

1



3

Word Alignment

Shows mapping between words in one language and the other.

Mary didn't slap the green witch. Maria no dió una boletada a la bruja verde. (Mary do not gave a slap to the witch green.)

4

Translation Quality: what's the current status?

- Achieving literary quality translation is very difficult.
- Existing MT systems can generate rough translations that frequently at least convey the gist of a document.
- High quality translations possible when specialized to narrow domains, e.g. weather forecasts.
- Some MT systems used in *computer-aided translation* in which a bilingual human post-edits the output to produce more readable accurate translations.

Outline

- ➡ Issues in machine translation (MT)
 - Direct transfer and syntactic transfer
 - Statistical MT and noisy channel model
 - MT evaluation

Ambiguity Resolution is Required for Translation

- · Syntactic and semantic ambiguities must be properly resolved for correct translation:
 - "John **plays** the guitar." \rightarrow "John **toca** la guitarra."
 - "John **plays** soccer." \rightarrow "John **juega** el fútbol."
- An apocryphal story is that an early MT system gave the following results when translating from English to Russian and then back to English:
- "The spirit is willing but the flesh is weak." \Rightarrow "The liquor is good but the meat is spoiled."
- "Out of sight, out of mind." \Rightarrow "Invisible idiot."

7

Issues: Lexical Gaps

- Some words in one language do not have a corresponding term in the other.
 - Rivière (river that flows into ocean) and fleuve (river that does not flow into ocean) in French
 - Schadenfraude (feeling good about another's pain) in German.
 - Oyakoko (filial piety) in Japanese

8

Issues: Differing Word Orders

• English word order is subject - verb - object (SVO) • Japanese word order is subject - object - verb (SOV)

English:	IBM bought Lotus
Japanese:	IBM Lotus bought
English:	Sources said that IBM bought Lotus yesterday
Japanese:	Sources yesterday IBM Lotus bought that said

Japanese:

9

Issues: Differing Word Orders

English word order is subject – verb – object (SVO)

 Japanese word order is subject – object – verb (SO) 	∨)

SOV	"She him loves."	45%		Sanskrit, Hindi, Ancient Greek, Latin, Japanese, Korean
svo	"She loves him."	42%		Chinese, English, French, Hausa, Italian, Malay, Russian, Spanish
VSO	"Loves she him."	9%		Biblical Hebrew, Arabic, Irish, Filipino, Tuareg-Berber, Welsh
vos	"Loves him she."	3%	1	Malagasy, Baure
ovs	"Him loves she."	1%		Apalaí, Hixkaryana
osv	"Him she loves."	0%		Warao, (certain dialects of) Korean

10

Issues: Syntactic Structure is not Preserved Across Translations

The bottle floated into the cave

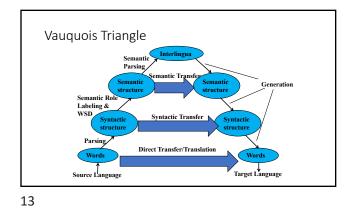
₽

La botella entro a la cuerva flotando (the bottle entered the cave floating)

Outline

- Issues in machine translation (MT)
- ➡ Direct transfer and syntactic transfer
 - Statistical MT and noisy channel model

MT evaluation



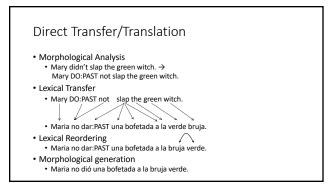
Direct Transfer/Translation

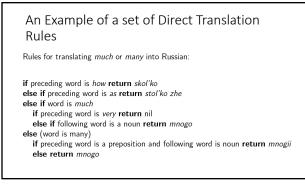
- Translation is word-by-word
- Very little analysis of the source text (e.g., no syntactic or semantic analysis)
- Relies on a large bilingual dictionary. For each word in the source language, the dictionary specifies a set of rules for translating that word.

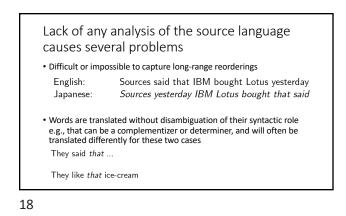
14

				CLASSIC SOUPS Sm.	Lg
清	燉雞	놂	57.	House Chicken Soup (Chicken, Celery,	
				Potato, Onion, Carrot)1.50	2.7
雞	飯	*	58.	Chicken Rice Soup 1.85	3.2
雞	麵	湯	59.	Chicken Noodle Soup	3.2
廣	東雲	呑	60.	Cantonese Wonton Soup1.50	2.7
퐇	茄蛋	욿	61.	Tomato Clear Egg Drop Soup	2.9
雲	呑	湯	62.	Regular Wonton Soup1.10	2.10
酸	辣	*	63. 🍋	Hot & Sour Soup	2.10
吾	花		64.	Egg Drop Soup1.10	2.10
雲	吾	湯	65.	Egg Drop Wonton Mix1.10	2.10
효	窟 菜	湯	66.	Tofu Vegetable SoupNA	3.5
雞	玉米	湯	67.	Chicken Corn Cream SoupNA	3.50
潛	肉玉米	湯	68.	Crab Meat Corn Cream SoupNA	3.50
海	蜂羊	욽	69	Seafood SoupNA	3.50

15







Possible Solution

- Analysis: Analyze the source language sentence; for example, build a **syntactic analysis** of the source language sentence.
- Transfer: Convert the source-language parse tree to a target-language parse tree.
- Generation: Convert the target-language parse tree to an output sentence.

19

Syntactic Transfer

 Simple lexical reordering does not adequately handle more dramatic reordering such as that required to translate from an SVO to an SOV language.

20

Syntactic Transfer

- Simple lexical reordering does not adequately handle more dramatic reordering such as that required to translate from an SVO to an SOV language.
- Need syntactic transfer rules that map parse tree for one language into one for another.
 English to Spanish:
 - NP \rightarrow ADJ Nom \Rightarrow NP \rightarrow Nom ADJ
 - English to Japanese:
 - $VP \rightarrow V NP \Rightarrow VP \rightarrow NP V$ • $PP \rightarrow P NP \Rightarrow PP \rightarrow NP P$

• Issues in machine translation (MT)

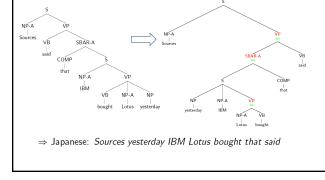
• Direct transfer and syntactic transfer

➡ • Statistical MT and noisy channel model

21

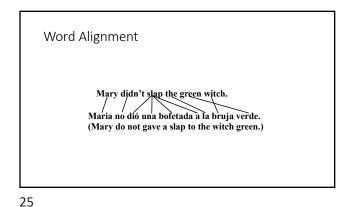
Outline

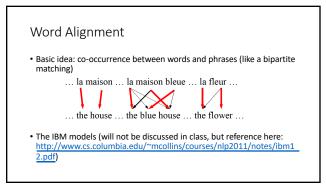
MT evaluation



Statistical MT

- Manually encoding comprehensive bilingual lexicons and transfer rules is difficult.
- SMT acquires knowledge needed for translation from a *parallel* corpus or bitext that contains the same set of documents in two languages.
- The Canadian Hansards (parliamentary proceedings in French and English) is a well-known parallel corpus.
- First align the sentences in the corpus based on simple methods that use coarse cues like sentence length to give bilingual sentence pairs.
- Then align the words in parallel sentences

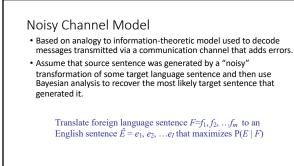


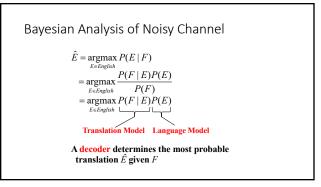


26

English	French	P(f e)	After aligning a large number of
	nationale	0.47	sentences, we get a probabilistic
national	national	0.42	translation table
	nationaux	0.05	
	nationales	0.03	
	le	0.50	
	la	0.21	
	les	0.16	
	ľ	0.09	
	се	0.02	
	cette	0.01	
farmers	agriculteurs	0.44	
	les	0.42	1
amera	cultivateurs	0.05	
	producteurs	0.02	[Brown et al 93]

Next: Picking a Good Translation • A good translation should be *faithful* and correctly convey the information and tone of the original source sentence. • A good translation should also be *fluent*, grammatically well structured and readable in the target language. • Final objective: $T_{heat} = \underset{T \in Target}{argmax} faithfulness(T, S) fluency(T)$ 28





Translation from Spanish to English, candidate translations based on p(Spanish | English) alone: Que hambre tengo yo \rightarrow What hungers have $-\pi(-|z|) = 0.000014$

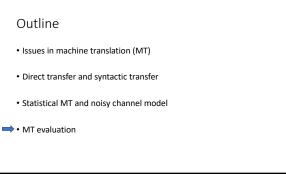
What hunger have	p(s e) = 0.000014
Hungry I am so	p(s e) = 0.000001
l am so hungry	p(s e) = 0.0000015
Have i that hunger	p(s e) = 0.000020

(This is where the translation table comes in!)

31

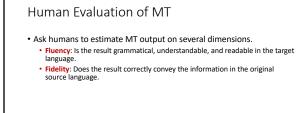
With $p(Spanish \mid English) \times p(English)$:					
Que hambre tengo y	0				
\rightarrow					
What hunger have	$p(s e)p(e) = 0.000014 \times 0.000001$				
Hungry I am so	$p(s e)p(e) = 0.000001 \times 0.0000014$				
l am so hungry	$p(s e)p(e) = 0.0000015 \times 0.0001$				
Have i that hunger	$p(s e)p(e) = 0.000020 \times 0.00000098$				

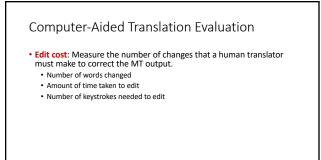
32



33

- Human subjective evaluation is the best but is time-consuming and expensive.
- Automated evaluation comparing the output to multiple human reference translations is cheaper and correlates with human judgements.





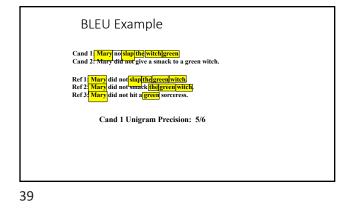
Automatic Evaluation of MT

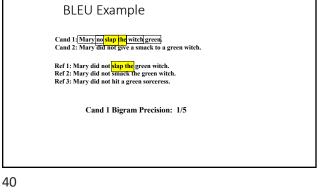
- Collect one or more human *reference translations* of the source.
- Compare MT output to these reference translations.
- Score result based on similarity to the reference translations. • BLEU

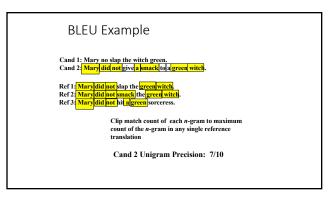
37

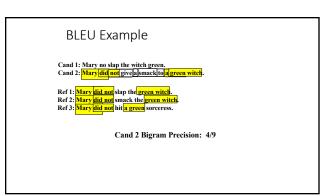
BLEU

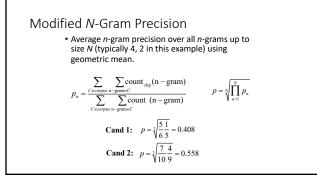
- Determine number of *n*-grams of various sizes that the MT output shares with the reference translations.
- Compute a modified precision measure of the *n*-grams in MT result.











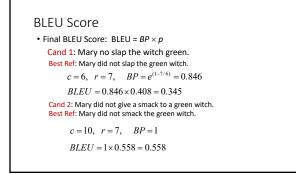
43



- Not easy to compute recall to complement precision since there are multiple alternative gold-standard references and don't need to match all of them.
- Instead, use a penalty for translations that are shorter than the reference translations.
- Define effective reference length, *r*, for each sentence as the length of the reference sentence with the largest number of *n*-gram matches. Let *c* be the candidate sentence length.

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

44





- BLEU has been shown to correlate with human evaluation when comparing outputs from different SMT systems.
- However, it is does not correlate with human judgments when comparing SMT systems with manually developed MT (Systran) or MT with human translations.
- Other MT evaluation metrics have been proposed that claim to overcome some of the limitations of BLEU (e.g. METEOR, NIST, etc).