CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang

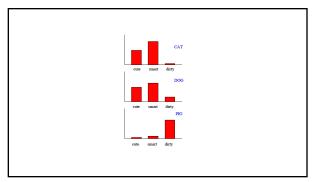
Outline

- Vector Semantics
- Sparse representation Pointwise Mutual Information (PMI)
- Dense representation
 - Singular Value Decomposition (SVD)
 Neural Language Model (Word2Vec)
- Brown cluster

Why vector models of meaning? computing the similarity between words

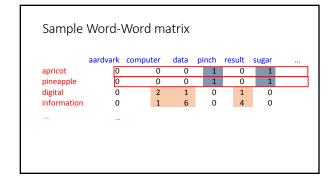
"fast" is similar to "rapid" "tall" is similar to "height"

Question answering: Q: "How tall is Mt. Everest?" Candidate A: "The official height of Mount Everest is 29029 feet"



Word-Word matrix Sample contexts \pm 7 words

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first princapple well suited to programming on the digital computer for the purpose of gathering data and information

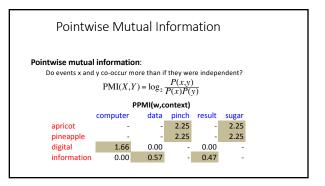


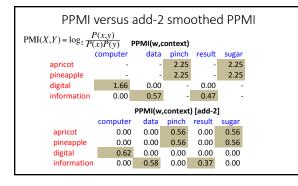
Problem with raw counts

- Raw word frequency is not a great measure of association between words
- It's very skewed

 "the" and "of" are very frequent, but maybe not the most discriminative

 We'd rather have a measure that asks whether a context word is
 particularly informative about the target word.
- Positive Pointwise Mutual Information (PPMI)



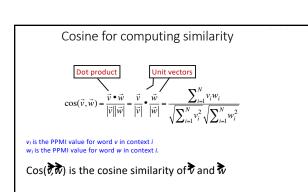


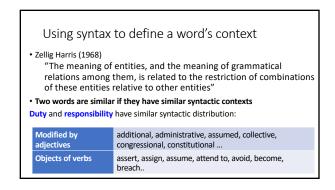
Measuring similarity

- Given 2 target words v and w
- We'll need a way to measure their similarity.
- Most measure of vectors similarity are based on the:
- Dot product or inner product from linear algebra (raw counts)

dot-product $(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$

High when two vectors have large values in same dimensions.
 Low (in fact 0) for orthogonal vectors with zeros in complementary distribution



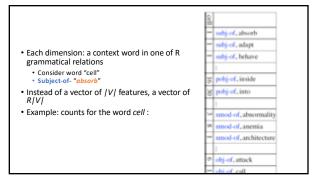


Co-occurrence vectors based on syntactic dependencies

Dekang Lin, 1998 "Automatic Retrieval and Clustering of Similar Words"

• Each dimension: a context word in one of R grammatical relations Consider word "cell", and phrase "cell absorbs nutrients" Subject-of- "absorb"

• Instead of a vector of /V/ features, a vector of R/V/



Syntactic dependencies for dimensions

- Alternative (Padó and Lapata 2007):
 Instead of having a |V| x R|V| matrix
 - Have a |V| x |V| matrix
 - Counts of words that occur in one of R dependencies (subject, object, etc).
 So M("cell","absorb") =

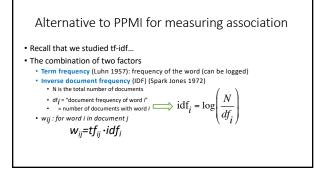
 - count(subj(cell,absorb))
 - + count(obj(cell,absorb))
 - + count(pobj(cell,absorb))+...

PMI applied to dependency relations

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL

Object of "drink"	Count	PMI
tea	2	11.8
liquid	2	10.5
wine	2	9.3
anything	3	5.2
it	3	1.3

• "Drink it" more common than "drink wine" • But "wine" is a better "drinkable" thing than "it"



tf-idf not generally used for word-word similarity

But is by far the most common weighting when we are considering the relationship of words to documents

Evaluating similarity (Revisit)

- Extrinsic (task-based, end-to-end) Evaluation:
 - Question Answering
 - Spell Checking Essay grading
- Intrinsic Evaluation:

 - Correlation between algorithm and human word similarity ratings
 Wordsim353: 353 noun pairs rated 0-10. sim(plane,car)=5.77
 - Taking TOEFL multiple-choice vocabulary tests <u>Levied</u> is closest in meaning to:
 - imposed, believed, requested, correlated

Summary

- Distributional (vector) models of meaning
 - Sparse (PPMI-weighted word-word co-occurrence matrices) • Dense:
 - Word-word SVD (50-2000 dimensions)
 - Skip-grams and CBOW (100-1000 dimensions)

Sparse versus dense vectors

- PPMI vectors are
- long (length |V| = 20,000 to 50,000) • sparse (most elements are zero)
- Alternative: learn vectors which are • short (length 200-1000)
 - · dense (most elements are non-zero)

Sparse versus dense vectors

• Why dense vectors?

- Short vectors may be easier to use as features in machine learning (less weights to tune)
- Dense vectors may generalize better than storing explicit counts
- They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

Three methods for getting short dense vectors

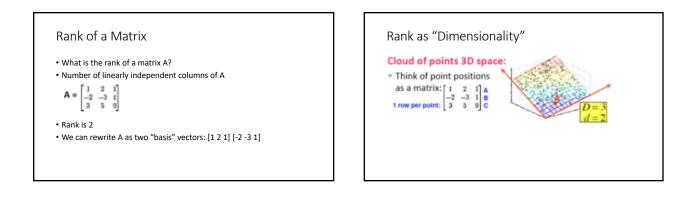
- Singular Value Decomposition (SVD)
- "Neural Language Model" inspired by predictive models
- Brown clustering

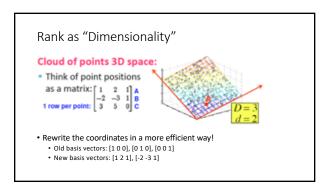
Singular Value Decomposition (SVD)

Rank of a Matrix

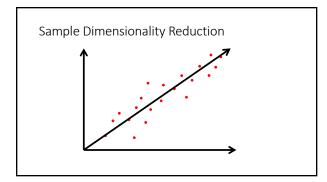
• What is the rank of a matrix A?

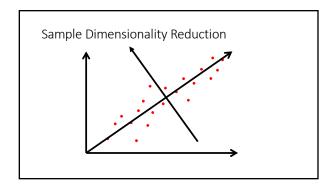
Rank of a Matrix • What is the rank of a matrix A? • Number of linearly independent columns of A $A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$

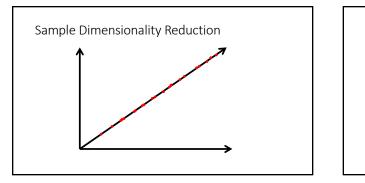


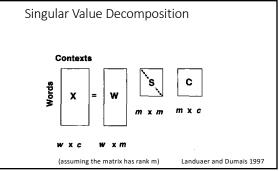


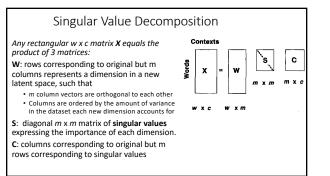
- In which the highest order dimension captures the most variance in the original dataset
- And the next dimension captures the next most variance, etc.

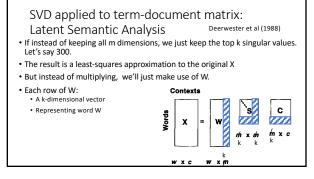




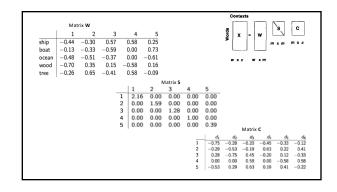


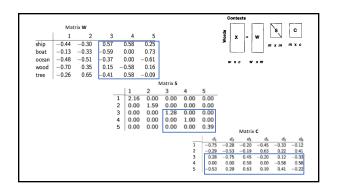




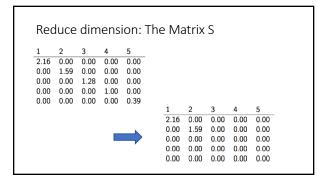


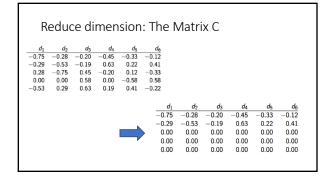
SVD on Te	rm-D)ocur	nent	Matr	ix: E	kample
• The matrix X						
	d_1	d_2	d ₃	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1





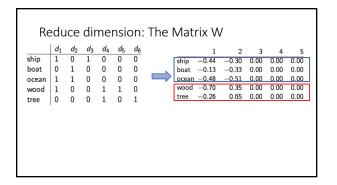
Reduce	dime	ensio	n: The	e Ma	atrix	W			
	1	2	3		4	5			
ship	-0.44	-0.30	0.57	0.5	B 0.	25			
boat	-0.13	-0.33	-0.59	0.0	0 0.	73			
ocean	-0.48	-0.51	-0.37	0.0	0 -0.	61			
wood	-0.70	0.35	0.15	-0.5	B 0.	16			
tree	-0.26	0.65	-0.41	0.5	8 -0.	09			
				1	2	3	4	5	
			ship -	0.44	-0.30	0.00	0.00	0.00	
			boat –	0.13	-0.33	0.00	0.00	0.00	
			ocean –	0.48	-0.51	0.00	0.00	0.00	
			wood -	0.70	0.35	0.00	0.00	0.00	
			tree –	0.26	0.65	0.00	0.00	0.00	



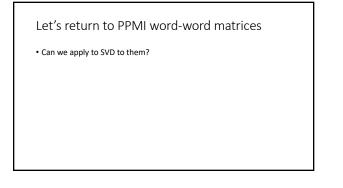


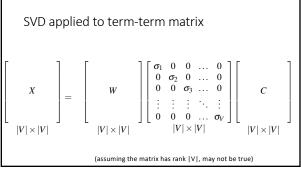
1.	<i>d</i> ₁	<i>d</i> ₂	<i>d</i> ₃	<i>d</i> ₄	<i>d</i> ₅	<i>d</i> ₆		1	2	3	4	5
ship	1	0	1	0	0	0	ship	-0.44	-0.30	0.00	0.00	0.00
boat	0	1	0	0	0	0	boat	-0.13	-0.33	0.00	0.00	0.00
ocean	1	1	0	0	0	0		-0.48	-0.51	0.00	0.00	0.00
wood	1	0	0	1	1	0	wood	-0.70	0.35	0.00	0.00	0.00
tree	0	0	0	1	0	1	tree	-0.26	0.65	0.00	0.00	0.00

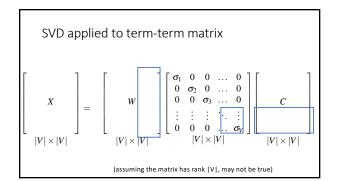
ship	<i>d</i> ₁	d ₂ 0	1	d ₄	d ₅	0 0		ship	-0.44	2	0.00	0.00	0.00
boat	ō	1	Ô	õ	õ	õ		boat	-0.13	-0.30	0.00	0.00	0.00
ocean	1	1	0	0	õ	õ			-0.48	-0.51	0.00	0.00	0.00
wood	1	ō	0	1	1	Õ	- C	wood	-0.70	0.35	0.00	0.00	0.00
tree	0	0	0	1	0	1		tree	-0.26	0.65	0.00	0.00	0.00
Similarity	r betwe	en <i>ship</i>	and b	oat vs :	ship an	d woo o	1?						

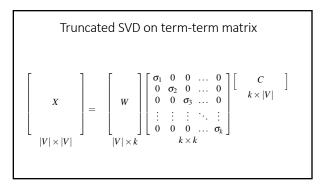


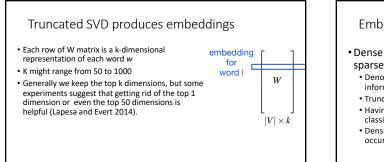
- 300 dimensions are commonly used
- The cells are commonly weighted by a product of two weights (TF-IDF)
 Local weight: Log term frequency
 Global weight: either idf or an entropy measure











Embeddings versus sparse vectors

- Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity
 Denoising: low-order dimensions may represent unimportant information
 - Truncation may help the models generalize better to unseen data.
 - Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.
 Dense models may do better at capturing higher order co-
 - Dense models may do better at capturing higher order co occurrence.