the formX —>YZor X > w S— NP VP N — people
*XYZENandweT VP — V NP N — fish
« A transformation to this form doesn’t change the generative capacity VP —> V NP PP N —> tanks
of a CFG
* That is, it recognizes the same language NP — NP NP N — rods
« But maybe with different trees NP — NP PP V — people
* Empties and unaries are removed recursively NP —> N V — fish
* n-ary rules are divided by introducing new nonterminals (n > 2) NP —>e V — tanks
PP —> P NP P — with
35 36



2/16/21

S—NPVP
S VP

VP — VNP
VP>V

VP — VNP PP
VP -V PP
NP — NP NP
NP — NP
NP — NP PP
NP — PP
NP —>N

PP — P NP
PP P

Chomsky Normal Form steps

N — people
N — fish

N — tanks
N — rods

V — people
V — fish

V — tanks
P — with

S—>NPVP
VP> VNP
S>VNP
VPV
sV

VP> VNP PP
S—>VNPPP
VP>V PP
S>VPP

NP - NP NP
NP —> NP
NP —> NP PP
NP > PP
NP >N

PP —>P NP
PP P

Chomsky Normal Form steps

N — people
N — fish

N — tanks
N — rods

V — people
V — fish

V — tanks
P — with

37

38

S—>NPVP
VP>V NP
S>VNP
VP>V

VP>V NP PP
S—>VNPPP
VP>V PP
S VPP
NP > NP NP
NP —> NP
NP —> NP PP
NP —> PP
NP >N

PP P NP
PP P

Chomsky Normal Form steps

N — people
N — fish

N — tanks
N — rods

V — people
S — people
V — fish

S — fish

V — tanks
S — tanks
P — with

S NPVP
VP > VNP
S VNP
VP > VNP PP
S VNP PP
VP>V PP
S>VPP
NP —> NP NP
NP - NP
NP —> NP PP
NP > PP
NP> N

PP > P NP
PP > P

Chomsky Normal Form steps

> people
> fish

> tanks
> rods

> people

w<zzzz

> people
VP - people
V - fish
s> fish

VP fish
V > tanks
S > tanks
VP > tanks
P > with

40

S NP VP
VP - VNP
S VNP
VP > VNP PP
S VNP PP
VP - VPP
S VPP
NP —> NP NP
NP > NP PP
NP - PNP
PP P NP

Chomsky Normal Form steps

NP > people
NP > fish
NP > tanks
NP > rods
V > people
S > people
VP - people
v - fish

S - fish

VP - fish
V > tanks
S > tanks
VP > tanks
P > with
PP > with

S NPVP
VP > VNP

S VNP
VPV @VP_V
@VP_V > NP PP
s> V@SV
@5_V > NP PP
VP> VPP

s> VPP

NP —> NP NP

NP —> NP PP

NP > P NP
PP P NP

Chomsky Normal Form steps

NP — people
NP > fish
NP — tanks
NP - rods
V > people
S > people
VP — people
V - fish

S > fish

VP > fish

V > tanks

S > tanks
VP - tanks
P > with

PP > with

41

42



2/16/21

Chomsky Normal Form
* You should think of this as a transformation for efficient parsing

* Binarization is crucial for cubic time CFG parsing

* The rest isn’t necessary; it just makes the algorithms cleaner and a bit
quicker

An example: before binarization...

ROOT

z

N

people  fish  tanks with  rods

Before and After binarization on VP Outline
ROOT
ROOT é * Phrase Chunking
s‘ * (Probabilistic) Context-Free Grammars
/\ /\ * Chomsky Normal Form
NP VP
NP VP =) « CKY Parsing
T
N v NP PP A
‘ P/\NP N \ NP PP
N J ‘ R
| N N P NP
people fish tanks  with  rods ,\“
people fish  tanks  with rad’sw
Parsing Parsing Example
* Given a string of terminals (e.g. sentences) and a CFG, determine if S
the string can be generated by the CFG. |
* Also return a parse tree for the string Ve
+ Also return all possible parse trees for the string Veé\l’
* Must search space of derivations for one that derives the given string. book that flight . ‘ N\\
* Top-Down Parsing: Start searching space of derivations for the start symbol. book Det Nominal
* Bottom-up Parsing: Start search space of reverse derivations from the
terminal symbols in the string.
that  Noun
flight



2/16/21

Top Down Parsing

S

Top Down Parsing

S

NP VP NP VP
Pronoun ProInoun
book
49 50
Top Down Parsing Top Down Parsing
N S
N
NP VP NP VP
PmIpeanun ProperNoun
book
51 52
Top Down Parsing Top Down Parsing
N S
NP VP /}{\ vp
Det  Nominal ?t Nominal

book

53

54



2/16/21

Top Down Parsing

Aux NP VP

Top Down Parsing

Aux NP VP

book

55

56

Top Down Parsing

Top Down Parsing

57

58

Top Down Parsing

Top Down Parsing

S

[

VP

Verb

book  that

59

60

10



2/16/21

Top Down Parsing

Top Down Parsing

S S
| I
vp VP
Verb NP Ve‘rh NP
book
61 62
Top Down Parsing Top Down Parsing
N S
| |
vp VP
Verb NP

Veé\?
N

book  Pronoun

book  Pronoun

that

63

64

Top Down Parsing

S

[

VP

Verb NP

book  ProperNoun

Top Down Parsing

S

[

VP

Verb NP

book  ProperNoun

that

65

66

11



2/16/21

Top Down Parsing

S

[

VP

Verb NP

book Det Nominal

Top Down Parsing

S

[

VP

Ve‘rh NP

book Det Nominal

that

67

68

Top Down Parsing

S

[

VP

Vc‘eé\ P

book Det Nominal

Top Down Parsing

S

[

VP

Verb NP

book Det Nominal

that oun that  Noun
flight
69 70
Bottom Up Parsing Bottom Up Parsing
Noun
book that flight book that flight
71 72

12



2/16/21

Bottom Up Parsing

Bottom Up Parsing

Nominal

Nominal Nominal Noun
Noun Noun
bm‘)k flight bo(‘)k that flight
73 74
Bottom Up Parsing Bottom Up Parsing
Nominal Nominal
Nominal Nominal P
Noun Noun
balk flight bolk that flight
75 76
Bottom Up Parsing Bottom Up Parsing
Nominal Nominal
Nominal Nominal PP
NP
Noun Noun Det Nominal
bolk flight book tl’nat flight

77

78

13



2/16/21

Bottom Up Parsing

Bottom Up Parsing

Nominal Nominal
Nominal P Nominal PP
NP NP
Noun Deét Nominal Noun Det Nominal
bmlk that Noun book ti’lat Noun
flight flight
79 80
Bottom Up Parsing Bottom Up Parsing
Nominal Nominal
Nominal P S Nominal P S
/\ /\
NP VP NP vP
Noun  per Nominal Noun  per Nominal *
bmlk tl’mt NJ“.. bo(lk tl’nat ]\'Jun
m;lm flight
81 82
Bottom Up Parsing Bottom Up Parsing
Nominal
Nominal P’
“Np NP
Noun Dét Nominal Verb Det Nominal
bmlk that NJ“.. book tl’nat Noun
flight flight

83

84

14



2/16/21

Bottom Up Parsing

Bottom Up Parsing

S
!
V‘P NP \iP NP
Verb Dmninal Verb Dét Nominal
bol)k tl'lat No’un bo(l)k ﬂ'wt Noun
flight flight
85 86
Bottom Up Parsing Bottom Up Parsing
S vp
[ AN
\]P X P PP
[ ONP \] NP
Verb et Nominal Verb D Nominal
book tl‘lat No’un bo«Lk tl’lat No’u,.
ﬂiglht flight
87 88
Bottom Up Parsing Bottom Up Parsing
VP
\il’ PP NP VP >
Verb Dmninal verb ¥ Dmninal
bol)k tl’lat No’un bo(l)k tl‘lat Noun
flight flight

89

90

15



2/16/21

Bottom Up Parsing

Verb Dmninal

| 4 !

book that Noun

flight

Bottom Up Parsing

e
Verb Det Nominal
book that Noun

flight

91

92

Top Down vs. Bottom Up

* Top down never explores options that will not lead to a full parse, but
can explore many options that never connect to the actual sentence.

* Bottom up never explores options that do not connect to the actual
sentence but can explore options that can never lead to a full parse.

* Relative amounts of wasted search depend on how much the
grammar branches in each direction.

Two problems to solve for parsing:
1. Repeated work

“Cats scratch people with cats with claws”

people | with N

93

94

Dynamic Programming Parsing

« To avoid extensive repeated work, must cache intermediate results,
i.e. completed phrases.

* Caching (memorizing) is critical to obtaining a polynomial time
parsing (recognition) algorithm for CFGs.

(Probabilistic) CKY Parsing

95

96

16



2/16/21

Constituency Parsing

Constituency Parsing

Input: a PCFG, and a sentence PCFG Output: a parsing tree PCFG
Rule Prob 6; Rule Prob 6;
S NPVP 8 s S—>NPVP &
NP—>NPNP 61 /\VP NP>NPNP 6
N > fish 6e2 NP /\NP N > fish 6:2
N — people 843 N/\N v ’!‘ N — people 043
V — fish Bas | | | | V — fish Bae
fish people fish tanks fish people fish tanks
Cocke-Kasami-Younger (CKY . . NP people 035
. ns (CKY) Reusing local decisions Vorpeople 0.1
Constituency Parsing N->people 05
VP — fish 0.06
s V> fish 06
N — fish 0.2
VP
S—> NPVP 0.9
NP NP S—>VpP 0.1
/\ \ VP — VNP 0.5
N N v N NP — NP NP 0.1
I I I , NP — NP PP 0.2
. . . . PP — P NP 1.0
fish people fish tanks fish people fish tanks -
» people fish 100
. L. NP — people 0.35 . L. NP — people 0.35
Reusing local decisions Vopeople 01 Reusing local decisions Vopeople 0.1
N —> people 0.5 N —> people 0.5
VP - fish 0.06 VP > fish 0.06
V > fish 06 V - fish 06
N - fish 02 N > fish 02
S—> NP VP 0.9 S— NPVP 0.9
S—>VP 0.1 S—>VP 0.1
VP — VNP 0.5 VP — VNP 0.5
NP — NP NP 0.1 NP — NP NP 0.1
NP—>NPPP 0.2 NP—>NPPP 0.2
PP — P NP 1.0 PP —>P NP 1.0

people fish

people fish

101

102

17



2/16/21

The CKY algorithm (1960/1965)
... extended to unaries

function CKY(words, grammar) returns [most_probable_parse,prob]
score = new double[#(words)+1] [#(words)+1] [#(nonterms)]
back = new Pair[#(words)+1] [#(words)+1] [#nonterms]]
for i=0; i<#(words); i++
for A in nonterms
if A -> words[i] in grammar
score[11[i+11[A] = P(A -> words[i])
//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
if score[i][+1][B] > 0 & A->B in grammar
prob = P(A->B)*score[i] [i+1][B]
if prob > score[i][i+1][A]
score[11[i+1][A] = prob
back[i1[1+11[A] = B
added = true

The CKY algorithm (1960/1965)
... extended to unaries

for span = 2 to #(words)
for begin = 0 to #(words)- span
end = begin + span
for split = begin+l to end-1
for A,B,C in nonterms
prob=score[begin] [sp1it] [B]*score[sp1it] [end] [C]*P(A->BC)
if prob > score[begin][end] [A]
score[begin]end] [A] = prob
back[begin] [end] [A] = new Triple(split,B,0)
//handle unaries
boolean added = true
while added
added = false
For A, B in nonterms
prob = P(A->B)*score[begin] [end] [B];
if prob > score[begin] [end] [A]
score[begin] [end][A] = prob
back[begin] [end] [A] = B
added = true
return buildTree(score, back)

103

104

18



