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CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science

Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Logistics

• Project proposal is due on Feb 6.

• If you haven’t found a group yet, make a private post on piazza today 
and let me know.

• Assignment 2 is released, due on March 20th, 11:59pm.

Two views of linguistic structure: 
1. Constituency (phrase structure)
• Phrase structure organizes words into nested constituents.
• Fed raises interest rates

Two views of linguistic structure: 
1. Constituency (phrase structure)
• Phrase structure organizes words into nested constituents.

Two views of linguistic structure: 
1. Constituency (phrase structure)
• Phrase structure organizes words into nested constituents.

• How do we know what is a constituent?  (Not that linguists don’t 
argue about some cases.)
• Distribution: a constituent behaves as a unit that can appear in different 

places:
• John talked [to the children] [about drugs].
• John talked [about drugs] [to the children].

• *John talked drugs to the children about

• Substitution/expansion/pronoun:
• I sat [on the box/right on top of the box/there].

http://www.ccs.neu.edu/home/luwang
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Headed phrase structure

• Context-free grammar
• VP ® … VB* …
• NP ® … NN* …
• ADJP ® … JJ* …
• ADVP ® … RB* …

• S ® … NP VP …

• Plus minor phrase types:
• QP (quantifier phrase in NP), CONJP (multi word constructions: as well as), INTJ 

(interjections), etc.

Two views of linguistic structure: 
2. Dependency structure
• Dependency structure shows which words depend on (modify or are 

arguments of) which other words.

The  boy  put  the  tortoise  on  the  rug

Two views of linguistic structure: 
2. Dependency structure
• Dependency structure shows which words depend on (modify or are 

arguments of) which other words.

The boy put the tortoise on the rug
rug

the

the

ontortoise

put

boy
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Phrase Chunking

• Find all non-recursive noun phrases (NPs) and verb phrases (VPs) in a 
sentence.
• [NP I]  [VP ate]  [NP the  spaghetti]  [PP with]   [NP meatballs].
• [NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to 

] [NP only 1.8 billion ] [PP in ] [NP September ]

Phrase Chunking as Sequence Labeling

• Tag individual words with one of 3 tags
• B (Begin) word starts new target phrase
• I  (Inside) word is part of target phrase but not the first word
• O (Other) word is not part of target phrase

• Sample for NP chunking
• He reckons the current account deficit will narrow  to only 1.8 

billion in September. 

Begin Inside  Other

Evaluating Chunking
Per token accuracy does not evaluate finding correct full chunks. 
Instead use:

found chunks ofnumber  Total
found chunkscorrect  ofNumber  Precision =

chunks actual ofnumber  Total
found chunkscorrect  ofNumber  Recall =
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Current Chunking Results

• Best system for NP chunking: F1=96%
• Typical results for finding range of chunk types (CONLL 2000 shared 

task: NP, VP, PP, ADV, SBAR, ADJP) is F1=92−94%

Syntactic Parsing

• Produce the correct syntactic parse tree for a sentence.

Classical NLP Parsing:
The problem and its solution
• Adding constraints to grammars to limit unlikely/weird parses for 

sentences
• But the attempt make the grammars not robust

• In traditional systems, commonly 30% of sentences in even an edited text would have no
parse.

• A less constrained grammar can parse more sentences
• But simple sentences end up with ever more parses with no way to choose 

between them
• We need mechanisms that allow us to find the most likely parse(s) for 

a sentence
• Statistical parsing lets us work with very loose grammars that admit millions of 

parses for sentences but still quickly find the best parse(s)

The rise of annotated data:
The Penn Treebank

( (S

(NP-SBJ (DT The) (NN move))
(VP (VBD followed)

(NP
(NP (DT a) (NN round))

(PP (IN of)

(NP
(NP (JJ similar) (NNS increases))

(PP (IN by)
(NP (JJ other) (NNS lenders)))

(PP (IN against)

(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
(, ,)

(S-ADV
(NP-SBJ (-NONE- *))

(VP (VBG reflecting)

(NP
(NP (DT a) (VBG continuing) (NN decline))

(PP-LOC (IN in)
(NP (DT that) (NN market)))))))

(. .)))

[Marcus et al. 1993, Computational Linguistics]

The rise of annotated data

• Starting off, building a treebank seems a lot slower and less useful 
than building a grammar

• But a treebank gives us many things
• Reusability of the labor

• Many parsers, POS taggers, etc.
• Valuable resource for linguistics

• Broad coverage
• Frequencies and distributional information
• A way to evaluate systems

Two problems to solve for parsing:
1. Repeated work…

“Cats scratch people with cats with claws”
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Two problems to solve for parsing:
1. Repeated work…

“Cats scratch people with cats with claws”

Two problems to solve for parsing:
2. Choosing the correct parse
• How do we work out the correct attachment:

• She saw the man with a telescope

• Words are good predictors of attachment, even absent full 
understanding

• Moscow sent more than 100,000 soldiers into Afghanistan …

• Sydney Water breached an agreement with NSW Health …

• Our statistical parsers will try to exploit such statistics.

Statistical parsing applications

Statistical parsers are now robust and widely used in larger NLP applications:

• High precision question answering [Pasca and Harabagiu SIGIR 2001]

• Improving biological named entity finding [Finkel et al. JNLPBA 2004]

• Syntactically based sentence compression [Lin and Wilbur 2007]

• Extracting opinions about products [Bloom et al. NAACL 2007]

• Improved interaction in computer games [Gorniak and Roy 2005]

• Helping linguists find data [Resnik et al. BLS 2005]

• Source sentence analysis for machine translation [Xu et al. 2009]

• Relation extraction systems [Fundel et al. Bioinformatics 2006]

(Probabilistic) Context-Free Grammars

• CFG
• PCFG

Phrase structure grammars 
= context-free grammars (CFGs)
• G = (T, N, S, R)
• T is a set of terminal symbols
• N is a set of nonterminal symbols
• S is the start symbol (S ∈ N)
• R is a set of rules/productions of the form X ®g

• X ∈ N and g ∈ (N ∪ T)* 

A phrase structure grammar

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

people fish tanks
people fish with rods

N ® people
N ® fish 
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with



2/4/19

5

Phrase structure grammars 
= context-free grammars (CFGs)
• G = (T, N, S, R)
• T is a set of terminal symbols
• N is a set of nonterminal symbols
• S is the start symbol (S ∈ N)
• R is a set of rules/productions of the form X ®g

• X ∈ N and g ∈ (N ∪ T)* 

• A grammar G generates a language L.

Sentence Generation 
• Sentences are generated by recursively rewriting the start symbol 

using the productions until only terminals symbols remain.

S

VP

Verb              NP

Det    Nominal

Nominal     PP

book

Prep           NP

through
Houston

Proper-Noun

the

flight

Noun

Phrase structure grammars  in NLP
• G = (T, C, N, S, L, R)
• T is a set of terminal symbols
• C is a set of preterminal symbols
• N is a set of nonterminal symbols
• S is the start symbol (S ∈ N)
• L is the lexicon, a set of items of the form X ® x

• X ∈ C and x ∈ T
• R is the grammar, a set of items of the form X ®g

• X ∈ N and g ∈ (N ∪ C)* 
• By usual convention, S is the start symbol, but in statistical NLP, 

we usually have an extra node at the top (ROOT, TOP)
• We usually write e for an empty sequence, rather than nothing

A phrase structure grammar

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

people fish tanks
people fish with rods

N ® people
N ® fish 
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Probabilistic – or stochastic – context-free 
grammars (PCFGs)
• G = (T, N, S, R, P)

• T is a set of terminal symbols

• N is a set of nonterminal symbols

• S is the start symbol (S ∈ N)

• R is a set of rules/productions of the form X ®g
• P is a probability function

• P: R ® [0,1]

•

• A grammar G generates a language model L.

€ 

∀X ∈ N, P(X →γ) =1
X→γ ∈R
∑

A PCFG
S ® NP VP 1.0
VP ® V NP 0.6
VP ® V NP PP 0.4
NP ® NP NP 0.1
NP ® NP PP 0.2
NP ® N 0.7
PP ® P NP 1.0

N ® people 0.5
N ® fish 0.2
N ® tanks 0.2
N ® rods 0.1
V ® people 0.1
V ® fish 0.6
V ® tanks 0.3
P ® with 1.0

[With empty NP removed so 
less ambiguous]
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The probability of trees and strings

• P(t) – The probability of a tree t is the product of the 
probabilities of the rules used to generate it.
• P(s) – The probability of the string s is the sum of the 

probabilities of the trees which have that string as their 
yield

P(s) = Σt P(s, t)  where t is a parse of s

= Σt P(t) 

Tree and String Probabilities
• s =   people fish tanks with rods
• P(t1)     = 1.0 × 0.7 × 0.4  × 0.5 × 0.6 × 0.7 

× 1.0 × 0.2 × 1.0 × 0.7 × 0.1
=  0.0008232

• P(t2)     = 1.0 × 0.7 × 0.6 × 0.5 × 0.6 × 0.2
× 0.7 × 1.0 × 0.2 × 1.0 × 0.7 × 0.1

= 0.00024696
• P(s)  =      P(t1)      +     P(t2)

= 0.0008232 + 0.00024696
= 0.00107016

Verb attach

Noun attach

Chomsky Normal Form

• All rules are of the form X ® Y Z or X ® w
• X, Y, Z ∈ N and w ∈ T 

• A transformation to this form doesn’t change the generative capacity 
of a CFG
• That is, it recognizes the same language

• But maybe with different trees

• Empties and unaries are removed recursively
• n-ary rules are divided by introducing new nonterminals (n > 2)

A phrase structure grammar

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

N ® people
N ® fish 
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Chomsky Normal Form steps
S ®NP VP
S ®VP
VP ®V NP
VP ®V
VP ®V NP PP
VP ®V PP
NP ®NP NP
NP ®NP
NP ®NP PP
NP ®PP
NP ®N
PP ®P NP
PP ®P

N ® people
N ® fish 
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with
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Chomsky Normal Form steps
S ® NP VP

VP ® V NP

S ® V NP
VP ® V

S ® V

VP ® V NP PP

S ® V NP PP

VP ® V PP
S ® V PP

NP ® NP NP

NP ® NP

NP ® NP PP

NP ® PP

NP ® N
PP ® P NP

PP ® P

N ® people
N ® fish 
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Chomsky Normal Form steps
S ® NP VP

VP ® V NP
S ® V NP

VP ® V
VP ® V NP PP

S ® V NP PP

VP ® V PP

S ® V PP

NP ® NP NP

NP ® NP

NP ® NP PP

NP ® PP

NP ® N

PP ® P NP

PP ® P

N ® people
N ® fish 
N ® tanks
N ® rods
V ® people
S ® people
V ® fish
S ® fish
V ® tanks
S ® tanks
P ®with

Chomsky Normal Form steps
S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish 
N ® tanks
N ® rods
V ® people
S ® people
VP ® people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks

VP ® tanks
P ® with

Chomsky Normal Form steps

S ® NP VP

VP ® V NP

S ® V NP

VP ® V NP PP

S ® V NP PP

VP ® V PP

S ® V PP

NP ® NP NP

NP ® NP PP

NP ® P NP

PP ® P NP

NP ®people
NP ® fish 
NP ® tanks
NP ® rods
V ®people
S ®people
VP ®people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks
VP ® tanks
P ®with
PP ®with

Chomsky Normal Form steps
S ® NP VP

VP ® V NP
S ® V NP

VP ® V @VP_V
@VP_V ® NP PP

S ® V @S_V

@S_V ® NP PP
VP ® V PP

S ® V PP
NP ® NP NP

NP ® NP PP
NP ® P NP

PP ® P NP

NP ®people
NP ® fish 
NP ® tanks
NP ® rods
V ®people
S ®people
VP ®people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks
VP ® tanks
P ®with
PP ®with

Chomsky Normal Form

• You should think of this as a transformation for efficient parsing

• Binarization is crucial for cubic time CFG parsing

• The rest isn’t necessary; it just makes the algorithms cleaner and a bit 
quicker
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ROOT

S

NP VP

N

people

V NP PP

P NP

rodswithtanksfish

N
N

An example: before binarization…

P NP

rods

N

with

NP

N

people tanksfish

N

VP

V NP PP

@VP_V

ROOT

S

Before and After binarization on VP

ROOT

S

NP VP

N

people

V NP PP

P NP

rodswithtanksfish

N
N

Parsing

• Given a string of terminals (e.g. sentences) and a CFG, determine if 
the string can be generated by the CFG.
• Also return a parse tree for the string
• Also return all possible parse trees for the string

• Must search space of derivations for one that derives the given string.
• Top-Down Parsing: Start searching space of derivations for the start symbol.
• Bottom-up Parsing: Start search space of reverse derivations from the 

terminal symbols in the string.

Parsing Example
S

VP

Verb    NP

book Det     Nominal

that Noun

flight

book that flight

Top Down Parsing

S

NP      VP

Pronoun

Top Down Parsing

S

NP      VP

Pronoun

book
X
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Top Down Parsing

S

NP      VP

ProperNoun

Top Down Parsing

S

NP      VP

ProperNoun

book
X

Top Down Parsing

S

NP      VP

Det     Nominal

Top Down Parsing

S

NP      VP

Det     Nominal

book
X

Top Down Parsing

S

Aux      NP      VP

Top Down Parsing

S

Aux      NP      VP

book
X
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Top Down Parsing

S

VP

Top Down Parsing

S

VP

Verb

Top Down Parsing

S

VP

Verb

book

Top Down Parsing

S

VP

Verb

book
X
that

Top Down Parsing

S

VP

Verb    NP

Top Down Parsing

S

VP

Verb    NP

book
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Top Down Parsing

S

VP

Verb    NP

book Pronoun

Top Down Parsing

S

VP

Verb    NP

book Pronoun

X
that

Top Down Parsing

S

VP

Verb    NP

book ProperNoun

Top Down Parsing

S

VP

Verb    NP

book ProperNoun

X
that

Top Down Parsing

S

VP

Verb    NP

book Det     Nominal

Top Down Parsing

S

VP

Verb    NP

book Det     Nominal

that
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Top Down Parsing

S

VP

Verb    NP

book Det     Nominal

that Noun

Top Down Parsing

S

VP

Verb    NP

book Det     Nominal

that Noun

flight

Bottom Up Parsing

book             that             flight

Bottom Up Parsing

book             that             flight

Noun

Bottom Up Parsing

book             that             flight

Noun

Nominal

Bottom Up Parsing

book             that             flight

Noun

Nominal       Noun

Nominal
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Bottom Up Parsing

book             that             flight

Noun

Nominal       Noun

Nominal

X

Bottom Up Parsing

book             that             flight

Noun

Nominal         PP

Nominal

Bottom Up Parsing

book             that             flight

Noun Det

Nominal         PP

Nominal

Bottom Up Parsing

book             that             flight

Noun Det

NP

Nominal

Nominal         PP

Nominal

Bottom Up Parsing

book             that  

Noun Det

NP

Nominal

flight

Noun

Nominal         PP

Nominal

Bottom Up Parsing

book             that  

Noun Det

NP

Nominal

flight

Noun

Nominal         PP

Nominal
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Bottom Up Parsing

book             that  

Noun Det

NP

Nominal

flight

Noun

S

VP

Nominal         PP

Nominal

Bottom Up Parsing

book             that  

Noun Det

NP

Nominal

flight

Noun

S

VP

X

Nominal         PP

Nominal

Bottom Up Parsing

book             that  

Noun Det

NP

Nominal

flight

Noun

Nominal         PP

Nominal

X

Bottom Up Parsing

book             that          

Verb Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book             that       

Verb 

VP

Det

NP

Nominal

flight

Noun

Det

Bottom Up Parsing

book             that        

Verb 

VP

S

NP

Nominal

flight

Noun



2/4/19

15

Det

Bottom Up Parsing

book             that        

Verb 

VP

S

X
NP

Nominal

flight

Noun

Bottom Up Parsing

book             that  

Verb 

VP

VP

PP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book             that  

Verb 

VP

VP

PP

Det

NP

Nominal

flight

Noun

X

Bottom Up Parsing

book             that  

Verb 

VP

Det

NP

Nominal

flight

Noun

NP

Bottom Up Parsing

book             that  

Verb 

VP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book             that  

Verb 

VP

Det

NP

Nominal

flight

Noun

S



2/4/19

16

Top Down vs. Bottom Up

• Top down never explores options that will not lead to a full parse, but 
can explore many options that never connect to the actual sentence.
• Bottom up never explores options that do not connect to the actual 

sentence but can explore options that can never lead to a full parse.
• Relative amounts of wasted search depend on how much the 

grammar branches in each direction.

Two problems to solve for parsing:
1. Repeated work

“Cats scratch people with cats with claws”

Dynamic Programming Parsing

• To avoid extensive repeated work, must cache intermediate results, 
i.e. completed phrases.
• Caching (memorizing) is critical to obtaining a polynomial time 

parsing (recognition) algorithm for CFGs.

(Probabilistic) CKY Parsing

Constituency Parsing

Input: a PCFG, and a sentence

fish     people     fish     tanks

Rule Prob θi

S ® NP VP θ0

NP ® NP NP θ1

…

N ® fish θ42

N ® people θ43

V ® fish θ44

…

PCFG

Constituency Parsing

Output: a parsing tree

fish     people     fish     tanks

Rule Prob θi

S ® NP VP θ0

NP ® NP NP θ1

…

N ® fish θ42

N ® people θ43

V ® fish θ44

…

PCFG

N N V N

VP

NPNP

S
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Cocke-Kasami-Younger (CKY) 
Constituency Parsing

fish   people  fish    tanks

N N V N

VP

NPNP

S

fish     people     fish     tanks

Viterbi (Max) Scores

people                           fish

NP 0.35
V 0.1
N 0.5

VP 0.06
NP 0.14
V 0.6
N 0.2

S ® NP VP 0.9
S ® VP 0.1
VP ® V NP 0.5
VP ® V 0.1
VP ® V @VP_V 0.3
VP ® V PP 0.1
@VP_V ® NP PP 1.0
NP ® NP NP 0.1
NP ® NP PP 0.2
NP ® N 0.7
PP ® P NP 1.0

Extended CKY parsing

• Unaries can be incorporated into the algorithm
• Messy, but doesn’t increase algorithmic complexity

• Empties can be incorporated
• Doesn’t increase complexity; essentially like unaries

• Binarization is vital
• Without binarization, you don’t get parsing cubic in the length of the sentence 

and in the number of nonterminals in the grammar

function CKY(words, grammar) returns [most_probable_parse,prob]
score = new double[#(words)+1][#(words)+1][#(nonterms)]
back = new Pair[#(words)+1][#(words)+1][#nonterms]]
for i=0; i<#(words); i++
for A in nonterms
if A -> words[i] in grammar
score[i][i+1][A] = P(A -> words[i])

//handle unaries
boolean added = true
while added 
added = false
for A, B in nonterms
if score[i][i+1][B] > 0 && A->B in grammar
prob = P(A->B)*score[i][i+1][B]
if prob > score[i][i+1][A]
score[i][i+1][A] = prob
back[i][i+1][A] = B
added = true

The CKY algorithm (1960/1965)
… extended to unaries

for span = 2 to #(words)
for begin = 0 to #(words)- span
end = begin + span
for split = begin+1 to end-1
for A,B,C in nonterms

prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
if prob > score[begin][end][A]
score[begin]end][A] = prob
back[begin][end][A] = new Triple(split,B,C)

//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
prob = P(A->B)*score[begin][end][B];
if prob > score[begin][end][A]
score[begin][end][A] = prob
back[begin][end][A] = B
added = true

return buildTree(score, back)

The CKY algorithm (1960/1965)
… extended to unaries


