
EECS 498-004: Introduction to Natural
Language Processing

Instructor: Prof. Lu Wang
Computer Science and Engineering

University of Michigan
https://web.eecs.umich.edu/~wangluxy/

1

https://web.eecs.umich.edu/~wangluxy/

Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

[Modified from slides by Dan Jurafsky and Joyce Chai]
2

Probabilistic Language Models

•Assign a probability to a sentence

3

Probabilistic Language Models

•Assign a probability to a sentence
•Machine Translation:
• P(high winds tonight) > P(large winds tonight)

•Spell Correction
• The office is about fifteen minuets from my house
• P(about fifteen minutes from) > P(about fifteen minuets from)

•Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

•Text Generation in general:
• Summarization, question-answering, dialogue systems …

4

Probabilistic Language Modeling

• Goal: compute the probability of a sentence or sequence of words:
P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

• A model that computes either of these:
P(W) or P(wn|w1,w2…wn-1) is called a language model.

• Better: the grammar
• But language model (or LM) is standard

5

How to compute P(W)

• How to compute this joint probability:

•P(its, water, is, so, transparent, that)

6

How to compute P(W)

• How to compute this joint probability:

•P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability

7

Quick Review: Probability

• Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

• More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The Chain Rule in General
P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

8

The Chain Rule applied to compute joint
probability of words in sentence

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

9

The Chain Rule applied to compute joint
probability of words in sentence

P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is
so)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

10

How to estimate these probabilities

• Could we just count and divide?

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

11

How to estimate these probabilities

• Could we just count and divide?

• No! Too many possible sentences!
• We’ll never see enough data for estimating these

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

12

Markov Assumption

•Simplifying assumption:

•Or maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

13

Markov Assumption

•In other words, we approximate each
component in the product

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)
14

Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model

€

P(w1w2…wn) ≈ P(wi)
i
∏

15

Condition on the previous word:

Bigram model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

16

N-gram models

•We can extend to trigrams, 4-grams, 5-grams

17

N-gram models

•We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language

• because language has long-distance dependencies:

“The computer(s) which I had just put into the machine room
on the fifth floor is (are) crashing.”

•But we can often get away with N-gram models

18

Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

19

Estimating bigram probabilities

• The Maximum Likelihood Estimate for bigram probability

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

20

An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

21

An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

22

More examples:
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants close by
•mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that are available
• i’m looking for a good place to eat breakfast
•when is caffe venezia open during the day

23

Raw bigram counts

• Out of 9222 sentences

24

Raw bigram probabilities

• Normalize by unigrams:

• Result:

25

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
P(I|<s>)
× P(want|I)
× P(english|want)
× P(food|english)
× P(</s>|food)

= .000031
26

Knowledge

•P(english|want) = .0011
•P(chinese|want) = .0065
•P(to|want) = .66
•P(eat | to) = .28
•P(food | to) = 0
•P(want | spend) = 0
•P (i | <s>) = .25

27

Practical Issues

•We do everything in log space
•Avoid underflow
•(also adding is faster than multiplying)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

28

Language Modeling Toolkits

• SRILM
• http://www.speech.sri.com/projects/srilm/

• Neural language models (will be discussed later)
• Word2vec
• RNN language model
• BERT

29

http://www.speech.sri.com/projects/srilm/

Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

30

Evaluation: How good is our model?

31

Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently observed” sentences

• Than “ungrammatical” or “rarely observed” sentences?

32

Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently observed” sentences

• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.
• We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our training set, totally

unused.
• An evaluation metric tells us how well our model does on the test set.

33

Training on the test set

• We can’t allow test sentences into the training set
• We will assign it an artificially high probability when we set it in the

test set
• “Training on the test set”
• Bad science!

34

Extrinsic evaluation of N-gram models

•Best evaluation for comparing language models A
and B

• Put each model in a task
• spelling corrector, speech recognizer, MT system

• Run the task, get an accuracy for A and for B
• How many misspelled words corrected properly
• How many words translated correctly

• Compare accuracy for A and B

35

Difficulty of extrinsic evaluation of N-gram
models
•Extrinsic evaluation

• Time-consuming; can take days or weeks
•So

• Sometimes use intrinsic evaluation: perplexity

36

Difficulty of extrinsic evaluation of N-gram
models
•Extrinsic evaluation

• Time-consuming; can take days or weeks
•So

• Sometimes use intrinsic evaluation: perplexity
• Bad approximation

• unless the test data looks just like the training data
• So generally only useful in pilot experiments

• But is helpful to think about.

37

Intuition of Perplexity

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game. (Why?)

• A better model of a text
• is one which assigns a higher probability to the word that actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

38

Intuition of Perplexity

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game. (Why?)

• A better model of a text
• is one which assigns a higher probability to the word that actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

39

Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

The best language model is one that best predicts an unseen test set
• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

40

Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

Chain rule:

For bigrams:

The best language model is one that best predicts an unseen test set
• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

41

Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set
• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

42

Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits
• What is the perplexity of this sentence according to a model that

assign P=1/10 to each digit?

43

Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits
• What is the perplexity of this sentence according to a model that

assign P=1/10 to each digit?

44

Lower perplexity = better model

•Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

45

Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

46

The perils of overfitting

•N-grams only work well for word prediction if the
test corpus looks like the training corpus
• In real life, it often doesn’t
•We need to train robust models that generalize!

47

The perils of overfitting

•N-grams only work well for word prediction if the
test corpus looks like the training corpus
• In real life, it often doesn’t
•We need to train robust models that generalize!
•One kind of generalization: Zeros!
•Things that don’t ever occur in the training set
•But occur in the test set

48

Zeros

In training set, we see
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

But in test set,
… denied the offer
… denied the loan

49

Zero probability bigrams

• Bigrams with zero probability
• mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t divide by 0)!

50

Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

51

The intuition of smoothing (from Dan Klein)

• When we have sparse statistics:

• Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

at
ta

ck

re
qu

es
t

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

at
ta

ck

m
an

ou
tc

om
e

…al
le

ga
tio

ns

re
po

rt
s

cl
ai
m
s

re
qu

es
t

52

Add-one estimation

•Also called Laplace smoothing
• Pretend we saw each word one more time than we did
• Just add one to all the counts! (Instead of taking away

counts)

•MLE estimate:

•Add-1 estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

V is the size of vocabulary53

Add-one estimation

•Also called Laplace smoothing
• Pretend we saw each word one more time than we did
• Just add one to all the counts! (Instead of taking away

counts)

•MLE estimate:

•Add-1 estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V Why add V?54

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

55

Laplace-smoothed bigrams

56

Add-1 estimation is a blunt instrument

• So add-1 isn’t used for N-grams:
• We’ll see better methods
• (nowadays, neural LM becomes popular, will discuss later)

• But add-1 is used to smooth other NLP models
• For text classification (coming soon!)
• In domains where the number of zeros isn’t so huge.

• Add-1 can be extended to add-k (k can be any positive real
number, sometimes also called add-alpha)

57

Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

58

Backoff and Interpolation
• Sometimes it helps to use less context
• Condition on less context for contexts you haven’t learned much about

• Backoff:
• use trigram if you have good evidence (e.g. the trigram is observed in training)
• otherwise bigram
• otherwise unigram

• Interpolation:
• mix unigram, bigram, trigram

• In general, interpolation works better
59

Backoff

60

Backoff

• However, this doesn’t make a true probability distribution

61

Katz Backoff for Trigram

62

Katz Backoff for Trigram

63

• (After class practice)

Linear Interpolation

•Simple interpolation

64

Linear Interpolation

• Why does this estimation correctly define a distribution?

65

How to set the lambdas?

• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:
• Fix the N-gram probabilities (on the training data)
• Then search for λs that give largest probability to held-out set:

Training Data Held-Out
Data

Test
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

An assignment of λs

66

A Common Method – Grid Search

• Take a list of possible values, e.g. [0.1, 0.2, … ,0.9]
• Try all combinations

67

Unknown words: Open versus closed
vocabulary tasks

• If we know all the words in advance
• Vocabulary V is fixed
• Closed vocabulary task

• Often we don’t know this
• Out Of Vocabulary = OOV words
• Open vocabulary task

68

Unknown words: Open versus closed
vocabulary tasks

• If we know all the words in advanced
• Vocabulary V is fixed
• Closed vocabulary task

• Often we don’t know this
• Out Of Vocabulary = OOV words
• Open vocabulary task

• Instead: create an unknown word token <UNK>
• Training of <UNK> probabilities

• Create a fixed lexicon L of size V (e.g. selecting high frequency words)
• At text normalization phase, any training word not in L changed to <UNK>
• Now we train its probabilities like a normal word

• At test time
• Use UNK probabilities for any word not in training

69

Smoothing for Web-scale N-grams

• “Stupid backoff” (Brants et al. 2007)
•No discounting, just use relative frequencies

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i)> 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N
Until unigram probability

70

Today’s Outline

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

71

Absolute discounting: just subtract a little from
each count
• Suppose we wanted to subtract a little from a

count of 4 to save probability mass for the
zeros
• How much to subtract ?

• Church and Gale (1991)’s clever idea
• Divide up 22 million words of AP Newswire
• Training and held-out set
• for each bigram in the training set
• see the actual count in the held-out set!

• It sure looks like c* = (c - .75)

Bigram count
in training

Bigram count in
heldout set

1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

72

Absolute Discounting Interpolation

• Save ourselves some time and just subtract 0.75 (or some d)!

•But should we really just use the regular unigram P(w)?

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi)− d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram

unigram

Interpolation weight

i

73

• Better estimate for probabilities of lower-order unigrams!
• Shannon game: I can’t see without my reading___________?
• “Francisco” is more common than “glasses”
• … but “Francisco” always follows “San”

Francisco

Kneser-Ney Smoothing I

glasses

74

• Better estimate for probabilities of lower-order unigrams!
• Shannon game: I can’t see without my reading___________?
• “Francisco” is more common than “glasses”
• … but “Francisco” always follows “San”

• The unigram is useful exactly when we haven’t seen this bigram!
• Instead of P(w): “How likely is w”
• Pcontinuation(w): “How likely is w to appear as a novel continuation?
• For each word, count the number of unique bigrams it completes
• Every unique bigram was a novel continuation the first time it was seen

Francisco

Kneser-Ney Smoothing I

glasses

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

75

Kneser-Ney Smoothing II

• How many times does w appear as a novel continuation (unique bigrams):

• Normalized by the total number of word bigram types

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0} All unique bigrams in the corpus

76

Kneser-Ney Smoothing III
• Alternative metaphor: The number of # of unique words seen to precede w

• normalized by the number of (unique) words preceding all words:

• A frequent word (Francisco) occurring in only one context (San) will have a low
continuation probability

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}
{w 'i−1 : c(w 'i−1,w ')> 0}

w '
∑

| {wi−1 : c(wi−1,w)> 0} |

77

Kneser-Ney Smoothing IV (after class practice)

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount
The number of word types that can follow wi-1
= # of word types we discounted
= # of times we applied normalized discount 78

Language Modeling

• Probabilistic language model and n-grams
• Estimating n-gram probabilities
• Language model evaluation and perplexity
• Generalization and zeros
• Smoothing: add-one
• Interpolation, backoff, and web-scale LMs
• Smoothing: Kneser-Ney Smoothing

79

Homework

• Reading J&M ch1 and ch4.1-4.9
• Start thinking about course project and find a team
• Project proposal due Feb 12th.
• The format of the proposal will be posted on Piazza

80

