
2/4/19

1

CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science

Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Logistics

• Project proposal is due on Feb 6.

• If you haven’t found a group yet, make a private post on piazza today
and let me know.

• Assignment 2 is released, due on March 20th, 11:59pm.

Two views of linguistic structure:
1. Constituency (phrase structure)
• Phrase structure organizes words into nested constituents.
• Fed raises interest rates

Two views of linguistic structure:
1. Constituency (phrase structure)
• Phrase structure organizes words into nested constituents.

Two views of linguistic structure:
1. Constituency (phrase structure)
• Phrase structure organizes words into nested constituents.

• How do we know what is a constituent? (Not that linguists don’t
argue about some cases.)
• Distribution: a constituent behaves as a unit that can appear in different

places:
• John talked [to the children] [about drugs].
• John talked [about drugs] [to the children].

• *John talked drugs to the children about

• Substitution/expansion/pronoun:
• I sat [on the box/right on top of the box/there].

http://www.ccs.neu.edu/home/luwang

2/4/19

2

Headed phrase structure

• Context-free grammar
• VP ® … VB* …
• NP ® … NN* …
• ADJP ® … JJ* …
• ADVP ® … RB* …

• S ® … NP VP …

• Plus minor phrase types:
• QP (quantifier phrase in NP), CONJP (multi word constructions: as well as), INTJ

(interjections), etc.

Two views of linguistic structure:
2. Dependency structure
• Dependency structure shows which words depend on (modify or are

arguments of) which other words.

The boy put the tortoise on the rug

Two views of linguistic structure:
2. Dependency structure
• Dependency structure shows which words depend on (modify or are

arguments of) which other words.

The boy put the tortoise on the rug
rug

the

the

ontortoise

put

boy

The

Phrase Chunking

• Find all non-recursive noun phrases (NPs) and verb phrases (VPs) in a
sentence.
• [NP I] [VP ate] [NP the spaghetti] [PP with] [NP meatballs].
• [NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to

] [NP only 1.8 billion] [PP in] [NP September]

Phrase Chunking as Sequence Labeling

• Tag individual words with one of 3 tags
• B (Begin) word starts new target phrase
• I (Inside) word is part of target phrase but not the first word
• O (Other) word is not part of target phrase

• Sample for NP chunking
• He reckons the current account deficit will narrow to only 1.8

billion in September.

Begin Inside Other

Evaluating Chunking
Per token accuracy does not evaluate finding correct full chunks.
Instead use:

found chunks ofnumber Total
found chunkscorrect ofNumber Precision =

chunks actual ofnumber Total
found chunkscorrect ofNumber Recall =

F measure:
RP

PR

RP

F
+

=
+

=
2

2/)11(

1
1

2/4/19

3

Current Chunking Results

• Best system for NP chunking: F1=96%
• Typical results for finding range of chunk types (CONLL 2000 shared

task: NP, VP, PP, ADV, SBAR, ADJP) is F1=92−94%

Syntactic Parsing

• Produce the correct syntactic parse tree for a sentence.

Classical NLP Parsing:
The problem and its solution
• Adding constraints to grammars to limit unlikely/weird parses for

sentences
• But the attempt make the grammars not robust

• In traditional systems, commonly 30% of sentences in even an edited text would have no
parse.

• A less constrained grammar can parse more sentences
• But simple sentences end up with ever more parses with no way to choose

between them
• We need mechanisms that allow us to find the most likely parse(s) for

a sentence
• Statistical parsing lets us work with very loose grammars that admit millions of

parses for sentences but still quickly find the best parse(s)

The rise of annotated data:
The Penn Treebank

((S

(NP-SBJ (DT The) (NN move))
(VP (VBD followed)

(NP
(NP (DT a) (NN round))

(PP (IN of)

(NP
(NP (JJ similar) (NNS increases))

(PP (IN by)
(NP (JJ other) (NNS lenders)))

(PP (IN against)

(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
(, ,)

(S-ADV
(NP-SBJ (-NONE- *))

(VP (VBG reflecting)

(NP
(NP (DT a) (VBG continuing) (NN decline))

(PP-LOC (IN in)
(NP (DT that) (NN market)))))))

(. .)))

[Marcus et al. 1993, Computational Linguistics]

The rise of annotated data

• Starting off, building a treebank seems a lot slower and less useful
than building a grammar

• But a treebank gives us many things
• Reusability of the labor

• Many parsers, POS taggers, etc.
• Valuable resource for linguistics

• Broad coverage
• Frequencies and distributional information
• A way to evaluate systems

Two problems to solve for parsing:
1. Repeated work…

“Cats scratch people with cats with claws”

2/4/19

4

Two problems to solve for parsing:
1. Repeated work…

“Cats scratch people with cats with claws”

Two problems to solve for parsing:
2. Choosing the correct parse
• How do we work out the correct attachment:

• She saw the man with a telescope

• Words are good predictors of attachment, even absent full
understanding

• Moscow sent more than 100,000 soldiers into Afghanistan …

• Sydney Water breached an agreement with NSW Health …

• Our statistical parsers will try to exploit such statistics.

Statistical parsing applications

Statistical parsers are now robust and widely used in larger NLP applications:

• High precision question answering [Pasca and Harabagiu SIGIR 2001]

• Improving biological named entity finding [Finkel et al. JNLPBA 2004]

• Syntactically based sentence compression [Lin and Wilbur 2007]

• Extracting opinions about products [Bloom et al. NAACL 2007]

• Improved interaction in computer games [Gorniak and Roy 2005]

• Helping linguists find data [Resnik et al. BLS 2005]

• Source sentence analysis for machine translation [Xu et al. 2009]

• Relation extraction systems [Fundel et al. Bioinformatics 2006]

(Probabilistic) Context-Free Grammars

• CFG
• PCFG

Phrase structure grammars
= context-free grammars (CFGs)
• G = (T, N, S, R)
• T is a set of terminal symbols
• N is a set of nonterminal symbols
• S is the start symbol (S ∈ N)
• R is a set of rules/productions of the form X ®g

• X ∈ N and g ∈ (N ∪ T)*

A phrase structure grammar

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

people fish tanks
people fish with rods

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

2/4/19

5

Phrase structure grammars
= context-free grammars (CFGs)
• G = (T, N, S, R)
• T is a set of terminal symbols
• N is a set of nonterminal symbols
• S is the start symbol (S ∈ N)
• R is a set of rules/productions of the form X ®g

• X ∈ N and g ∈ (N ∪ T)*

• A grammar G generates a language L.

Sentence Generation
• Sentences are generated by recursively rewriting the start symbol

using the productions until only terminals symbols remain.

S

VP

Verb NP

Det Nominal

Nominal PP

book

Prep NP

through
Houston

Proper-Noun

the

flight

Noun

Phrase structure grammars in NLP
• G = (T, C, N, S, L, R)
• T is a set of terminal symbols
• C is a set of preterminal symbols
• N is a set of nonterminal symbols
• S is the start symbol (S ∈ N)
• L is the lexicon, a set of items of the form X ® x

• X ∈ C and x ∈ T
• R is the grammar, a set of items of the form X ®g

• X ∈ N and g ∈ (N ∪ C)*
• By usual convention, S is the start symbol, but in statistical NLP,

we usually have an extra node at the top (ROOT, TOP)
• We usually write e for an empty sequence, rather than nothing

A phrase structure grammar

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

people fish tanks
people fish with rods

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Probabilistic – or stochastic – context-free
grammars (PCFGs)
• G = (T, N, S, R, P)

• T is a set of terminal symbols

• N is a set of nonterminal symbols

• S is the start symbol (S ∈ N)

• R is a set of rules/productions of the form X ®g
• P is a probability function

• P: R ® [0,1]

•

• A grammar G generates a language model L.

€

∀X ∈ N, P(X →γ) =1
X→γ ∈R
∑

A PCFG
S ® NP VP 1.0
VP ® V NP 0.6
VP ® V NP PP 0.4
NP ® NP NP 0.1
NP ® NP PP 0.2
NP ® N 0.7
PP ® P NP 1.0

N ® people 0.5
N ® fish 0.2
N ® tanks 0.2
N ® rods 0.1
V ® people 0.1
V ® fish 0.6
V ® tanks 0.3
P ® with 1.0

[With empty NP removed so
less ambiguous]

2/4/19

6

The probability of trees and strings

• P(t) – The probability of a tree t is the product of the
probabilities of the rules used to generate it.
• P(s) – The probability of the string s is the sum of the

probabilities of the trees which have that string as their
yield

P(s) = Σt P(s, t) where t is a parse of s

= Σt P(t)

Tree and String Probabilities
• s = people fish tanks with rods
• P(t1) = 1.0 × 0.7 × 0.4 × 0.5 × 0.6 × 0.7

× 1.0 × 0.2 × 1.0 × 0.7 × 0.1
= 0.0008232

• P(t2) = 1.0 × 0.7 × 0.6 × 0.5 × 0.6 × 0.2
× 0.7 × 1.0 × 0.2 × 1.0 × 0.7 × 0.1

= 0.00024696
• P(s) = P(t1) + P(t2)

= 0.0008232 + 0.00024696
= 0.00107016

Verb attach

Noun attach

Chomsky Normal Form

• All rules are of the form X ® Y Z or X ® w
• X, Y, Z ∈ N and w ∈ T

• A transformation to this form doesn’t change the generative capacity
of a CFG
• That is, it recognizes the same language

• But maybe with different trees

• Empties and unaries are removed recursively
• n-ary rules are divided by introducing new nonterminals (n > 2)

A phrase structure grammar

S ® NP VP
VP ® V NP
VP ® V NP PP
NP ® NP NP
NP ® NP PP
NP ® N
NP ® e
PP ® P NP

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Chomsky Normal Form steps
S ®NP VP
S ®VP
VP ®V NP
VP ®V
VP ®V NP PP
VP ®V PP
NP ®NP NP
NP ®NP
NP ®NP PP
NP ®PP
NP ®N
PP ®P NP
PP ®P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

2/4/19

7

Chomsky Normal Form steps
S ® NP VP

VP ® V NP

S ® V NP
VP ® V

S ® V

VP ® V NP PP

S ® V NP PP

VP ® V PP
S ® V PP

NP ® NP NP

NP ® NP

NP ® NP PP

NP ® PP

NP ® N
PP ® P NP

PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
V ® fish
V ® tanks
P ® with

Chomsky Normal Form steps
S ® NP VP

VP ® V NP
S ® V NP

VP ® V
VP ® V NP PP

S ® V NP PP

VP ® V PP

S ® V PP

NP ® NP NP

NP ® NP

NP ® NP PP

NP ® PP

NP ® N

PP ® P NP

PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
S ® people
V ® fish
S ® fish
V ® tanks
S ® tanks
P ®with

Chomsky Normal Form steps
S ® NP VP
VP ® V NP
S ® V NP
VP ® V NP PP
S ® V NP PP
VP ® V PP
S ® V PP
NP ® NP NP
NP ® NP
NP ® NP PP
NP ® PP
NP ® N
PP ® P NP
PP ® P

N ® people
N ® fish
N ® tanks
N ® rods
V ® people
S ® people
VP ® people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks

VP ® tanks
P ® with

Chomsky Normal Form steps

S ® NP VP

VP ® V NP

S ® V NP

VP ® V NP PP

S ® V NP PP

VP ® V PP

S ® V PP

NP ® NP NP

NP ® NP PP

NP ® P NP

PP ® P NP

NP ®people
NP ® fish
NP ® tanks
NP ® rods
V ®people
S ®people
VP ®people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks
VP ® tanks
P ®with
PP ®with

Chomsky Normal Form steps
S ® NP VP

VP ® V NP
S ® V NP

VP ® V @VP_V
@VP_V ® NP PP

S ® V @S_V

@S_V ® NP PP
VP ® V PP

S ® V PP
NP ® NP NP

NP ® NP PP
NP ® P NP

PP ® P NP

NP ®people
NP ® fish
NP ® tanks
NP ® rods
V ®people
S ®people
VP ®people
V ® fish
S ® fish
VP ® fish
V ® tanks
S ® tanks
VP ® tanks
P ®with
PP ®with

Chomsky Normal Form

• You should think of this as a transformation for efficient parsing

• Binarization is crucial for cubic time CFG parsing

• The rest isn’t necessary; it just makes the algorithms cleaner and a bit
quicker

2/4/19

8

ROOT

S

NP VP

N

people

V NP PP

P NP

rodswithtanksfish

N
N

An example: before binarization…

P NP

rods

N

with

NP

N

people tanksfish

N

VP

V NP PP

@VP_V

ROOT

S

Before and After binarization on VP

ROOT

S

NP VP

N

people

V NP PP

P NP

rodswithtanksfish

N
N

Parsing

• Given a string of terminals (e.g. sentences) and a CFG, determine if
the string can be generated by the CFG.
• Also return a parse tree for the string
• Also return all possible parse trees for the string

• Must search space of derivations for one that derives the given string.
• Top-Down Parsing: Start searching space of derivations for the start symbol.
• Bottom-up Parsing: Start search space of reverse derivations from the

terminal symbols in the string.

Parsing Example
S

VP

Verb NP

book Det Nominal

that Noun

flight

book that flight

Top Down Parsing

S

NP VP

Pronoun

Top Down Parsing

S

NP VP

Pronoun

book
X

2/4/19

9

Top Down Parsing

S

NP VP

ProperNoun

Top Down Parsing

S

NP VP

ProperNoun

book
X

Top Down Parsing

S

NP VP

Det Nominal

Top Down Parsing

S

NP VP

Det Nominal

book
X

Top Down Parsing

S

Aux NP VP

Top Down Parsing

S

Aux NP VP

book
X

2/4/19

10

Top Down Parsing

S

VP

Top Down Parsing

S

VP

Verb

Top Down Parsing

S

VP

Verb

book

Top Down Parsing

S

VP

Verb

book
X
that

Top Down Parsing

S

VP

Verb NP

Top Down Parsing

S

VP

Verb NP

book

2/4/19

11

Top Down Parsing

S

VP

Verb NP

book Pronoun

Top Down Parsing

S

VP

Verb NP

book Pronoun

X
that

Top Down Parsing

S

VP

Verb NP

book ProperNoun

Top Down Parsing

S

VP

Verb NP

book ProperNoun

X
that

Top Down Parsing

S

VP

Verb NP

book Det Nominal

Top Down Parsing

S

VP

Verb NP

book Det Nominal

that

2/4/19

12

Top Down Parsing

S

VP

Verb NP

book Det Nominal

that Noun

Top Down Parsing

S

VP

Verb NP

book Det Nominal

that Noun

flight

Bottom Up Parsing

book that flight

Bottom Up Parsing

book that flight

Noun

Bottom Up Parsing

book that flight

Noun

Nominal

Bottom Up Parsing

book that flight

Noun

Nominal Noun

Nominal

2/4/19

13

Bottom Up Parsing

book that flight

Noun

Nominal Noun

Nominal

X

Bottom Up Parsing

book that flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that flight

Noun Det

Nominal PP

Nominal

Bottom Up Parsing

book that flight

Noun Det

NP

Nominal

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

2/4/19

14

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

X

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

X

Bottom Up Parsing

book that

Verb Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

Det

Bottom Up Parsing

book that

Verb

VP

S

NP

Nominal

flight

Noun

2/4/19

15

Det

Bottom Up Parsing

book that

Verb

VP

S

X
NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

X

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

NP

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

S

2/4/19

16

Top Down vs. Bottom Up

• Top down never explores options that will not lead to a full parse, but
can explore many options that never connect to the actual sentence.
• Bottom up never explores options that do not connect to the actual

sentence but can explore options that can never lead to a full parse.
• Relative amounts of wasted search depend on how much the

grammar branches in each direction.

Two problems to solve for parsing:
1. Repeated work

“Cats scratch people with cats with claws”

Dynamic Programming Parsing

• To avoid extensive repeated work, must cache intermediate results,
i.e. completed phrases.
• Caching (memorizing) is critical to obtaining a polynomial time

parsing (recognition) algorithm for CFGs.

(Probabilistic) CKY Parsing

Constituency Parsing

Input: a PCFG, and a sentence

fish people fish tanks

Rule Prob θi

S ® NP VP θ0

NP ® NP NP θ1

…

N ® fish θ42

N ® people θ43

V ® fish θ44

…

PCFG

Constituency Parsing

Output: a parsing tree

fish people fish tanks

Rule Prob θi

S ® NP VP θ0

NP ® NP NP θ1

…

N ® fish θ42

N ® people θ43

V ® fish θ44

…

PCFG

N N V N

VP

NPNP

S

2/4/19

17

Cocke-Kasami-Younger (CKY)
Constituency Parsing

fish people fish tanks

N N V N

VP

NPNP

S

fish people fish tanks

Viterbi (Max) Scores

people fish

NP 0.35
V 0.1
N 0.5

VP 0.06
NP 0.14
V 0.6
N 0.2

S ® NP VP 0.9
S ® VP 0.1
VP ® V NP 0.5
VP ® V 0.1
VP ® V @VP_V 0.3
VP ® V PP 0.1
@VP_V ® NP PP 1.0
NP ® NP NP 0.1
NP ® NP PP 0.2
NP ® N 0.7
PP ® P NP 1.0

Extended CKY parsing

• Unaries can be incorporated into the algorithm
• Messy, but doesn’t increase algorithmic complexity

• Empties can be incorporated
• Doesn’t increase complexity; essentially like unaries

• Binarization is vital
• Without binarization, you don’t get parsing cubic in the length of the sentence

and in the number of nonterminals in the grammar

function CKY(words, grammar) returns [most_probable_parse,prob]
score = new double[#(words)+1][#(words)+1][#(nonterms)]
back = new Pair[#(words)+1][#(words)+1][#nonterms]]
for i=0; i<#(words); i++
for A in nonterms
if A -> words[i] in grammar
score[i][i+1][A] = P(A -> words[i])

//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
if score[i][i+1][B] > 0 && A->B in grammar
prob = P(A->B)*score[i][i+1][B]
if prob > score[i][i+1][A]
score[i][i+1][A] = prob
back[i][i+1][A] = B
added = true

The CKY algorithm (1960/1965)
… extended to unaries

for span = 2 to #(words)
for begin = 0 to #(words)- span
end = begin + span
for split = begin+1 to end-1
for A,B,C in nonterms

prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
if prob > score[begin][end][A]
score[begin]end][A] = prob
back[begin][end][A] = new Triple(split,B,C)

//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
prob = P(A->B)*score[begin][end][B];
if prob > score[begin][end][A]
score[begin][end][A] = prob
back[begin][end][A] = B
added = true

return buildTree(score, back)

The CKY algorithm (1960/1965)
… extended to unaries

