CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

1/19/18

Parts of Speech

* Perhaps starting with Aristotle in the West (384—
322 BCE), there was the idea of having parts of
speech (POS)

* a.k.a lexical categories, word classes, “tags”

 Lowest level of syntactic analysis

English Parts of Speech (POS) Tagsets

* Original Brown corpus used a large set of 87 POS
tags.
* Most common in NLP today is the Penn Treebank
set of 45 tags.
* Tagset used in the slides.

* Reduced from the Brown set for use in the context of a
parsed corpus (i.e. Penn Treebank).

English Parts of Speech

* Noun (person, place or thing)
« Singular (NN): dog, fork
 Plural (NNS): dogs, forks
* Proper (NNP, NNPS): John, Springfields
« Personal pronoun (PRP): |, you, he, she, it
* Wh-pronoun (WP): who, what

« Verb (actions and processes)
* Base, infinitive (VB): eat
« Past tense (VBD): ate
« Gerund (VBG): eating
* Past participle (VBN): eaten
* Non 3" person singular present tense (VBP): eat
« 3" person singular present tense: (VBZ): eats
* Modal (MD): should, can
* To (TO): to (to eat)

English Parts of Speech (cont.)

« Adjective (modify nouns)
« Basic ())): red, tall
« Comparative (JJR): redder, taller
« Superlative (JJS): reddest, tallest
« Adverb (modify verbs)
* Basic (RB): quickly
« Comparative (RBR): quicker
« Superlative (RBS): quickest
* Preposition (IN): on, in, by, to, with
* Determiner:
* Basic (DT) a, an, the
* WH-determiner (WDT): which, that
* Coordinating Conjunction (CC): and, but, or,
« Particle (RP): off (took off), up (put up)

Open class (lexical) words

Nouns Verbs | Adjectives |
Proper Common Main |Adverbs |
Numbers more
Closed class (functional
() Modals
Conjunctions Particles ... more
Pronouns Interjections

1/19/18

Open vs. Closed classes

* Open vs. Closed classes

* Closed:
* determiners: a, an, the
* pronouns: she, he, |
* prepositions: on, under, over, near, by, ...
* Why “closed”?

* Open:
* Nouns, Verbs, Adjectives, Adverbs.

Ambiguity in POS Tagging

* “Like” can be a verb or a preposition
* | like/VBP candy.
* Time flies like/IN an arrow.

* “Around” can be a preposition, particle, or adverb
* | bought it at the shop around/IN the corner.
* | never got around/RP to getting a car.
* A new Prius costs around/RB $25K.

POS Tagging

* The POS tagging problem is to determine the POS
tag for a particular instance of a word.

NN*: noun
VB*: verb
H UH: interjection
POS Tagglng JJ: adjective
RB: adverb
IN: preposition/subordinating conjunction

* Input: plays well with others
* Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS
* Output: Plays/VBZ well/RB with/IN others/NNS

* Uses:
* Text-to-speech (how do we pronounce “lead”?)
* Can write regexps over the output for phrase extraction
* Noun phrase: (Det) Adj* N+
* As input to or to speed up a full parser

POS tagging performance

* How many tags are correct? (Tag accuracy)
* About 97% currently
* But baseline is already 90%
« Baseline is performance of stupidest possible method
+ Take an annotated corpus (or a dictionary), tag every word with
its most frequent tag
+ Tag unknown words as nouns
* Partly easy because
* Many words are unambiguous
* You get points for them (the, g, etc.) and for punctuation
marks!

How difficult is POS tagging?
* Word types: roughly speaking, unique words

* About 11% of the word types in the Brown corpus
are ambiguous with regard to part of speech
* But they tend to be very common words. E.g., that
* | know he is honest = IN (preposition)
* Yes, that play was nice = DT (determiner)
* You can’t go that far = RB (adverb)

* 40% of the word tokens are ambiguous

Sources of information

* What are the main sources of information for POS
tagging?
« Contextual: Knowledge of neighboring words
* Bill saw that man yesterday
* NNPNN DT NN NN
VB VB(D)IN VB NN
* Local: Knowledge of word probabilities
* manis rarely used as a verb....
* The latter proves the most useful, but the former also
helps

* Sometimes these preferences are in conflict:
« The trash can is in the garage

1/19/18

More and Better Features =»
Feature-based tagger

« Can do surprisingly well just looking at a word by

itself:
* Word the: the > DT
* Lowercased word Importantly: importantly — RB
* Prefixes unfathomable: un- — 1)
* Suffixes Importantly: -ly — RB

* Capitalization ~ Meridian: CAP — NNP
* Word shapes 35-year: d-x — JJ

POS Tagging Approaches

* Rule-Based: Human crafted rules based on lexical and
other linguistic knowledge.

* Learning-Based: Trained on human annotated corpora
like the Penn Treebank.
* Statistical models: Hidden Markov Model (HMM) — this
lecture!, Maximum Entropy Markov Model (MEMM),
Conditional Random Field (CRF)

* Rule learning: Transformation Based Learning (TBL)
* Neural networks: Recurrent networks like Long Short Term
Memory (LSTMs)
* Generally, learning-based approaches have been found
to be more effective overall, taking into account the
total amount of human expertise and effort involved.

Hidden Markov Model

Markov Model / Markov Chain

* A finite state machine with probabilistic state
transitions.

* Makes Markov assumption that next state only

depends on the current state and independent of
previous history.

Sample Markov Model for POS
(a finite state machine)

Sample Markov Model for POS

P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076

1/19/18

Hidden Markov Model

* Probabilistic generative model for sequences.

* Assume an underlying set of hidden (unobserved)
states in which the model can be (e.g. part-of-
speech).

* Assume probabilistic transitions between states over
time (e.g. transition from POS to another POS as
sequence is generated).

* Assume a probabilistic generation of tokens from
states (e.g. words generated for each POS).

Sample HMM for POS

Sample HMM Generation

Sample HMM Generation

Sample HMM Generation

Sample HMM Generation

1/19/18

Sample HMM Generation

Sample HMM Generation

Sample HMM Generation

Sample HMM Generation

Sample HMM Generation

Sample HMM Generation

1/19/18

Formally, Markov Sequences

» Consider a sequence of random variables X, Xs, ..., X
where m is the length of the sequence

» Each variable X; can take any value in {1,2,..., k}

» How do we model the joint distribution

P(Xi =21, Xo=19,..., X;n = Tn)

The Markov Assumption

» The first equality is exact (by the chain rule).

» The second equality follows from the Markov assumption: for
all j=2...m,

P(X] = Ilel =T1y..., X];l = .l']‘fl) = P(X] = Ile];1 = ‘l‘jfl)

Homogeneous Markov Chains

» In a homogeneous Markov chain, we make an additional
assumption, that for j =2...m,

P(Xj = 25| Xj1 = wj1) = q(x5]x5-1)
where ¢(z'|x) is some function
» ldea behind this assumption: the transition probabilities do

not depend on the position in the Markov chain (do not
depend on the index j)

Markov Models
» Our model is then as follows:

m

p(a1, g, ... o} 0) = q(x1) HQ(I]"I]'—l)

Jj=2

» Parameters in the model:

> q(z) forz ={1,2,..., k}
Constraints: g(z) >0 and 25:1 q(z) =1

> q(2'|z) for z ={1,2,... .k} and 2/ = {1,2,..., k}
Constraints: g(z'|z) > 0 and Z’;,:l q(@'|z) =1

Probabilistic Models for Sequence
Pairs

» We have two sequences of random variables:
Xl,XQ,.“,Xm and SLSQ Sm

» Intuitively, each X; corresponds to an “observation” and each
S; corresponds to an underlying “state” that generated the
observation. Assume that each S; is in {1,2,...k}, and each
X;isin {1,2,...0}

» How do we model the joint distribution

Probabilistic Models for Sequence
Pairs

» We have two sequences of random variables:
1¥1,X2 Xm and Sl. 52 Sm
Words Part-of-Speech tags
» Intuitively, each X; corresponds to an “observation” and each
S; corresponds to an underlying “state” that generated the
observation. Assume that each S; is in {1,2,...k}, and each
X;isin {1,2,...0}

» How do we model the joint distribution

Supervised Learning Problems

» We have training examples "), y() for i = 1...m. Each x()
is an input, each ¥ is a label.

» Task is to learn a function f mapping inputs x to labels f(z)

1/19/18

Firstly, why would we want to model the joint distribution?

P(Xy=mx,..., Xon = Tm, S1= 51, ,5m = Sm)
Words Part-of-Speech tags

Generative Models

b We have training examples 2, y(9) for i = 1...m. Task is
to learn a function f mapping inputs z to labels f(x).

b Generative models:

» Learn a distribution p(x, y) from training examples
» Often we have p(z,y) = p(y)p(z|y)

b Note: we then have

Py)p(zly)

pylr) = (@)

where p(z) = 3 p(y)p(zy)

Prediction with Generative Models

» We have training examples 2,) for i = 1...m. Task is
to learn a function f mapping inputs x to labels f(z).
» Generative models:

» Learn a distribution p(z, y) from training examples
» Often we have p(z,y) = p(y)p(z|y)

» Output from the model:

f(z) = argmaxp(y|z)
v

o py)p(ely)

= argmax ——-
v p(x)

= argmaxp(y)p(x|y)
v

Probabilistic Models for Sequence
Pairs

» We have two sequences of random variables:
Xl,XQ,.“,Xm and Sl.SQ Sm
Words Part-of-Speech tags
» Intuitively, each X; corresponds to an “observation” and each
S; corresponds to an underlying “state” that generated the
observation. Assume that each S; is in {1,2,...k}, and each
X;isin {1,2,...0}

» How do we model the joint distribution

Hidden Markov Models (HMMs)

» In HMMs, we assume that:

Words Part-of-Speech tags
P(Xy=x1,..., X =Tm, Sy = s1,..., S = Sm)
= P(Si=s1) [[P(S; = 55151 = 5;-0) [[P(Xs = 25185 = s
j=2 j=1

» By the chain rule, the following equality is exact:

» Assumption 2: each observation depends only on the
underlying state

= P(X; =5 =s5)

1/19/18

Independence Assumptions in HMMs

» By the chain rule, the following equality is exact:

P(Xy=uz1,...,2 Xon = &m|S1 = s1,..., Sm = Sm)

» Assumption 1: the state sequence forms a Markov chain

e.g. Part-of-Speech tags .
P(Sl = S1,..., Sm = sm) = P(S1 = 51) HP(S] = 5j|S]*1 = 5]’*1)
j=2
Formally

» The model takes the following form:

p(T1. . Ty 1.0 Sm;) = t(s1) Hl‘(s]\sj,l) He(l‘j\s]-)

=2 j=1

» Parameters in the model:

1. Initial state parameters t(s) for s € {1,2,..., k}

2. Transition parameters t(s'|s) for s,s" € {1,2,..., k}
3. Emission parameters e(z|s) for s € {1,2,...,k} and
ze{l,2,...,0}

HMM

* Parameter estimation
* Learning the probabilities from training data

* P(verb|noun)?, P(apple|noun)?

* Inference: Viterbi algorithm (dynamic
programming)
* Given a new sentence, what are the POS tags for the
words?

HMM

* Parameter estimation

« Inference: Viterbi algorithm (dynamic
programming)

Parameter Estimation with Fully
Observed Data

» We'll now discuss parameter estimates in the case of fully
observed data: for i = 1...n, we have pairs of sequences z; ;
forj=1...mand s;; for j =1...m. (i.e., we have n
training examples, each of length m.)

1/19/18

Parameter Estimation: Transition
Parameters

* P(verb|noun)?

» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences z;j for j=1...mand s;; for j=1...m

» Define count(z, s — ') to be the number of times state s
follows state s in the 7'th training example. More formally:

m—1

count(i,s = §') = Z[[s,] =sNAsijt1 =5
=

(We define [[7]] to be 1 if 7 is true, 0 otherwise.)

» The maximum-likelihood estimates of transition probabilities
are then N)
> oicount(i,s —)

t(s']s) =
(9 |9> Zin:l ZS, count(i’ s — .S')

Parameter Estimation: Emission
Parameters

* P(apple|noun)?

» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences z;; for j=1...m and s; for j=1...m

» Define count(i, s ~» z) to be the number of times state s is
paired with emission z. More formally:

count(z, s ~») = Z[[b” =sAwz; =
=1

» The maximum-likelihood estimates of emission probabilities
are then
n y 3 -

o count(i, s ~» x)

Sy > count(i, s ~)

e(z|s) =

Parameter Estimation: Initial State Parameters

» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences z; ; for j=1...mand s;; for j=1...m

» Define count(7, s) to be 1 if state s is the initial state in the
sequence, and 0 otherwise:

count(i, s) = [[si1 = $]|

» The maximum-likelihood estimates of initial state probabilities

are: N)
_ Yijcount(i,s)

n

t(s)

HMM

* Parameter estimation

* Inference: Viterbi algorithm (dynamic
programming)

1/19/18

The Viterbi Algorithm

» Goal: for a given input sequence xy, ..., z,,, find

» This is the most likely state sequence s; ... s, for the given
input sequence xy ... I,

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s,s,,...S,,, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

John gave the dog an apple

57

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s,,5,,...S,, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

John gave the dog an apple,

Det Noun PropNoun Verb

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s,5,,...Sm, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

John gave the dog an apple

Det Noun PropNoun Verb

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, $=s,,5,,...S, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

ohn gave the dog an apple

Det Noun PropNoun Verb

10

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s,5,,...Sm, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

1/19/18

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, $=s,,5,,...S, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s,s,,...S,,, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

All possible states (e.g., pos tags)

Xy X2 X3 Xm-1 Xm

* Continue forward in time until reaching final time
point.
¢ The goal: find a path with highest probability

The Viterbi Algorithm

» Goal: for a given input sequence 1, ... ,: ', find

arg max p(zi...Tm,S1...5m;0)
S1yeemrSm

» The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:
#lj.]
will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally: 7[1, s| = t(s)e(x4|s), and for j > 1, Emission

from

Transition Emission States ... ¢

......

ST :
wlj,s] = Slmi\.\: |:f(s1)c(.1‘1|s1) (H f(Slek_l)P(.l‘lek)) f(s\sj_l)(’(.rj‘s)
k=2 i

11

1/19/18

The Viterbi Algorithm

» Initialization: for s=1...k

» Forj=2...m,s=1...k
w[j,s] = max [r[j — 1,8] x t(s]s") x e(z;]s)]
s'e{l..k}
» We then have
max p(zq...Tm, S1 ... Sy) = maxw(m, s|

S1...8m

» The algorithm runs in O(mk?) time

Viterbi Backpointers

Viterbi Backtrace

X1 X2 X3 Xm-1 Xm

Most likely Sequence: sy Sy S; S; ...S5 Sk

The Viterbi Algorithm: Backpointers

» Initialization: for s=1...%

w[l,s] = t(s)e(x]s)

» Forj=2...m,s=1...k
mlj,s] = max [w[j — 1,5 x t(s]s') X e(x]s)]
s'e{1 k)
and

bply, s] = arg s'g{lka} i — 1,8 x t(s|s") x e(z;]s)]

» The bp entries are backpointers that will allow us to recover

the identity of the highest probability state sequence

» Highest probability for any sequence of states is

max 7[m, s
s

» To recover identity of highest-probability sequence:

S = arg maxm[m, s
s
and for j=m...2,

sj-1 = bp[j, 55

» The sequence of states s; ... s, is then

Homework

* Reading J&M ch5&6

* Reading ch6 at
https://web.stanford.edu/~jurafsky/slp3/6.pdf
* HMM notes
* http://www.cs.columbia.edu/~mcollins/hmms-
spring2013.pdf

* Assignment 1 is out. Due Feb 6.

« Start thinking about course project and find a team.

12

