EECS 498-004: Introduction to Natural Language Processing

Instructor: Prof. Lu Wang
Computer Science and Engineering
University of Michigan

https://web.eecs.umich.edu/~wangluxy/

Logistics

- Sign up to discuss project progress on Mar 31 or Apr 4!
 - Please see arrangement on Piazza @192.
 - Teaching staffs are working on constructing comments and suggestions.

Course feedback

- Thank you all for sharing your thoughts and suggestions during discussion with Dr. Tershia Pinder-Grover!!
- Re: adding more details in the homework
 - Baselines to more advanced methods, running time, some scaffolding
 - Yes, we have been adding more instructions; future offerings will add warm-up practices
- Re: meetings and guidelines for course project
 - Yes, we will meet in the upcoming weeks
- Re: smaller datasets
 - Machine learning models tend to overfit on small datasets.
 - We have used datasets of varying sizes for different questions.
- Re: connections among homework, lectures, and textbook
 - Lectures focus on the main topics and selectively zooms in; homework contains more hands-on practices; textbook give many more details.
- Re: collaborations among students
 - Let's try in-class collaboration today!

What is Natural Language Dialogue?

- Communication involving
 - Multiple contributions
 - Coherent interaction
 - More than one participant
- Interaction modalities
 - Input: Speech, typing, writing, gesture
 - Output (especially human-machine dialogues): Speech, text, graphical display, animated face/body (embodied virtual agent)

- Understanding
- Managing interaction
- Can you deliver this action?
- Producing response

- Understanding
 - What does a person say?
 - Identify words from speech signal
 - "Please close the window"
 - What does the speech mean?
 - Identify semantic content
 - Request (subject: close (object: window))
 - What were the speaker's intentions?
 - E.g., speaker requests an action in a physical world

- Managing interaction
 - Knowledge for a domain
 - Weather: temperature, precipitation, wind, etc
 - Identify new information
 - e.g. "which window?", "the one on the left"
 - Identifying which action to perform given new information
 - "close the window", "set a thermostat" -> physical action
 - "what is the weather like outside?" -> call the weather API
 - Determining a response
 - "OK", "I can't do it"
 - Provide an answer
 - Ask a clarification question

- Access to information (Can you deliver this action?)
- To process a request "Please close the window" you (or the system) needs to know:
 - There is a window
 - Window is currently opened
 - Window can/cannot be closed

- Producing response
 - Deciding when to speak
 - Deciding what to say
 - Choosing the appropriate meaning
 - Deciding how to present information
 - So partner understands it
 - So expression seems natural

When is automatic dialogue system useful?

- When hands-free interaction is needed
 - In-car interface
 - In-field assistant system
 - Command-and-control interface
 - Language tutoring
 - Immersive training
- When speaking is easier than typing
 - Voice search interface
 - Virtual assistant (Siri, Google Now)
- Replacing human agents (cutting cost for companies)
 - Call routing
 - Menu-based customer help
 - Voice interface for customer assistance

Visions of dialogue from science fiction

- Hal "2001: A Space Odyssey" (1968)
 - Naturally conversing computer
- Star Trek (original 1966)
 - Natural language command and control
- Her (2013)
 - A virtual partner with natural dialogue capabilities

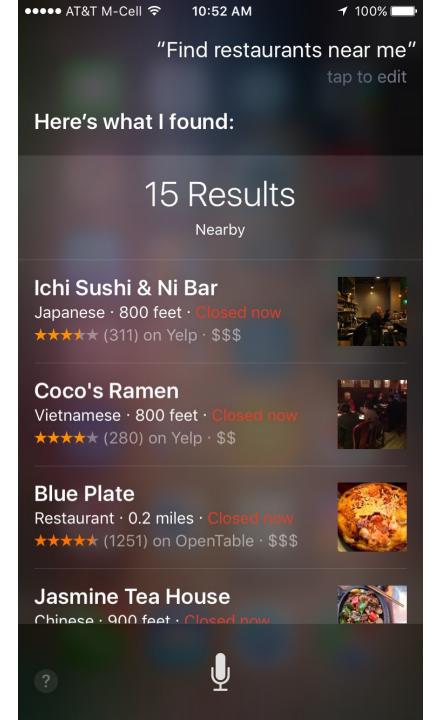
Dialogue Agents

Phone-based Personal Assistants
SIRI, Cortana, Google Now
Talking to your car
Communicating with robots
Clinical uses for mental health
Chatting for fun

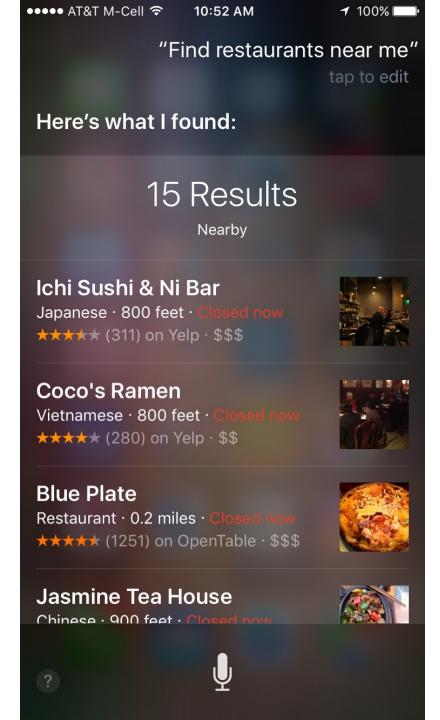
Two classes of systems

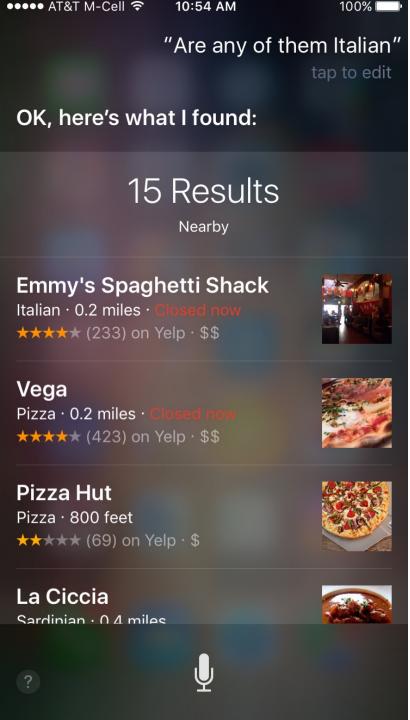
- 1. (Goal-based) Dialogue agents
 - SIRI, interfaces to cars, robots
 - booking flights or restaurants
- 2. Chatbots


Two classes of systems


- 1. (Goal-based) Dialogue agents (this lecture)
 - SIRI, interfaces to cars, robots
 - booking flights or restaurants
- 2. Chatbots

Examples of modern Virtual Assistant dialogue systems


- Apple Siri
 - Supports questions in a set of domains
 - Answers open-end questions
 - Cute "Easter egg" responses



●●●●● AT&T M-Cell 🛜 10:53 AM 100% -"Tell me more about the first one" tap to edit Ichi Sushi & Ni Bar is a Japanese restaurant on Mission St 800 ft to your west. It averages 3½ stars and is somewhat pricey.

Examples of modern Virtual Assistant dialogue systems

- Android Google Now (2013)
 - Predictive search assistant
- Windows Cortana (2014)
 - Works across different Windows devices
 - Aims to be able to "talk about anything"

Embedded devices with dialogue capabilities

- Amazon Echo (2014) home assistant device
 - Plays music
 - With voice commands
 - Question answering
 - Get weather, news
 - More complex questions, like
 - "how many spoons are in a cup?"
 - Setting timer
 - Manages TODO lists

Outline

- Finite-state vs. Frame-based dialogue systems
- Dialogue system evaluation
- Beyond content: intentions
- Grounding and confirmation

Architectures for Practical Dialogue Systems

- Finite-State
 Simple information: e.g., passwords or credit cards
- Frame-Based

 All commercial and academic system (SIRI etc.)

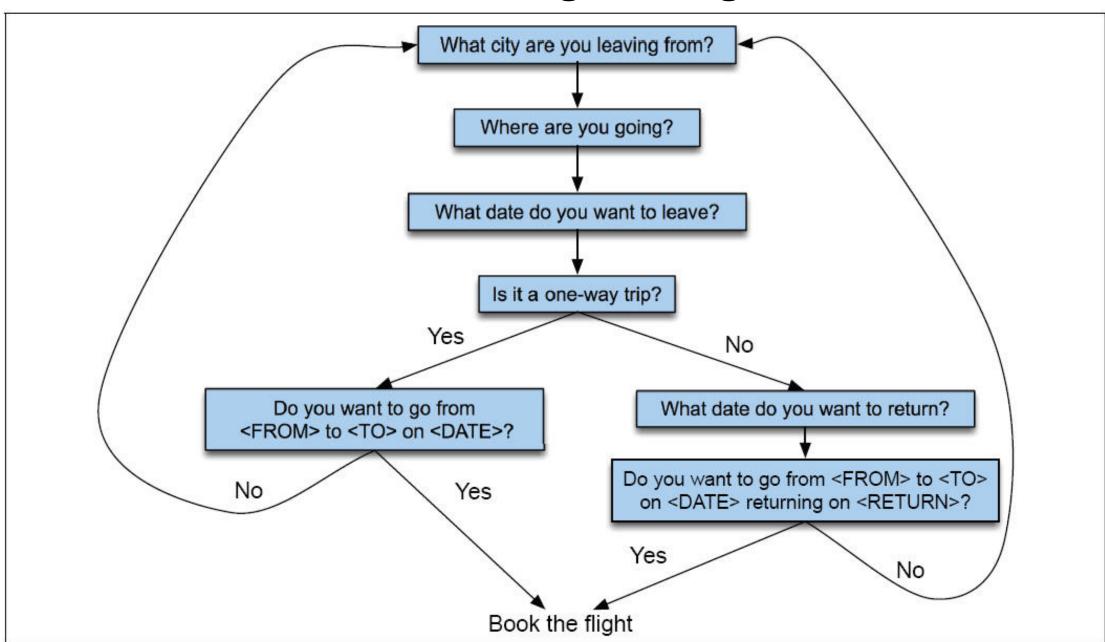
Architectures for Practical Dialogue Systems

- Finite-State
 Simple information: e.g., passwords or credit cards
 - Frame-Based

 All commercial and academic system (SIRI etc.)

Finite-State Dialog Management

Consider a trivial airline travel system:


Ask the user for a departure city

Ask for a destination city

Ask for a time

Ask whether the trip is round-trip or not

Finite State Dialog Manager

Finite-state dialogue managers

- System completely controls the conversation with the user.
- It asks the user a series of questions
- Ignoring (or misinterpreting) anything the user says that is not a direct answer to the system's questions

Dialogue Initiative

- Systems that control conversation like this are called single initiative.
- Initiative: who has control of conversation
- In normal human-human dialogue, initiative shifts back and forth between participants.

System Initiative

System completely controls the conversation

- Simple to build
- User always knows what they can say next
- System always knows what user can say next
 - Known words: Better performance from ASR
 - Known topic: Better performance from NLU (NL understanding)
- OK for VERY simple tasks (entering a credit card, or login name and password)
- Too limited

Problems with System Initiative

- Real dialogue involves give and take!
- In travel planning, users might want to say something that is not the direct answer to the question.
- For example answering more than one question in a sentence:

Hi, I'd like to fly from Seattle Tuesday morning

I want a flight from Milwaukee to Orlando one way leaving after 5 p.m. on Wednesday.

Single initiative + universals

- We can give users a little more flexibility by adding universals: commands you can say anywhere
- As if we augmented every state of FSA with these

Help

Start over

Correct

- This describes many implemented systems
- But still doesn't allow user much flexibility

Architectures for Practical Dialogue Systems

- Finite-State
 Simple information: e.g., passwords or credit cards
- Frame-Based
 All commercial and academic system (SIRI etc.)

Instead, the state of the art: Frame-based dialogue

- A kind of mixed initiative
 - The conversational initiative shifts between system and user
- The structure of the **frame** guides dialogue

Frame-based dialogue

• Invented up the hill in 1977:

GUS, A Frame-Driven Dialog System¹

Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson and Terry Winograd

Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.

Artificial Intelligence Journal, 1977

- Still the state of the art (in real world systems)
 - SIRI based on GUS architecture

The Frame

- A set of slots, to be filled with specific information
- Each associated with a question to the user

Slot	Question
DEPT CITY	What city are you leaving from?
DEST CITY	Where are you going?
DEPT DATE	What day would you like to leave?
DEPT TIME	What time would you like to leave?
AIRLINE	What is your preferred airline?

Frames are mixed-initiative

- System asks questions of user, filling any slots that user specifies
 - When frame is filled, do database query
- If user answers 3 questions at once, system can fill 3 slots and not ask these questions again!

The Natural Language Understanding Component

Show me morning flights from Boston to SF on Tuesday.

```
SHOW:
```

FLIGHTS:

DEPT:

CITY: Boston

DATE: Tuesday

TIME: morning

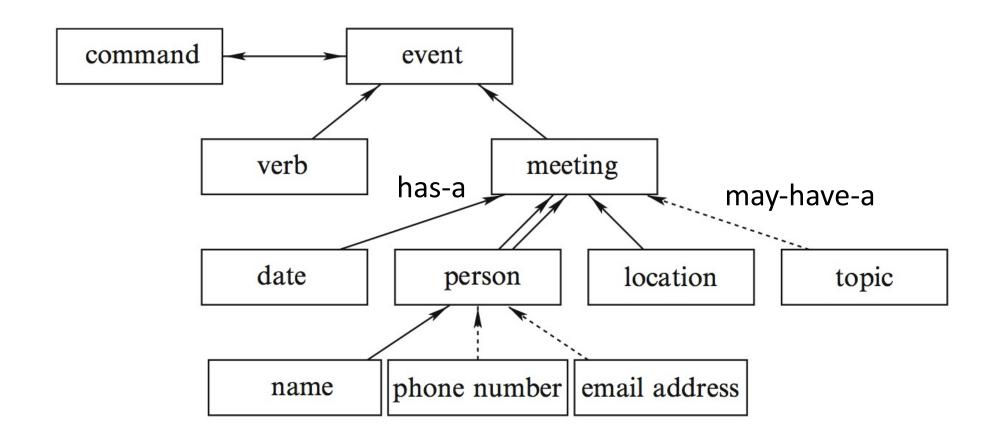
DEST:

CITY: San Francisco

Often called "dialogue state" detection

Dialogue state: representation of what the user wants at any point in a dialogue

- Which slots got filled in the last sentence?
- What is the current state of the frame?
 - All the values of the filled slots
- What is the user's last "dialogue act":
 - Did they ask me a question?
 - Inform me of something?


How to do Frame-based Natural Language Understanding?

- Rule-based models (precision is high)
- Statistical models (better generalizability)

Siri uses GUS architecture: Condition-Action Rules

- Active Ontology: relational network of concepts
 - data structures: a meeting has
 - a date (and time),
 - a location,
 - a topic
 - a list of attendees
 - rule sets that perform actions for concepts
 - the date concept turns string
 - Monday at 2pm into
 - object: date(DAY, MONTH, YEAR, HOURS, MINUTES)

Part of ontology for meeting task

meeting concept: if you don't yet have a location, ask for a location

Statistical Natural Language Understanding

- Statistical classifiers to map words to semantic frame-fillers
- Given a set of labeled sentences

```
"I want to fly to San Francisco on Tuesday"
```

Destination: San Francisco

Depart-date: Tuesday

• Requirements: Lots of labeled data

Statistical Slot filling

Given a sentence:

I want to go from Boston to SF

Classifier predicts which slot the user wants to fill

Output: (ORIGIN, DESTINATION, DEPARTURE-DATE, AIRLINE)

Statistical Slot filling

Given a sentence:

I want to go from Boston to SF

Classifier predicts which slot the user wants to fill

Output: (Departure, Destination, Departure-Date, Airline)

Features: Words, Named Entities

Classifier or sequence model predicts the filler:

DEPT DEST

I want to go from Boston to SF

Outline

- Finite-state vs. Frame-based dialogue systems
- Dialogue system evaluation
 - Beyond content: intentions
 - Grounding and confirmation

Evaluation

Slot Error Rate for a Sentence
 # of inserted/deleted/substituted slots
 # of total reference slots for sentence

2. End-to-end evaluation (Task Success)

Evaluation

"Make an appointment with David at 11:30 in Rm 101"

Slot	Filler
PERSON	David
TIME	11:30 p.m.
ROOM	Rm 101

Evaluation

"Make an appointment with David at 11:30 in Rm 101"

Slot	Filler
PERSON	David
TIME	11:30 p.m.
ROOM	Rm 101

Slot error rate: 1/3

Task success: At end, was the correct meeting

added to the calendar?

Outline

- Finite-state vs. Frame-based dialogue systems
- Dialogue system evaluation
- Beyond content: intentions
 - Grounding and confirmation

Intentions

- After understanding "what is said"...
 - Dialogue Act
 - Grounding and Confirmation
 - Rejection

Type of Dialogue Acts (Speech Acts)

Bach and Harnish (1979)

Constatives: committing the speaker to something's being the case (answering, claiming, confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do something (advising, asking, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action (promising, planning, vowing, betting, opposing)

Acknowledgments: express the speaker's attitude regrading the hearer with respect to some social action (apologizing, greeting, thanking, accepting an acknowledgment)

Type of Dialogue Acts (Speech Acts)

- •"Turn up the music!"
 DIRECTIVE
- •"What day in May do you want to travel?"

 DIRECTIVE
- •"I need to travel in May"
 CONSTATIVE
- •Thanks
 ACKNOWLEDGEMENT

Dialogue Act Detection

- Common categories in task-oriented dialogue systems:
 - Question
 - Command
 - Suggestion
 - Statement
- Given a user's sentence:
 - Context: David wants to eat Italian food.
 - He asked: How many Italian restaurants are in walking distance?
- Was that a question?

Dialogue Act detection is hard

Can you give me a list of the flights from Atlanta to Boston?

- This looks like a QUESTION.
 - It has a question-mark, starts with "can you"
- If so, the answer is:
 - YES.
- But really it's a COMMAND, a polite form of:

Please give me a list of the flights...

What looks like a QUESTION can be a COMMAND

Dialogue Act detection is hard

- Similarly, what looks like a STATEMENT can be QUESTION
- I was wanting to make some arrangements for a trip that I'm going to be taking uh to LA uh beginning of the week after next...

DA interpretation as statistical classification

- Lots of clues in each sentence that can tell us which DA it is:
- Words and Collocations
 - Please or would you: good cue for REQUEST
 - Are you: good cue for INFO-REQUEST
- Prosody
 - Rising pitch is a good cue for INFO-REQUEST
 - Loudness/stress can help distinguish yeah/AGREEMENT from yeah/BACKCHANNEL
- Conversational Structure
 - Yeah following a proposal is probably AGREEMENT; yeah following an INFORM probably a BACKCHANNEL

Another example of dialogue act detection: Correction Detection

- If system misrecognizes an utterance, and either
 - Rejects
 - Via confirmation, displays its misunderstanding
- Then user has a chance to make a correction
 - Repeat themselves
 - Rephrasing
 - Saying "no" to the confirmation question.

Corrections

- Unfortunately, corrections are harder to recognize than normal sentences!
 - Swerts et al (2000): corrections misrecognized twice as often as non-corrections!!!
 - Why?
 - Prosody seems to be largest factor: hyperarticulation
 - Liz Shriberg example:
 - "NO, I am DE-PAR-TING from Jacksonville"

Machine learning to detect user corrections: features

- Lexical information (no, correction, I don't, swear words)
- Prosodic indicators of hyperarticulation
 - pause duration, word duration
- Length
- LM probability
- Repetition of content

Outline

- Finite-state vs. Frame-based dialogue systems
- Dialogue system evaluation
- Beyond content: intentions
- Grounding and confirmation

Finally...

Should I do a "Confirmation" dialog act?

Given that I'm confirming, what exactly should I say?

Grounding

- Why do elevator buttons light up?
- Clark (1996) (after Norman 1988)
 Principle of closure. Agents performing an action require evidence, sufficient for current purposes, that they have succeeded in performing it
- What is the linguistic correlate of this?

Grounding and Confirmation

- We need to know whether an action succeeded or failed
- Talking is an action!
- I need to know if my action succeeded
 - i.e. the hearer understood my turn!

How do speakers ground? Clark and Schaefer

- Continued attention:
 - B continues attending to A
- Relevant next contribution:
 - B starts in on next relevant contribution
- Acknowledgement:
 - B nods or says continuer (uh-huh) or assessment (great!)
- Demonstration:
 - B demonstrates understanding A by reformulating A's contribution, or by collaboratively completing A's utterance
- Display:
 - B repeats verbatim all or part of A's presentation

A human-human conversation

... I need to travel in May. C_1 : And, what day in May did you want to travel? A_1 : C_2 : OK uh I need to be there for a meeting that's from the 12th to the 15th. A₂: And you're flying into what city? C₃: Seattle. A₃: And what time would you like to leave Pittsburgh? C_4 : Uh hmm I don't think there's many options for non-stop. Right. There's three non-stops today. A_4 : C_5 : What are they? The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The A₅: second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm. OK I'll take the 5ish flight on the night before on the 11th. C_6 : On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight A₆: 115. C₇: OK.

Grounding examples

Display:

C: I need to travel in May

A: And, what day in May did you want to travel?

Acknowledgement

C: He wants to fly from Boston

A: mm-hmm

C: to Baltimore Washington International

Grounding examples (2)

- Acknowledgement + next relevant contribution
 And, what day in May did you want to travel?
 And you're flying into what city?
 And what time would you like to leave?
- The and indicates to the client that agent has successfully understood answer to the last question.

Grounding negative responses From Cohen et al. (2004)

- System: Did you want to review some more of your personal profile?
- Caller: No.
- System: Okay, what's next?

- System: Did you want to review some more of your personal profile?
- Caller: No.
- System: What's next?

Conversational Implicature

- A: And, what day in May did you want to travel?
- C: OK, uh, I need to be there for a meeting that's from the 12th to the 15th.

- Note that client did not answer question
- Meaning of client's sentence
 - Meeting: Start-of-meeting: 12th; End-of-meeting: 15th
 - Doesn't say anything about flying!
- What dates do the client plan to travel?

Conversational Implicature

A: ... there's 3 non-stops today.

- This would still be true if 7 (or 8 or 9) non-stops today.
- But no, the agent means: 3 and only 3.
- How can client infer that agent means?
 - only 3

Conversational Implicature

- **Pragmatics**: the study of how language is used to accomplish goals; beyond literal meaning. The interpretation of utterance relies on more than just the literal meaning of the sentences.
- Conversational Implicature means a particular class of inferences (that the speaker expects the hearer to draw)
- **Grices's maxims** (1975) for conversation explain what enables hearers draw such inferences.
- Cooperative Principle
 - This is a tacit agreement by speakers and listeners to cooperate in communication

Four Gricean Maxims

- Relevance: Be relevant
- Quantity: Do not make your contribution more or less informative than required
- Quality: try to make your contribution one that is true (don't say things that are false or for which you lack adequate evidence)
- Manner: Avoid ambiguity and obscurity; be brief and orderly

Relevance

- A: Is Regina here?
- B: Her car is outside.

Relevance

- A: Is Regina here?
- B: Her car is outside.

- Implication: yes
- Hearer thinks:
 - Why mention the car?
 - It must be relevant.
 - How could it be relevant?
 - It could since: if her car is here she is probably here.

Relevance

Client: I need to be there for a meeting that's from the 12th to the
 15th

- Hearer thinks:
- Speaker is following maxims, would only have mentioned meeting if it was relevant. How could meeting be relevant?
 - If client meant me to understand that they had to depart in time for the meeting

Quantity and Quality

- A: How much money do you have on you?
- B: I have 5 dollars

• Implication: not 6 dollars

- Similarly, 3 non stops can't mean 7 non-stops
 - Hearer thinks:
 - If speaker meant 7 non-stops she would have said 7 non-stops

Quantity and Quality

- A: Did you do the reading for today's class?
- B: I intended to

Quantity and Quality

- A: Did you do the reading for today's class?
- B: I intended to

- Implication: No
- B's answer would be true if B intended to do the reading AND did the reading, but would then violate maxim

Confirmation

- Errors: Speech is a pretty errorful channel
 - Humans use grounding to confirm that they heard correctly
 - Automatic speech recognition (ASR) is way worse than humans!
- Dialogue systems need to do even more grounding and confirmation than humans
 - Users are confused when system doesn't give explicit acknowledgement signal.

Stifelman et al. (1993), Yankelovich et al. (1995)

Explicit confirmation

S: Which city do you want to leave from?

U: Baltimore

S: Do you want to leave from Baltimore?

U: Yes

Explicit confirmation

U: I'd like to fly from Denver Colorado to New York City on September 21st in the morning on United Airlines

S: Let's see then. I have you going from Denver Colorado to New York on September 21st. Is that correct?

U: Yes

Implicit confirmation: display

U: I'd like to travel to Berlin

S: When do you want to travel to Berlin?

U: Hi I'd like to fly to Seattle Tuesday morning

S: Traveling to Seattle on Tuesday, August eleventh in the morning. Your name?

Implicit vs. Explicit

- Complementary strengths
- Explicit is easier for users to correct systems's mistakes (can just say "no")
- But explicit is cumbersome and long

• Implicit is much more natural, quicker, simpler (if system guesses right).

Implicit and Explicit

- Early systems: all-implicit or all-explicit
- Modern systems: adaptive, switching between the two
- How to decide?

Implicit and Explicit

- Early systems: all-implicit or all-explicit
- Modern systems: adaptive, switching between the two
- How to decide?
 - ASR system can give confidence metric.
 - This expresses how convinced system is of its transcription of the speech
 - If high confidence, use implicit confirmation
 - If low confidence, use explicit confirmation

Should also consider cost of an error: Explicit confirmation before moving money or booking flights

Rejection

- "I'm sorry, I didn't understand that."
- Reject when:
 - ASR confidence is low
 - Best interpretation is semantically ill-formed
- Might have four-tiered level of confidence:
 - Below confidence threshold, reject
 - Above threshold, explicit confirmation
 - If even higher, implicit confirmation
 - Even higher, no confirmation