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1 Introduction

Stylistic variations are intrinsic in human language
and reflects the social dynamics of language use
(Bell, 1984). Generally, linguistic style is a matter
of word choice, whether a speaker choose to use
one linguistic elements instead of another (Cou-
pland, 2011). The task of textual style transfer
is defined as rendering a source text into another
linguistic style without changing its underlying se-
mantic content (Garbacea and Mei, 2020), such as
converting a negative review to positive or turning
an informal sentence into a formal one. Such a task
lends itself to a variety of practical applications,
including but not limited to automatic review gen-
eration and assisting systems for literary creation.

While great progress has been made towards
fluent and content-preserving style control, the cur-
rent studies still suffer from the following short-
comings. Since most studies focus on binary styles
(positive/negative or formal/informal), achieving
finer-grain style transfer remains challenging, both
in terms of dataset creation and modeling. Sec-
ondly, generated texts are mostly short sentences as
long as 15 to 20 words. Generating long and coher-
ent texts with various controllable styles remains
far from a solved problem.

In this work, we plan to adopt the framework of
Plug and Play Language Model (Dathathri et al.,
2020) to text style transfer. We utilized the pre-
trained transformer to overcome the length limit in
language generation and the attribute classifiers to
control and guide the generation process.

2 Related Works

2.1 Textual style transfer
Textual style transfer can be formulated either as
a supervised task when paralleled text pairs are
sufficient, or as an unsupervised task when only
coarse style labels are available (Garbacea and Mei,

2020). Due to the lack of parallel data, only a few
studies focus on training on paralleled data (Zhang
et al., 2020), while the majority of research opt for
unparalleled style transfer.

The mainstream approach seeks to learning (dis-
entangled) representations of various textual at-
tributes in the latent space to achieve fine-grained
control of text transfer (Shen et al., 2017; John
et al., 2019; Lample et al., 2018; Zhou et al., 2020).

While disentanglement might not always be
achievable and neither is disentanglement neces-
sary for generative high quality outputs (Lample
et al., 2018), some studies opt for a different line
of text transfer research. Adversarial training has
also been adopted to perform style transfer with the
use of an adversarial discriminator to aid learning
implicit representations of style (Fu et al., 2018;
Dai et al., 2019). Moreover, reinforcement learning
algorithms have also been proposed to enhance the
quality of style transfer (Luo et al., 2019a,b; Wu
et al., 2019), demonstrating promising results.

With recent advancement, converting the styles
of short sentences is quite within the reach. How-
ever, transferring styles of long texts still remains
challenging, as most approaches train the genera-
tive decoder from scratch with limited data, without
utilizing the more powerful pre-trained generative
models such as BERT (Devlin et al., 2019) or GPT-
2 (Radford et al., 2019). Secondly, most models are
not easily extensible, as extending existing mod-
els to cover more stylistic attributes may entail
re-trained the whole model.

2.2 The plug-and-play approach

While the large pre-trained language models have
achieved impressive performance in language gen-
eration, few textual style transfer models attempt
to utilize these pre-trained models to improve lan-
guage generation. One potential reason is that even
fine-tuning large models can be computationally



intensive. The plug-and-play approach is the latest
solution to harness the generative power of large
pre-trained models with light-weight models.

Currently there are two approaches. One is to
guide the large-pre-trained model to generate texts
with certain attributes using a lightweight classi-
fier. The Plug and Play Language Models (PPLM)
(Dathathri et al., 2020), a framework for language
generation that combines the powerful pre-trained
language model (GPT-2) and attribute classifiers
to guide the generation of language. This frame-
work harnesses the massive knowledge learned pre-
trained language models while also maintains flex-
ibility and extensibility with the plug-in attribute
classifiers, which modifies the hidden states of GPT-
2 on the fly through propagating gradients. The
attribute classifier can be easily re-trained with-
out adjusting the language generator and can be
extended to include more attributes. While the
generation speed of PPLM is still slow, the GeDi
model (Krause et al., 2020) improves the gener-
ation speed by incorporating the Bayes rule and
contrast probabilities to empirically estimate the
conditional probability of attribute classifier. It bor-
rows the architecture of CTRL (Keskar et al., 2019)
for the light-weight guiding language model. It fur-
ther improves sequence generation performance by
utilizing Nucleus Sampling (Holtzman et al., 2020).

Alternatively, it is also possible to perform style
transfer in the latent space. Wang et al. (2019)
jointly trained an autoencoder and an attribute clas-
sifier that classifies the sentiment of the encoded
latent vector. Then sentiment transfer is the mod-
ification of the latent vector through the gradient
propagation from the attribute classifier. Emb2Emb
(Mai et al., 2020) reduces the sequence-to-sequence
task of generating text in a specific style into a task
of regressing embedding-to-embedding with only
linear layers. The framework possesses the ability
of preserving original attribute-independent con-
tents by adopting a cosine similarity loss no matter
input data are paralleled or not.

3 Method

Currently almost no studies have utilized pre-
trained generative models to perform textual style
transfer. Training from scratch often result in lower
fluency as the data for style transfer are relatively
small. We believe that the plug-and-play approach
is a promising method to harness the pre-trained
models in a computationally efficient way. We have

worked on the following two models. The first
model is still not strictly a plug-and-play model but
we will change it in subsequent experiments.

3.1 Modifying the latent vector through
gradients propagation

At first, we planed to adopt the method pro-
posed by Wang et al. (2019). In this ap-
proach, an encoder-decoder model is trained
to reconstruct the language. In this model,
given a set of texts and their stylistic at-
tributes {(x1, y1), (x2, y2), . . . , (xn, yn)}, the en-
coder Eθe maps the input text xi to a low dimen-
sional vector zi in the latent space, whereas the
decoder Dθd learns to reconstruct the original text
xi based on the latent vector zi. Meanwhile, the
stylistic Cθc predicts the style label y based on the
latent vector z.

zi = Eθe(xi); x̂i = Dθd(zi); y = Cθc(zi) (1)

The model is trained to both optimize the recon-
struction loss Lae (log likelihood) and the classifi-
cation loss Lc (cross-entropy).

L = Lae + Lc (2)

During the inference time, the input text xi is
first encoded by the encoder to produce a latent
vector zi. Then the style transfer is performed by
iteratively modifying the latent vector zi using the
gradients produced by the style classifier Cθc , as
shown in the following formula.

z∗ = z− wi∇Lc(Cθc(z), y) (3)

It is assumed that the modified z∗ will move in
the direction of the opposite style in the latent space
guided by the style classifier.

Our modification. In their original implementa-
tion, Wang et al. (2019) use a shallow transformer
for both encoder and decoder. However, our in-
spection reveals that sentences generated by their
model, though stylistically diverse, were not fluent
enough. We inferred that this may be caused by
insufficient training, as the training sentences were
mostly short sentences with an average length of 15
words. Given such simple input, the model might
not have learned enough linguistic knowledge to
generate fluent language.

Addition model. Initially, we planned to im-
prove the quality of generated texts by harness-
ing the large pre-trained generative models. Bart



(Lewis et al., 2019) is a pre-trianed generative
model with the encoder and the decoder archi-
tecture, which suits the current framework. Fine-
tuning on Bart could enable the model to utilize
the language knowledge learned by Bart. Since
the encoder of Bart produces a sequence of hidden
states, we average-pooled the hidden states across
sequence length and use a linear layer to transform
it into the latent vector z. The decoder of Bart will
reconstruct the input texts based on z, otherwise
the overall design is the same as that in Wang et al.
(2019).

However, simply pooling the hidden states nega-
tively impacted the decoder’s ability to reconstruct
the text as much context has been lost. We also
modified the method by summing the latent to the
original hidden states before feeding it to the de-
coder.

ẑ = σ(
1

T

T∑
i=0

hi) (4)

z = Wẑ + b (5)

ĥi = hi + z (6)

So that we end up with the modified states
ĥ1,...,T = [ĥ1, ĥ2, . . . , ĥT ], which are used by the
decoder to reconstruct the original texts.

Gating model. However, only using a single
vector of hidden state might not be enough to rep-
resent the original sentence, as shown in our pilot
experiments. We decided to using the gating mech-
anism to preserve more original hidden states to
achieve better reconstruction during training and
inference. For the gating model, an extra gating
operation was added to modified the hidden states.
Following Equation 6,

ĥi = hi · σ(Wzĥi + bz) (7)

We found that the gating mechanism can help the
model better learn to generate fluent language.

With the new hidden states ĥi, the output can be
generated by the decoder:

x̂i = Dθd(ĥi) (8)

3.2 Transforming the latent vector through
non-linear mappings

Compared to the previous method, Emb2Emb (Mai
et al., 2020) chooses to add a mapping module
to transfer input embedding generated by encoder

to another desired output embedding in the same
manifold recognizable for the decoder, instead of
directly changing the parameters of the encoder.
The architecture of Emb2Emb is as shown in Figure
1. In this way, the previous problem of sequence-to-
sequence is reduced into embedding-to-embedding
problem.

Figure 1: The architecture of Emb2Emb (Mai
et al., 2020).

The first part of the model is the same as the
previous method in 3.1, which is to pretrain an au-
toencoder consisting of encoder and decoder. Then
in the second part is to freeze the pretrained autoen-
coder and add a mapping module, Φ, to transfer
embedding zx from encoder to zy. zy is then fed
to decoder and elicits output sequence. The last
part is inference by feed input sequence x through
encoder, mapping module, and decoder.

The training objective of mapping module Φ is
as Eq. 9

L = Ltask + λadvLadv
Ltask = λstyLsty(ẑx) + (1− λsty)Lcont(ẑx, zx)

Ladv = − log(disc(Φ(zx))),

(9)

where Φ(zx) = ẑx, Lsty = − log(c(Φ(zx))),
Lcont is a cosine similarity loss, and c as well as
disc are both a classifier, except that c is an ex-
ternally pretrained and frozen one while disc is
trained during training Φ. The purpose of c is to
evaluate how likely the output sequence is fitting
the desired style of sentiment. The purpose of disc
is to discriminate against the embedding produced



by Φ by the following objective:

max
disc

N∑
i=1

log(disc(zxi)) + log(disc(ẑxi)) (10)

where disc(zxi) = 1 − disc(zxi) and disc(zxi is
the probability that zxi is generated by the encoder.

Our Modification
. 1. We noticed that there is a dropout layer imme-

diately after input layer in the external classi-
fier c, which will cause many useful numeric
values of input embedding to be zero. There-
fore, we reduced the dropout layer. Besides,
we deepen the classifier composed of only
one layer neural network to a network of two
layers.

2. We added a batch normalization layer before
activation layer in the mapping module. Pre-
viously, Φ is constructed by a Offsetnet (Mai
et al., 2020) as shown in the left of Figure
2. Our modified net is shown in the right of
Figure 2. The batch normalization is helpful
for convergence and performance (Ioffe and
Szegedy, 2015).

Figure 2: Left: Structure of Offsenet. Right:
Structure of our modified network.

4 Dataset

We’ll use the Amazon review dataset1 for training
and evaluating our model. This is the dataset con-
taining product reviews on Amazon with human
rated sentiments (Ni et al., 2019). The dataset con-
tains 558,000 documents with the average length of
documents is around 15 words. The partition and

1http://deepyeti.ucsd.edu/jianmo/
amazon/index.html

Train Val Test
Negative 277,000 1,015 500
Positive 278,000 985 500

Table 1: Statstics of Amazon dataset

processing of dataset is inherited from Wang et al.
(2019). The statistics of the data is as shown in
Table 1. Note that there are no human written gold
standard for training and validation set, except test
set. Therefore, the dataset is basically nonparallel.
The gold standard in test set enables the evaluation
of BLEU.

5 Experiments

5.1 FGIM
We implemented the model discussed in Section
3.1. To facilitate replication, we used part of the
original implementation 2 by (Wang et al., 2019).
The Bart model was accessed through the Python
package transformers.

We only used the Amazon review dataset. As
the data had already been cleaned, no further pre-
processing steps were carried out. All sentences
were BPE segmented using the same Bart tokenizer.
The model was trained using the Adam optimizer
with a learning rate of 1e-5. Warm-up was used
in the first 2000 iterations. The effective batch
size was 64 after gradient accumulation. For com-
parison, we also trained the original model for 50
epochs using the exact same settings. All training
was run on a Nvidia 2080Ti GPU and the training
took about 10 hours to complete for all models.

5.2 Emb2emb
We also implemented the model discussed in Sec-
tion 3.2. To facilitate replication, we used part of
the original implementation 3 by (Mai et al., 2020).
The code is written in Python and Pytorch. The
data partition has been discussed in Section 4. The
data processing and tokenization are discussed in
Section 5.1.

The model was trained using the Adam optimizer
with a learning rate of 1e-4. The final model is early
stopped in 10 epochs. The batch size was set to
64. For comparison, we also trained the original
model for 10 epochs using the exact same settings.

2https://github.com/Nrgeup/
controllable-text-attribute-transfer

3https://github.com/florianmai/emb2emb

http://deepyeti.ucsd.edu/jianmo/amazon/index.html
http://deepyeti.ucsd.edu/jianmo/amazon/index.html
https://github.com/Nrgeup/controllable-text-attribute-transfer
https://github.com/Nrgeup/controllable-text-attribute-transfer
https://github.com/florianmai/emb2emb


All training was run on the GreatLakes4 cluster
(ARC-TS) with 4 cores and 10 GB per core and the
training took about 12 hours to complete.

6 Evaluation

Since the task of style transfer is newly emerging
(Garbacea and Mei, 2020), it faces a bottleneck
of lacking standard evaluation methods(Mir et al.,
2019). Because of the possible lack of parallel data
and ground truth for style transfer, some common
metrics, e.g. ROUGE (Lin, 2004) and BLEU (Pap-
ineni et al., 2002), may not be adopted as the only
evaluation methods in the task. So multiple metrics
should be used together for evaluation.

6.1 Automated evaluation
• Transfer Strength: Classification accuracy

has been used as a metric indicating transfer
strength for style transfer (Shen et al., 2017;
Fu et al., 2018). We have trained a binary sen-
timent classifier based on the training set, and
it achieved 79% accuracy in the test set. This
model was used to evaluate the performance
of all sentiment transfer.

For the generated texts, we generated sen-
timent labels by flipping the labels of the
text sentences. (If the original label is 1, we
flipped the label to 0. This is because the gen-
erated sentences are supposed to be the style-
transferred versions of the original sentences.
So they should have reverse labels.)

• Content: BLEU (Papineni et al., 2002) is
commonly used for measuring content pre-
serving.

7 Results and discussions

7.1 Evaluations on FGIM
The evaluation results are presented in Table 2. The
results show that our modification of FGIM did not
improve the quality of the generated texts. For the
addition model, the model simply produced repe-
tition of random words or words from the original
sentence (see Table 3). Its average BLEU is very
close to zero, which implies that the output is mean-
ingless and ungrammatical. FGIM+BART+Gating,
while it does generate slightly more fluent texts, the
overall quality is still unsatisfying.

While the quality of the original texts and the
human written ground truth was not great, they are

4https://arc-ts.umich.edu/greatlakes/

still readable texts. However, none of the mod-
els can generate fluent texts, though the Emb2emb
method performs better than the rest. Even the
best model still exhibit hallucinations as it brings
in meanings not present in the original sentence,
implying that modifying the latent space in a fine-
grained manner is still difficult. The addition model
(FGIM+BART+Addition) fails to generate mean-
ingful text. This might be caused by insufficient
contexts as we only provide a 1-dimensional la-
tent vector for its decoder to generate. This set-
ting differs greatly from its original training ob-
jective, in which it has all the attention vectors
from the encoder. For FGIM+BART+Gating, it
does learn to flip the sentiment by remove the nega-
tion marker “not” (see Table 3) but still suffers
from repetitions, such that the grammaticality of
the output texts were compromised. During train-
ing, BFGIM+BART+Gating can reconstruct the
input texts most successfully but fails to do so in
inference. We suspect that this might be caused by
the inappropriate modification of the hidden states.
As the latent space is often sparse, how to generate
meaningful latent vector is still challenging.

7.2 Evaluations on Emb2emb

7.2.1 Modifications on External Classifier c

Recall that we removed dropout layer and deep-
ened the neural network of the external classifier
c in Emb2emb. Note that this external classifier c
is for copmuting loss function Lsty, not the classi-
fier for final evaluation. With these modifications,
the classification accuracy of the external classifier
increases from 73.0% to 75.8% on test dataset.

7.2.2 Modification on Mapping Module

With the modification of adding Batch Normal-
ization layer before activation in the Offsetnet of
mapping module, the BLEU score of output se-
quence against gold standard increases from 22.86
to 23.65 as shown in Table 2. However, the the
classification accuracy of the generated output se-
quences keeps unchanged as 58.6%. We note
that although the computing speed of the train-
ing decreases from 480.18 [sentences/second] to
336.93 [sentences/second], the optimization be-
comes faster, e.g. the loss of network with batch
normalization layer drops fast with fewer epochs
than that without the layer.

https://arc-ts.umich.edu/greatlakes/


Model BLEU Accuracy
Humans - 42.3%
Original FGIM (Wang et al, 2019) 34.1 27.2%
FGIM + BART + Addition 0 50.02%
FGIM + BART + Gating 15.1 27.2%
Emb2emb (Mai, 2020) 22.86 58.6%
Emb2emb (modified) (Mai, 2020) 23.65 58.6%

Table 2: Average BLEU and overall accuracy for model outputs

Output
Original so not that great for leav-

ing on at night
Humans perfect for night
FGIM so not that great for watch-

ing review on not at night
.

FGIM + Bart
+ Additon

at night night night night
night night night

FGIM + Bart
+ Gating

so that that that great good
for leaving on at at

Emb2emb so not that great for that on
at night

Emb2emb
(modified)

so not that great for turn-
ing on at night

Table 3: Random Sample outputs of all models

7.2.3 Evaluation on Output Sequences
We could see the final classifier elicit a higher
classification accuracy on the output sequences
of Emb2emb (58.6%) than the result on the hu-
man written gold test set (42.3%), which means
the model generated output has a stronger senti-
ment expression and the effective of style transfer
is remarkable. The BLEU scores (22.86 or 23.65)
are lower than the original FGIM due to a greater
probability of using new words. Table 3 shows one
random example output of all models. We could
see the original Emb2emb removes the negative
word leaving, and the modified Emb2emb further
replaces it to a positive word turning (on). But
both of them fail to transfer the sentiment in a fluent
semantic expression and are far from approaching
the gold standard.

Some further sample outputs are shown in Table
4. We could see in many cases, the model tries to
transfer sentiment by replacing specific word that
does not exactly match the gold standard, which is
acceptable since there should be many reasonable
gold standards. The possible errors can be sorted

in three categories, i.e. ungrammatical expression
like repetition, undesired changing of unrelated
words, failure of transferring sentiment words. The
ungrammatical expression can be attributed to the
insufficient training of the pretrain autoencoder.
The latter two errors are attributed to the defect
of mapping module. In general, Emb2emb can
generate some reasonable output sequences. Due to
limit of budget and time, we cannot be able to hire
any annotator to do human evaluation. But by the
authors’ inspection, 10% outputs are reasonable,
40% outputs try to transfer sentiment words, and
55% outputs have ungrammatical expression.
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