
EECS 598 Project Final Report

Due Dec 09 by 11:59pm

Do June Min (dojmin@umich.edu), Spencer Vagg (spencerv@umich.edu)

December 9, 2020

1 Introduction

Privacy Policies can be very lengthy and confusing documents for the average user to sift through.
If users have a question about a company’s privacy policy, they must both find the relevant sections
in the policy document for that question and then decipher what those segments mean. This can
cause users to be misinformed about what is happening with their information when they use a
product or service. In this work, we present a Question Answering framework that will take in
any questions that a user may have related to a company or organization’s privacy policy and then
provide an abstractive answer in response to the question. Our system is a two-stage framework
consisting of a retrieval module for extracting relevant segments from the policy document given
a user query, and a generation module which takes the retrieved segments as input and outputs
an answer to the user query. Our dataset lacks annotatation for supervised training, and we use
self-critical reinforcement learning to train our generation system. We illustrate our approach’s
difference to other approaches in Table 1.

2 Related Work

There are several works that study how natural language processing can be used to help users
read and understand privacy policies. Harkous et al use word embeddings and convolutional neural
networks to build Polisis, a framework for annotating privacy policies with labels and categories
aimed at enhancing users’ understanding [1]. They also use the framework to create Pribot, a
chatbot for answering user queries about a given privacy policy. It is notable that although Pribot
allows free-form user queries, the returned answers are always chosen from the privacy policy
segments. Similarly, Ravichander et al proposes a model for QA on privacy policies, also returning
policy segments as answers to user queries [2]. Recently, Ahmad et al released a dataset and a
baseline model for span-extraction QA [3]. Ahmad et al’s dataset is based on the OPP-115 corpus,
a collection of website privacy policies, compiled by Wilson et al [4]. Although Ahmad et al’s
approach moves beyond returning whole policy sentences as answers to user queries, we note that
their approach is still extractive, since only observed spans in the policy can be returned as answer.
On the other hand, our module is abstractive by design, and has the capacity to generate unseen
yet relevant and informative text in respose to user queries.

1



User Query: Is my information shared with others?
Sentence Extraction
(Ravichander et al)

Span Extraction
(Ahmad et al)

Generative
(Our model)

Gold Truth/Ideal Output Sometimes we send
offers to selected
groups of Ama-
zon.com customers
on behalf of other
businesses. When
we do this, we
do not give that
business your
name and ad-
dress. If you do not
want to receive such
offers, [Omitted]

we do not give
that business
your name and
address

We do not share
your information
with other parties.

Table 1: Comparison of different approaches to Question Answering on Privacy Policy documents
on a PolicyQA dataset example. Boldface indicates relevant span in the sentence-level extraction
and the span-level extraction.

3 Methodology

3.1 Dataset and Data Processing

We use PrivacyQA by Ravichander et al to train our evidence extraction and answer generation
module. [2]. PrivacyQA contains a collection of 1,750 user-generated queries for privacy policies
of mobile phone apps, paired with annotations by legal experts. In total there are 35 different
policies that are included in the dataset, with the data pre-split into a train and test set. The
train set consists of 27 privacy policies and 1,350 questions and the test set consists of 8 new,
unseen privacy policies and 400 questions. Each segment of the privacy policy is compared to each
question and deemed as a relevant or irrelevant segment for answering that question. Each of these
relevant/irrelevant labels were looked over by multiple people.

Our data preprocessing step is relatively simple as PrivacyQA is a pre-compiled dataset. The
dataset consists of csv files which contain each query, policy segment, and relevance score. These
files are already split into train and testing splits for us, with no overlap in policies between the
two files. We read in the csv files and used huggingface’s pretrained BertTokenizer and XLNet
Tokenizer for the extraction module and a GPT2Tokenizer for the generation module.

3.2 Models

We adopt a two stage approach to generate answers to user queries. In the first stage, a user query
is fed to an evidence extraction/retreival model that returns a list of relevant segments. Then, the
query and the set of retrieved evidence segments are fed to the generator module that outputs an
answer to the query, based on the retrieved evidence.

2



3.2.1 Stage 1: Evidence Extraction Module

For our retrieval model, we tried two approaches: (1) binary classification with single policy sen-
tences and (2) binary classification with multiple policy sentences using joint sentence prediction.

We originally used bert-base-uncased as the underlying model for both of these approaches.
Having found that the single policy BERT outperformed the multiple policy BERT, we decided to
try and increase our performance on this single policy task by also testing with a xlnet-base-cased
model. This model is larger than the BERT model and outperforms it on many tasks, so we thought
it would be a good model to try and increase performance. We are using pretrained transformer
networks, since (masked) language model training is thought to be beneficial for performances in
many downstream tasks.

Regarding the choice of single sentence vs joint sentence prediction, the single sentence frame-
work is the default design, and is also the one suggested in the PrivacyQA paper as a baseline.
It frames evidence retrieval as a binary classification between query and a single sentence. The
motivation behind joint sentence prediction was to incorporate context into the retrieval step, since
the single prediction ignores the context from other sentences in the document. The idea was to
set a context size for n sentences, and use the transformer model to jointly predict the relevance
score for each of the sentences.

3.2.2 Stage 2: Answer Generation Module

Our generator module is inspired by the Summary Loop. It consists of the generator model (gpt-2),
fluency model, and the scoring components for self-critical reinforcement learning, but we replaced
the original coverage model with our own variation. We adopt the unsupervised learning approach
of the Summary Loop framework to train our generator model.

Unlike abstractive summarization, which involves two texts (source and summary), our abstrac-
tive QA framework involves three text inputs: query, evidence, and answer. Thus, we want our
answer-check model to be able to reliably evaluate how the generated answer responds to the ques-
tion, given the information from the evidence. To this end, we operationally conceive of an answer
as an abstractive summary of the evidence emphasizing information which is relevant to the ques-
tion. Following the coverage model from the Summary Loop, we want to mask the tokens from the
evidence sentences so that the “important” tokens are masked. However, in our case the importance
is decided by its relevance to the question. Thus, we propose a two-step procedure to mask the
evidence text. First, we train a masked language model with a masked Query concatenated with
an unmasked evidence text as input. The query mask can be chosen by an unsupervised keyphrase
extraction algorithm, such as tf-idf. The intuition is that the network will be able to learn how
to attend to the evidence text for recovering important tokens in the question, and we can use its
attention weights as a proxy for which evidence tokens are relevant for a given query. Then, we
will use a separate masked language model which takes the concatenation of an unmasked query, a
masked evidence text (masked from the step 1’s network), and the generated answer.

We additionally introduce two additional scoring components to encourage the generator to
include direct responses to user query in its output. For instance, a direct response to a ”Does the
company - ” type question would be ”Yes/No”. To this end, we utilize two pretrained transformer-
based models to implement the answer content scorer and the answer form scorer. The former
measures the semantic similarity between the first segment (first 30 tokens) of the generated output
and the retrieved text, by measuring the cosine similarity between their sentence embeddings. The
sentence embeddings are computed using the sentence transformer model [5]. On the other hand,

3



the answer form scorer’s object is to score how compatible the user query and the first segment of the
generated answer are, as a question and answer pair. We use a BERT-based model trained on span-
extraction QA datasets such as, SQuAD, RACE, and etc (https://huggingface.co/iarfmoose/bert-
base-cased-qa-evaluator). We include further details about the training process in the appendix.

4 Experiments

Given that we have two different models that we are evaluating here, we will need various different
metrics to test their aptitude for the task. For the first model, which identifies whether the given
parts of the policy correspond to the answer, we will use precision, recall, and f-score metrics.
These metrics are standard when it comes to binary prediction questions. For the second model,
we evaluate the summarized answers using simple, human annotations and compare them across
our model and the baseline models.

4.1 Results

4.1.1 Evidence Extraction Module

Our single-prediction BERT retrieval model is designed similarly to the PrivacyQA paper’s baseline,
and achieves similar results (precision = 44.76, recall = 40.19, F1 = 37.58, Note: here each reported
metric is the maximum value from all six annotator’s reference). Interestingly, our joint prediction
model with context augmentation (context size = 5) performs worse than the single prediction
model. One guess to why this might be happening is each sentence in policy documents are carefully
crafted by legal experts and already contains enough information, and thus the added task of
learning to utilize contextual information degrades the resulting performance. We also found our
XLNet results to be surprising, as they were also lower than the single BERT model (precision =
41.84, recall = 35.78, F1 = 34.68 ). We think this may be due to hyperparameter tuning, but more
work would have to be done to look into it.

4.1.2 Answer Generation Module

Since our dataset lacks annotation of ground truth answers for each user query-evidence pair,
the authors of this paper conducted a human evalutaion on a set of 48 examples. Each author
independently annotated the examples with the following three criteria, each of which have binary
0,1 labels:

• Answeredness: Does the generated output directly answer the user query? Score 1 if and only
if the first sentence of the answer is in response to the question.

• Readability: Is the generated output readable and grammatical? Score 0 if any part of the
answer is ungrammatical or incoherent.

• Faithfulness: Does the answer only contain facts/information that is consistent with the re-
trieved evidence? Score 0 if facts or statements not included or inconsistent with the evidence
is in the answer.

Also, we compute Rouge-l to see how much overlap exists between the generated answer and the
retrieved evidence. For baseline, we consider two t5-based summarizers. The T5 model is known

4

https://huggingface.co/iarfmoose/bert-base-cased-qa-evaluator
https://huggingface.co/iarfmoose/bert-base-cased-qa-evaluator


as a powerful model able to adapt to many different problems, so we thought this would be a good
comparison against our model. [6]. One model sees both the question and evidence in the input
(T5 Q + E), and the other baseline is treated as an evidence summarizer, only having the retrieved
evidence in its input (T5 E).

Criteria/Model Our Model T5 Q + E T5 E Cohen’s Kappa
Answeredness 0.34 0.32 0.31 0.52
Readability 0.63 0.84 0.82 0.22
Faithfulness 0.96 0.82 0.86 0.48

Rouge-l 0.18 0.08 0.09 -

Table 2: Human Evaluation on a set of 48 Question-Evidence Pairs. Q stands for Query, and E for
Evidence.

From the table, we see that our model performs best for answeredness and faithfulness metrics.
However, we note that still the performance on answeredness is quite low, indicating that training
the generator model to produce direct responses is difficult. Moreover, we note that our model has
converged to a mode of mostly copying segments from the evidence, as shown in our model’s high
level of faithfulness and Rouge-l score.

5 Conclusion and Future Work

Abstractive QA is a relatively new yet promising and rapidly developing area of research. In this
project, we implemented an abstractive QA system for answering user queries for privacy policy
documents for mobile applications. The biggest obstacle in developing the generation module was
the lack of annotated data, both for training of the parameters and the testing and validation of our
models. A promising line of further work is to investigate how transfer learning from other Question
Answering datasets can be leveraged to combat this problem. Moreover, we believe that systemic
grid search of scoring parameters (importance weights) and in-domain training of component models
will lead to better performance of the final generator model.

References

[1] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G. Shin, and Karl Aberer.
Polisis: Automated analysis and presentation of privacy policies using deep learning, 2018.

[2] Abhilasha Ravichander, Alan W Black, Shomir Wilson, Thomas Norton, and Norman Sadeh.
Question answering for privacy policies: Combining computational and legal perspectives, 2019.

[3] Wasi Uddin Ahmad, Jianfeng Chi, Yuan Tian, and Kai-Wei Chang. Policyqa: A reading
comprehension dataset for privacy policies, 2020.

[4] Shomir Wilson, F. Schaub, A. A. Dara, Frederick Liu, Sushain Cherivirala, P. Leon, M. S.
Andersen, Sebastian Zimmeck, Kanthashree Mysore Sathyendra, N. Russell, T. Norton, E. Hovy,
J. Reidenberg, and N. Sadeh. The creation and analysis of a website privacy policy corpus. In
ACL, 2016.

5



[5] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019.

[6] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer, 2020.

6



A Appendix

Here, we provide information on the unperceived training of our generator module and two sample
outputs, each showcasing desirable property or failure mode of our trained model.

A.1 Generator Module Training

For self-critical reinforcement training of the generator model, we use the base GPT-2 model and
initialize it with the provided weight. The reward function is computed as the sum of the scores
from the 4 main scoring functions (coverage, answer form, answer content, and fluency), plus the
“guardrails” defined in the Summary Loop framework. We use the following weights to compute
total score:

• Coverage/Answer Check: 10.0

• Answer Content: 5.0

• Answer Form: 5.0

• Fluency: 2.0

• Length Penalty: 2.0

• Repetition Penalty: 2.0

• Pattern Penalty: 5.0

The training progress for the combined total score and the four main scorers are shown in Figures
1-5. Due to constraints in resource usage, we ran the training loop for approximately 36 hours
before termination. We note that although the answer form and the coverage scores increase over
time, there remains significant noise and fluctuation in the scores.

Figure 1: Total Score

7



Figure 2: Answer Content Score Figure 3: Answer Form Score

Figure 4: Coverage/Answer Check Score Figure 5: Fluency Score

A.2 Example of Coverage Output

Below is an example of how our model covers evidence given a query. It identifies relevant
words/stretches such as send such information, data, and address, but it still misses some to-
kens such as location.
Query: Does it store my gps data?
Evidence: We automatically collect some information from your computer or Device when you
visit TripAdvisor. For example, we will collect session data, including your IP address, Web browser
software, and referring website. In addition, we may collect information about your location if you
have instructed your Device to send such information to the Application via the privacy settings
on that Device, or if you have uploaded photos tagged with location information. We may use the
location information collected from your Device or photos to enhance your use of the Application
by providing you with relevant content and contextual advertising. For example, we may use your
location to show you reviews of hotels or restaurants near you when you are traveling. You can
change the privacy settings of your Device at any time, in order to turn off the functionality to
share location information with the Application and/or the functionality to tag your photos with
location information. Please note that turning off location sharing may affect certain features of
our App.
Masked Tokens: data, address, software, website, send such information, information

A.3 Generator Samples

In the following examples, the provided evidence segments are gold truth annotations, rather than
Stage 1-module extracted segments.

8



Example with Good Model Output

Query: does viber log messages?
Evidence: Before you start sharing good vibes, its important you understand that by using our
Services, you allow us to collect, use, disclose, and retain your personal information and other
information but we will never read or listen to the content you are sharing privately. First of all,
we want you to be assured that we do not read or listen to the content of your messages and/or
calls made privately via Viber and we do not store those messages once they have been delivered
to their destination (which on average takes less than one second). [Omitted]
Our Model: You allow us to collect, use, disclose, and retain our personal information and other
information but we will never read or listen to the content you are sharing privately. First of all we
want you to trust that we do not read or listen to
T5 Q + E: viber does not read or listen to the content of private messages and calls. If
T5 E: if you don’t receive a message within 2 weeks, it will be deleted from

Example with Bad Model Output

Query: how long will you have my information for?
Evidence: You can access, update and delete your Personal Information you provided to us, as
described below, by managing this information through your online account or sending us an email
at privacy@groupon.com. You can update or remove Financial Account Information [Omitted]
Our Model: You can access, update and delete your Personal Information You provided to us, as
described below, by managing this information through your online account or sending us an email
at privacy@groupon.com. You can update or remove Financial Information as
T5 Q + E: if you want to deactivate your Groupon account, please contact us.
T5 E: groupon will retain your personal information for as long as your account is active. we will

9


	Introduction
	Related Work
	Methodology
	Dataset and Data Processing
	Models
	Stage 1: Evidence Extraction Module
	Stage 2: Answer Generation Module


	Experiments
	Results
	Evidence Extraction Module
	Answer Generation Module


	Conclusion and Future Work
	Appendix
	Generator Module Training
	Example of Coverage Output
	Generator Samples


