EECS 498-004: Introduction to Natural
Language Processing

Instructor: Prof. Lu Wang
Computer Science and Engineering
University of Michigan
https://web.eecs.umich.edu/~wangluxy/

https://web.eecs.umich.edu/~wangluxy/

Thanks for your hard work and feedbacks on
homework!

* We will strive for clarity!

* Things that | want to stress:

* This course will not rely on automated grading. Several considerations:

* Coding flexibility: Results may vary due to different choices of tools, e.g. sentence
segmenters, tokenizers, etc (we’re happy to make recommendations, but will not put
constraints on the choice)

* Results may also differ among submissions due to different machines (and
configurations) used

* Personalized comments: IAs will run your code and grade based on logics, and comment
accordingly.

* Readings are required (i.e. not optional).

e Some notations are different in 3™ edition of the textbook, but shouldn’t affect
understanding.

Quick polls on programming assignments

e 1. HW2: Currently we have two programming questions in HW2 (one
for HMM with Viterbi implementation, the other for feedforward
neural networks using existing tools). Q: moving the neural network
guestion to next homework (i.e. HW3)?

e 2. HW 3&4: Q: reducing programming assignments (less questions) in
the future homeworks?

Outline

mm) « | ogistic Regression
 Feedforward Neural Networks
e Recurrent Neural Networks

[Some slides are borrowed from Dan Jurafsky, Hugo Larochelle, and Chris Manning]

Logistic Regression (LogReg)

* Generative and Discriminative Classifiers
* Classification in LogReg (test)
* An example with sentiment analysis

* Learning in LogReg (training)

Logistic Regression (LogReg)

m=) « Generative and Discriminative Classifiers
* Classification in LogReg (test)
* An example with sentiment analysis

* Learning in LogReg (training)

Generative and Discriminative Classifiers

* Naive Bayes is a generative classifier

by contrast:

* Logistic regression is a discriminative classifier

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet imagenet 8

Generative Classifier:

 Build a model of what's in a cat image
 Knows about whiskers, ears, eyes
* Assigns a probability to any image:
* how cat-y is this image?

Also build a model for dog images

Now given a new image:
Run both models and see which one fits better :

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ighore everything else

10

Finding the correct class ¢ from a document d in
Generative vs Discriminative Classifiers

* Naive Bayes

likelihood prior
—— =
¢ =argmax P(d|c) P(c)

ceC
* Logistic Regression

- posterior

¢ = argmax P(c|d)

ceC

Components of a probabilistic machine learning

classifier
Given m input/output pairs (x(y()):

1. A feature representation of the input. For each input observation
x(i), a vector of features [xy, X,, ..., X,]. Feature i for input xUis x,,
or sometimes f(x).

2. A classification function that computes y, the estimated class, via
p(y|x), like the sigmoid or softmax functions.

3. An objective function for learning, like cross-entropy loss.

An algorithm for optimizing the objective function: stochastic
gradient descent.

The two phases of Logistic Regression

* Training: we learn weights w and b using stochastic gradient
descent and cross-entropy loss.

 Test: Given a test example x we compute p(y|x) using learned
weights (or parameters), and return whichever label (y=1 or y =0)
is higher probability

Logistic Regression (LogReg)

* Generative and Discriminative Classifiers
m=) « Classification in LogReg (test)
* An example with sentiment analysis

* Learning in LogReg (training)

Binary Classification in Logistic Regression

*Given a series of input/output pairs:
e (x1) iy
*For each observation x/

* We represent x!! by a feature vector [x,, X, ..., X,]

« We compute an output: a predicted class y!! e
{0,1}

Features in logistic regression

* For feature x;,, weight w; tells “how important is x,”
* X ="review contains ‘awesome’’: w;= +10
* X ="review contains ‘abysmal’™: ;=-10
* X ="review contains ‘mediocre’": w,=-2

Logistic Regression for one observation x

* Input observation: vector x =[x, x,,..., X, |

* Weights: one per feature: W = [w, w,,..., w]
* Sometimes we call the weights 0

e Output: a predicted class y € {0,1}

How to do classification

* For each feature x;, weight w; tells us the importance of
X;
* Plus we'll have a bias b
 We'll sum up all the weighted features and the bias

Z = <zn:wixi> +b
i=1

—>Z7 = W-Xx+b
e If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

* We need to formalize “sum is high”.

* We'd like a principled classifier that gives us a
probability, just like Naive Bayes did

* Concretely, we want a model that can tell us:

p(y=1]x)
p(y=0]x)

The problem: zisn't a probability, it's just a number!
Z = w-x+b
* Solution: use a function of z that goes from O to 1

1 1
l+e* 1+exp(—z)

y=o0(z)

The very useful sigmoid (or logistic) function

1.0

0.8}

0.6}

Y

|[dea of logistic regression

* We'll compute w-x+b

* And then we’ll pass it through the sigmoid function:
o(w-x+b)

* And we’ll just treat it as a probability

Making probabilities with sigmoids

P(y=1)

o(w-x+b)
1
l+exp(—(w-x+b))

1 —o(w-x+b)

1
1

l4+exp(—(w-x+b))
exp(—(w-x+Db))
l14+exp(—(w-x+b))

Turning a probability into a classifier

(1 if P(y=1[x)>0.5
Y~ 0 otherwise

0.5 here is called the decision boundary

The probabilistic classitier p(y=1)

o(w-x+Db)

(w-x+b)

- Y
N

1.0
P(y=1) W
ogb ___________________________ ______________________________

o6 ,

oot S

25

Turning a probability into a classifier

y:{ 1 if P(y=1Jx)>0.5 1f w-x+b > ()

0 otherwise if wx+b <0

Logistic Regression (LogReg)

* Generative and Discriminative Classifiers
* Classification in LogReg (test)
m=) * An example with sentiment analysis

* Learning in LogReg (training)

Sentiment example: does y=1 or y=07

|t's hokey . There are virtually no surprises, and the writing is
second-rate . So why was it so enjoyable ? For one thing, the cast
is great . Another nice touch is the music . | was overcome with the

urge to get off the couch and start dancing . It sucked me in, and
it'll do the same to you .

- o
"
-—
—-—
—-—

-_— .
-—

- X f— -~ -
-—
—-—
—_— .

It'sCaokey). There are Vlﬂually‘surprlses and the ertlng is Gecond-rato.
So Why was it so€nj oyab@ ? For one thing , the cast 1s

). Another(@icotouch is the music CDzvas overcome with the urge to get off
the co‘ucll and start,dancing . It sucked @m ,\Qnd it'll do the same to to_fou) .

I/ -

S0 _ _ Sx, =3
x1=3 x5=0 xc=4.19 4

Feature Definition Value of the Feature
X1 count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2
“ { 1 if “no” € doc .
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
0 otherwise

x¢ log(word count of doc) In(66) =4.19

Classitying sentiment for input x

Feature Definition Value of the Feature
x; count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
. { 1 if “no” € doc {
3 O otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. O otherwise
x¢ log(word count of doc) In(66) =4.19

Suppose w = [2.5,-5.0,-1.2,0.5,2.0,0.7] b=0.1

Classitying sentiment for input x
Suppose w = [2.5,—5.0,—1.2,0.5, 2’.0,0.7] b=0.1

p(+|x) = P(Y = 1|x)

o(w-x+Db)

— 6([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19] - 0.1)
— 5(.833)

70

|
=

p(—|x) =P(Y =0x) = 1—-0o(w-x+b)
= 0.30

Classification in (binary) logistic regression: summary
*Given:
* a set of classes: (+ sentiment,- sentiment)
* a vector x of features [x;, X,, .., X,]
* Xx,= count("awesome"
* X, = log(number of words in review)

* A vector wof weights [w;, w,, .., W,]
* w; for each feature f;

P(y=1) = o(w-x+D)
1
1_|_e—(w-x—|-b)

Logistic Regression (LogReg)

* Generative and Discriminative Classifiers
* Classification in LogReg (test)
* An example with sentiment analysis

==) « Learning in LogReg (training)

Wait, where did the W’s come from?

 Supervised classification: we know the correct label y (either O or 1)
for each x.

* What the system produces is an estimate,

 We want to set w and b to minimize the distance between our
estimate y() and the true y'.

Wait, where did the W’s come from?

 Supervised classification: we know the correct label y (either O or 1)
for each x.

* What the system produces is an estimate,

* We want to set w and b to minimize the distance between our
estimate y() and the true y'.
* We need a distance estimator: a loss function or a cost function
* We need an optimization algorithm to update w and b to minimize the loss.

Learning components

* A loss function:
* cross-entropy loss

* An optimization algorithm:

* stochastic gradient descent (not covered in
the lecture)

The distance between y and y

We want to know how far is the classifier output:
y = o(w-x+b)

from the true output:
v [= either 0 or 1]

We'll call this difference:

L(y ,y) = how much y differs from the true y

Cross-entropy loss

* We choose the parameters w,b that maximize the probability
of the true y labels in the training data given the observations
X

Deriving cross-entropy loss for a single observation x

e Goal: maximize probability of the correct label p(y|x)

* Since there are only 2 discrete outcomes (0 or 1) we can express the
probability p(y|x) from our classifier (the thing we want to maximize) as

pOylx) = $7(1—=9)"

* if the gold-standard label y=1, this simplifies to y (the predicted
probability for x having a label of 1)

* if the gold-standard label y=0, this simplifies to 1- y

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: p(y‘x) —)’}y (1 _}’})1_)’
* Now take the log of both sides (mathematically handy)
Maximize: logp(y‘x) — lOg [)’}y (1 _)’})1_4
= ylogy+ (1 —y)log(1—3)

* Whatever values maximize log p(y|x) will also maximize p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize: lng(y\x) — lOg [)’;Y(l_y\)l—Y]
= ylogy+ (1 —y)log(1—7)

* Now flip sign to turn this into a loss: something to minimize
Cross-entropy loss

Leg(9,y) = —logp(ylx) = —|ylogy+ (1 —y)log(l—7)
* Or, plugging in definition of y:
Lee(9,y) = —[ylogo(w-x+b)+(1—y)log(l—o(w-x+b))]

41

Let's see if this works for our sentiment example

* We want loss to be:
smaller if the model’s prediction is close to the correct label

if model is confused
e Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises, and the writing is
second-rate . So why was it so enjoyable ? For one thing, the
cast is great . Another nice touch is the music . | was
overcome with the urge to get off the couch and start dancing

. It sucked me in, and it'll do the same to you .

Let's see if this works for our sentiment example

* True value is y=1. How well is our model doing?

p(+[x) =P =1lx) = o(w-x+D)
= o0([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19] +0.1)
= 0(.833)

70

|
=

* Pretty well! What's the loss?

Lee(9,y) = —[ylogo(w-x+b)+(1—y)log(l—o(w-x+b))]
— —[logo(w-x+b)]
— —log(.70)
— 3

Let's see if this works for our sentiment example

* Suppose true value instead was y=0.

p(—|x)=P(Y =0x) = 1—oc(w-x+b)

= 0.30
* What's the loss?
Lce(¥,y) = —|ylogo(w-x+b)+(1—-y)log(1—o(w-x+b))]
_ —log(1 —c(w-x+b))]
= —1log(.30)

— 1.2

Let's see if this works for our sentiment example

* The loss when model was right (if true y=1)

Lcg(9,y) = —[ylogo(w-x+b)+(1—y)log(l —o(w-x+b))|
— —[logo(w-x+b)]
= —log(.70)
— .36
* Is lower than the loss when model was wrong (if true y=0):
Lce(9,y) = —[ylogo(w-x+b)+(1—y)log(l—o(w-x+b))]
= —log(1—o(w-x+b))]
= —1log(.30)
— 1.2

e Sure enough, loss was bigger when model was wrong!

Our goal: minimize the loss

* Let's make explicit that the loss function in parameterized by
weights 6=(w,b)

* We want the weights that minimize the loss, averaged over all
examples:

é — argmin % ZLCE (f(x(i); 9),);(1))
0 i=1

Problem of Overfitting

* A model that perfectly match the training data has a problem.

* It will also overfit to the data, e.g.,

* A random word that perfectly predicts y (it happens to only occur in one class)
will get a very high weight.
* Failing to generalize to a test set without this word.

* A good model should be able to generalize.

Problem of Overfitting
+

This movie drew me in, and
it'll do the same to you.

| can't tell you how much |
hated this movie. It sucked.

Useful or harmless features

X1 = "this"
X2 = "movie
X3 = "hated"

X4 ="drew me in"

4gram features that just "memorize"
training set and might cause
problems

X5 = "the same to you"
X6 = "tell you how much”

48

Problem of Overfitting

* 4-gram model on tiny data will just memorize the data
* 100% accuracy on the training set

* But it will be surprised by the novel 4-grams in the test data
* Low accuracy on test set

* Models that are too powerful can overfit the data

* Fitting the details of the training data so exactly that the
model doesn't generalize well to the test set

* How to avoid overfitting?
* Regularization in logistic regression
* Dropout in neural networks

Regularization

A solution for overfitting

* Add a regularization term R(8) to the loss function (for now written as
maximizing log probability rather than minimizing loss)

m
0 = argmaleogP(y(i) XY — aR(6)
0 .
=1
 |dea: choose an R(0) that penalizes large weights

* fitting the data well with lots of big weights not as good as fitting the data a
little less well, with small weights

L2 Regularization

* The sum of the squares of the weights: L2 norm ||0||,
* i.e., the square of the Euclidean distance of 0 to the origin.

* L2 regularized objective function:

R(6) = [[6]3=) 6;
j=1

e

argmax
0

> “log Py |x'Y)
L i=1

—a) 6

j=1

L1 Regularization

* The sum of the absolute value of the weights: L1 norm ||0||,

* L1 regularized objective function:
n

R(O) = [l6]1=>_l6:

6 = argmax | Y logP(y"[x")| —a) |6
S j=1

Outline

* Logistic Regression
mm) ¢ Feedforward Neural Networks
e Recurrent Neural Networks

Neural Network Learning

* Learning approach based on modeling adaptation in biological neural
systemes.

* Perceptron: Initial algorithm for learning simple neural networks
(single layer) developed in the 1950’s.

* Backpropagation: More complex algorithm for learning multi-layer
neural networks developed in the 1980’s. (not required for this class)

e REICIAL NEWREGIN

Topics: connection weights, bias, activation function

* Neuron pre-activation (or input activation):

a(x)=b+ > wiz; =b+w'x

» Neuron (output) activation
h(x) = gla(x)) = g(b+) ,; wix;)

* W are the connection weights
« b is the neuron bias

. g() Is called the activation function

55

R AL INEWREIN

Topics: connection weights, bias, activation function

range determined

by g(-) |
bias b only

changes the
position of
the niff

(from Pascal Vincent's slides)

56

ACTIVATION FUNCTION

Topics: linear activation function

* Performs no input
squashing

* Not very interesting...

ACTIVATION FUNCTION

Topics: sigmoid activation function

» Squashes the neuron’s

pre-activation between
0 and |

* Always positive
* Bounded
* Strictly increasing

g(a) = sigm(a) = 1+ex11)(_a)

S ATION FUNGHNGHIN

Topics: hyperbolic tangent (“tanh™) activation function

* Squashes the neuron’s

3.0

pre-activation between I S S e

* Can be positive or ﬁ:ﬁﬁZIIII..E..................
negative
* Bounded e N U N N A N

« Strictly increasing

3 i exp(a) 5 exp(Ga) R exdp (2a)Eal
g(a’) = ta’nh(a’) ~ exp(a)+exp(—a) exp(2a)+1

59

ACTIVATION FUNCTION

Topics: rectified linear activation function

* Bounded below by O
(always non-negative)

* Not upper bounded

» Strictly increasing

* Tends to give neurons
with sparse activities

g(a) = reclin(a) = max(0, a)

class Neuron(object):

#oeus

def forward(inputs):
""" assume inputs and weights are 1-D numpy arrays and bias is a number

cell body sum = np.sum(inputs * self.weights) + self.bias
1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation function

firing rate =
return firing rate

61

Linear Separator

* Since one-layer neuron (aka perceptron) uses linear threshold
function, it is searching for a linear separator that
discriminates the classes.

03 A

ERTFICIAL NEWIR@IN

Topics: capacity of single neuron

» Can solve linearly separable problems

OR (171, 5172) A AND (f)f_l/ .’,132) AND (Zl?l . E)

/
A 7 O | o) o ,
/ ™ P
/ = ,
ol,” 0 o of o 7 A
/
—
0 | 0 T

63

e @A L INE RGN

Topics: capacity of single neuron

» Can't solve non linearly separable problem:s...

XOR (331, 2132)
'l a o ‘:
N g
o] o A =
> <
0 !
1

XOR (331, :1:2)

\N A
\

\

o _A

——
0 |

AND (.13_1, .’172)

* ... unless the input is transformed In a better representation

64

NEURAL NETWORK

Topics: single hidden layer neural network
* Hidden layer pre-activation:
a(x) = b + Wlx
(ate)s =6 + 3, W)
* Hidden layer activation:

h(x) = g(a(x))

 Output layer activation:

f(x)_O(b<2>+w<2>Th<1>x @ i @

output activation function

65

NEURAL NETWORK

Topics: softmax activation function

* For multi-class classification:
» we need multiple outputs (| output per class)
» we would like to estimate the conditional probability p(y = ClX)

* We use the softmax activation function at the output:

exp(ai) exp(ac) i
()(a) = softmax(a) = [Zc exp(ac) *°° Zc exp(ac)]

» strictly positive

» sums to one

* Predicted class is the one with highest estimated probability

66

NEURAL NETWORK

Topics: multilayer neural network
* Could have L hidden layers:

» layer pre-activation for k>0 (h®(x) = x)

a®) (x) = b®) 4 WE Rk (x)

» hidden layer activation (k from 1 to L):
h() (x) = g(a™ (x))

» output layer activation (k=L+1):
h(!+1)(x) = o(al"*! (x)) = f(x)

67

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3x1)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)

68

A CTTY OF NEURAL NETVVSISIS

Topics: single hidden layer neural network

X; X;

(from Pascal Vincent's slides)

69

ORK
TR

L NE
sl
ACITY
CAP

ork
| netw
eura

hidden layer n
|

s single

ics: s

Top

iy T [
!MMHMIHI""II"III
Hllf,l’l'f’lllmﬂlllll'l'lll'lll

(]

's slides)
cal Vincent's

Pas

o

A CITY OF NEURAL NETVV IS

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

71

A CITY OF NEURAL NETVV@IES

Topics: universal approximation

» Universal approximation theorem (Hornik, 1991):

» “a single hidden layer neural network with a linear output unit can approximate
any continuous function arbitrarily well, given enough hidden units”

» The result applies for sigmoid, tanh and many other hidden
layer activation functions

* This Is a good result, but it doesn't mean there is a learning
algorithm that can find the necessary parameter values!

72

3 hidden neurons

6 hidden neurons

20 hidden neurons

73

How to train a neural network?

Topics: multilayer neural network

* Could have L hidden layers:

» layer input activation for k>0 (h(®(x) = x)
a(k)(x) — bk) W(k)h(k—l)(x)

» hidden layer activation (k from 1 to L):
h*) (x) = g(al® (x))

» output layer activation (k=L+1):
h(+D(x) = o(alt+D) (x)) = £(x)

74

Empirical Risk Minimization and Regularization

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

arg min — Zl x(1):0),y) + \Q(0)

» I(f(x®);0),y®) is a loss function
»)(0) is a regularizer (penalizes certain values of @)
* Learning Is cast as optimization

» ideally, we'd optimize classification error, but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

Loss Function

Topics: loss function for classification

« Neural network estimates f(x). = p(y = c|x)

» we could maximize the probabilities of y(t) given x®) in the training set

* To frame as minimization, we minimize the
negative log-likelihood natural log (In)

s

I(£(x),y) = — 3. 1y—o log'F(x). = —10g £(x),

76

Total error on training set

100 150 200
Number of epochs

[figure from Greg Mori’s slides]

250 300 350 400

77

Regularization

Topics: L2 regularization

2
k
BEED %, > (W) =2 W2

It’s call squared Frobenius norm when W is a matrix

78

Empirical Risk Minimization

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

arg min — Zl x):0), y™M) + XQ(0)

» I(f(x(®);0),y®?) is aloss function

) Q(B) is a regularizer (penalizes certain values of @)

79

A =0.001

A =0.01

[http://cs231n.github.io/neural-networks-1/]

80

| NI A 7

Topics: initialization
* For biases

» nitialize all to O

* For weights

» Can't intialize weights to O with tanh activation
- we can show that all gradients would then be O (saddle point)

» Can't intialize all weights to the same value

- we can show that all hidden units in a layer will always behave the same

- need to break symmetry

|[ON

size of h(®)(x)

» Recipe: sample Wf,l;) from U [—b,b] where b = V6

\/Hk+Hk—1

- the idea is to sample around O but break symmetry

- other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

81

Learning the Parameters (weights and bias)

* Backpropagation (BP) algorithm (not required for this course)

* Further reading on BP:

* https://towardsdatascience.com/understanding-backpropagation-algorithm-
/bb3aa2f95fd

* https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-
example/

82

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Popular Tools

 scikit-learn: https://scikit-learn.org/

* PyTorch: https://pytorch.org/

* Tensorflow: https://www.tensorflow.org/

83

https://scikit-learn.org/
https://pytorch.org/
https://www.tensorflow.org/

scikit-learn MLPClassifier

>>> from sklearn.neural_network import MLPClassifier

>>> X = [[0., 0.], [1., 1.]]

>>> y = [0, 1]

>>> clf = MLPClassifier(solver='1bfgs', alpha=le-5,
hidden_layer_sizes=(5, 2), random_state=1)

>>> clf.fit(X, y)
MLPClassifier(alpha=1e-05, hidden_layer_sizes=(5, 2), random_state=1,
solver="'1bfgs')

84

scikit-learn MLPClassifier

More parameters that can be indicated/tuned,
details at:

https://scikit-
learn.org/stable/modules/generated/sklearn.n

eural network.MLPClassifier.html

Parameters:

hidden_layer_sizes : tuple, length = n_layers - 2, default=(100,)
The ith element represents the number of neurons in the ith hidden layer.

activation : {“identity’, ‘logistic’, ‘tanh’, ‘relu’}, default="relu’
Activation function for the hidden layer.

« ‘identity’ no-op activation, useful to implement linear bottleneck, returns f(x) = x
* ‘logistic’, the logistic sigmoid function, returns f(x) =1/ (1 + exp(-x)).

« ‘tanh’ the hyperbolic tan function, returns f(x) = tanh(x).

« ‘relu) the rectified linear unit function, returns f(x) = max(0, x)

solver : {"Ibfgs’, ‘sgd’, ‘adam’}, default="adam’
The solver for weight optimization.

* 'Ibfgs’ is an optimizer in the family of quasi-Newton methods.
« 'sgd’ refers to stochastic gradient descent.
« ‘adam’ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba

Note: The default solver ‘adam’ works pretty well on relatively large datasets (with thousands of training
samples or more) in terms of both training time and validation score. For small datasets, however, ‘Ibfgs’
can converge faster and perform better.

alpha : float, default=0.0001
L2 penalty (regularization term) parameter.

batch_size : int, default="auto’
Size of minibatches for stochastic optimizers. If the solver is ‘Ibfgs’, the classifier will not use minibatch.
When set to “auto”, batch_size=min(200, n_samples)

learning_rate : {“constant’, ‘invscaling’, ‘adaptive’}, default='constant’
Learning rate schedule for weight updates.

« ‘constant’ is a constant learning rate given by ‘learning_rate_init".

« ‘invscaling’ gradually decreases the learning rate at each time step ‘t' using an inverse scaling exponent
of ‘power_t" effective_learning_rate = learning_rate_init / pow(t, power_t)

« ‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as long as training loss keeps decreas-
ing. Each time two consecutive epochs fail to decrease training loss by at least tol, or fail to increase
validation score by at least tol if ‘early_stopping’ is on, the current learning rate is divided by 5.

Only used when solver="'sgd".

85

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Outline

* Logistic Regression
 Feedforward Neural Networks
mm) * Recurrent Neural Networks

Long Distance Dependencies

* |t is very difficult to train NNs to retain information over many time steps

* This makes it very difficult to handle long-distance dependencies, such as
subject-verb agreement.

e E.g. Jane walked into the room. John walked in too. It was late in the day. Jane
saidhito ?

) h O)
L.T ! !
A A

T
6 6

» A

l
b o

Recurrent Neural Networks (RNN)

e Core idea: Apply the same weights W repeatedly

outputs ~(1) ~(2) ~(3) ;(4)
(opﬂonan'{ Y ’ g

hidden states <

input sequence
(anylengﬂﬂ'{

88

y'Y = P(x'%|the students opened their)

A Simple RNN Language Model books

laptops
output distribution
') = softmax (Uh(') + bg) e RIVI
B >
a A Z0o
U
h0 hﬂ”_\ h(2) h(3) h(4)
hidden states ® e @) O @
(1) _ (1—1) () oW, @ W, O Wi, O Wi, O
h“—rr(Whh + Wee +b1) < o - o —le
h'Y is the initial hidden state O O O @) O
— . N N W
e We We We
) e e e
. © O O O
word embeddings o) Ol .20 3] @ e @
o) — EaplD) O O O @)
O O O @
e T8 T8 o
words / one-hot vectors the students opened their

20 ¢ RIVI 2D 2(2) 2(3) (4) w

Pros and Cons

RNN Advantages:

* Can process any length input

* Computation for step t can (in
theory) use information from
many steps back

* Model size doesn’t increase for
longer input context

* Same weights applied on every
timestep, so there is symmetry
in how inputs are processed.

RNN Disadvantages:

* Recurrent computation is slow

* In practice, difficult to access
information from many steps
back

h (0)

y'Y) = P(a'"|the students opened their)

(ec0@|

books
laptops
Z A zgo
U
h(L h(2) h(3) h(4)
0 0 0 0
Wh @ Wh @) Wh _ O Wh @)
e O 1@ O
o @) (@) @)
i e e N
W, W, W, W,
) SEER N)
: © O o
1 2)| © (3) © (1) ©
Vol “7lo| ¢o| “ e
@) @) O @
e T T Ts

the students opened their
2 () 23 e

90

Long-Short Term Memory Networks (LSTMs)

* A type of RNN proposed by Hochreiter and Schmidhuber in 1997

Long-Short Term Memory Networks (LSTMs)

A
4 N\ N\)
> —— > —»>
A | bl A
\I J_> J >\|)_}
2 o &

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

92

Long-Short Term Memory Networks (LSTMs)
Write some new cell content @

Forget some

cell content

———_| Output some cell content

Compute the to the hidden state

forget gate

— h:

Compute the @ Compute the Compute the
input gate new cell content output gate

O—>>->—<

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Seguence to Sequence

* Encoder/Decoder framework maps one sequence to a "deep vector"
then another LSTM maps this vector to an output sequence.

Encoder Decoder

\ \
! | ! \

—O—0 O

This is my cat C'est mon chat

Successful Applications of LSTMs

* Speech recognition: Language and acoustic modeling

* Sequence labeling

* POS Tagging
* NER
* Phrase Chunking

* Neural syntactic and semantic parsing
* Image captioning

* Sequence to Sequence
 Machine Translation (Sustkever, Vinyals, & Le, 2014)
* Summarization
* Video Captioning (input sequence of CNN frame outputs)

