CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang

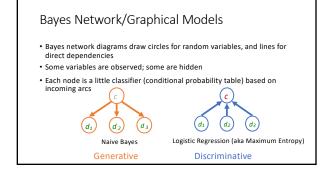
Outline

- Maximum Entropy
- Feedforward Neural Networks Recurrent Neural Networks

Introduction

- So far we've looked at "generative models" · Language models, Naive Bayes
- · But there is now much use of conditional or discriminative probabilistic models in NLP, Speech, IR (and ML generally)
- Because:
 - They give high accuracy performance

 - They make it easy to incorporate lots of linguistically important features
 They allow automatic building of language independent, retargetable NLP modules


Joint vs. Conditional Models

- We have some data {(d, c)} of paired observations d and hidden classes c.
- Joint (generative) models place probabilities over both observed data and the hidden stuff (generate the observed data from hidden stuff):
 - P(c,d)· All the classic statistic NLP models: $n\mbox{-}{\rm gram}$ models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free grammars, IBM machine translation alignment models

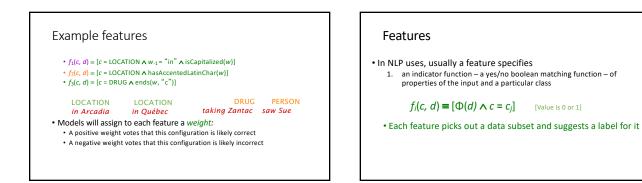
Joint vs. Conditional Models

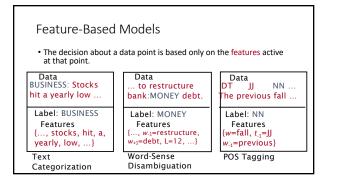
• Discriminative (conditional) models take the data as given, and put a probability over hidden structure given the data: p(c|d)

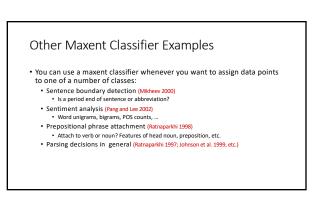
 Logistic regression, conditional loglinear or maximum entropy models, conditional random fields Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)

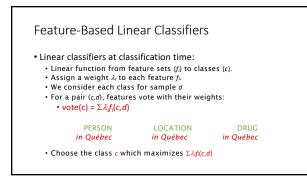
Conditional vs. Joint Likelihood

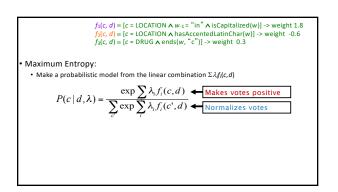
- A *joint* model gives probabilities P(d, c) and tries to maximize this joint likelihood.
- It turns out to be trivial to choose weights: just relative frequencies.
- A conditional model gives probabilities P(c|d). It takes the data as given and models only the conditional probability of the class.
 We seek to maximize conditional likelihood.
 - We seek to maxi
 Harder to do.
 - More closely related to classification error. (Easy to tune!)

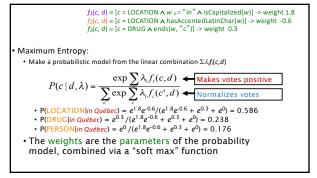

Maximum Entropy (MaxEnt)


• Or logistic regression


Features


- In these slides and most maxent work: *features (or feature functions) f* are elementary pieces of evidence that link aspects of what we observe *d* with a category *c* that we want to predict
- A feature is a function with a **bounded** real value: $f: C \times D \rightarrow \mathbb{R}$



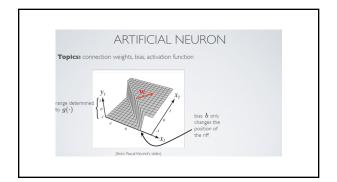


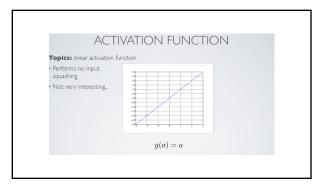
- $f_1(c, d) \equiv [c = \text{LOCATION } \land w_{-1} = "in" \land \text{isCapitalized}(w)] \rightarrow \text{weight } 1.8$ • $f_2(c, d) \equiv [c = \text{LOCATION } \land \text{hasAccentedLatinChar}(w)] \rightarrow \text{weight } -0.6$
- $f_3(c, d) \equiv [c = DRUG \land ends(w, "c")] \rightarrow weight 0.3$

Feature-Based Linear Classifiers

Exponential models:

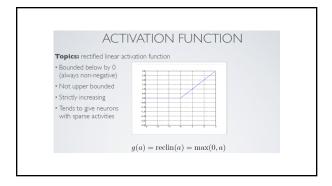

- . Given this model form, we will choose parameters $\{\lambda_i\}$ that maximize the conditional likelihood of the data according to this model.
- We construct not only classifications, but probability distributions over classifications.
 - There are other (good!) ways of discriminating classes SVMs, boosting, even perceptrons – but these methods are not as trivial to interpret as distributions over classes.

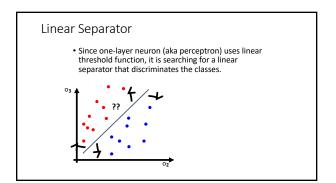

Outline

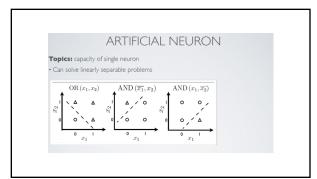

- Maximum Entropy
- Feedforward Neural Networks
- Recurrent Neural Networks

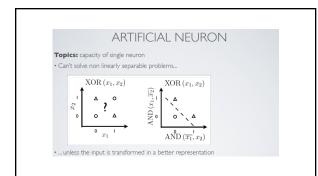
Neural Network Learning

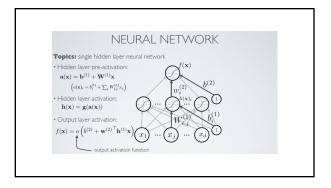
- Learning approach based on modeling adaptation in biological neural systems.
- Perceptron: Initial algorithm for learning simple neural networks (single layer) developed in the 1950's.
- Backpropagation: More complex algorithm for learning multi-layer neural networks developed in the 1980's.

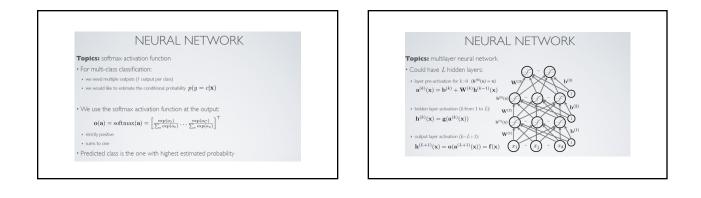


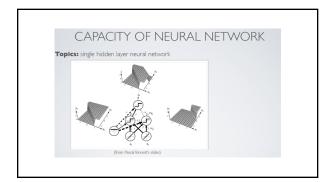


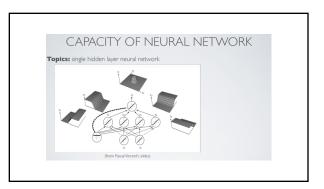

Topics: sigmoid activation f	function
 Squashes the neuron's pre-activation between 0 and 1 	
 Always positive 	43
• Bounded	-83
 Strictly increasing 	$g(a) = \operatorname{sigm}(a) = \frac{1}{1 + \exp(-a)}$

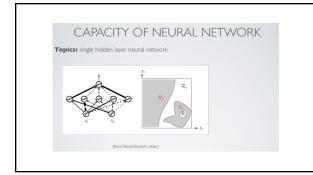

	VATION FUNCTION
Topics: hyperbolic tangent	t ("tanh") activation function
 Squashes the neuron's pre-activation between I and I 	Manual Anna Anna Anna Anna Anna Anna Anna An
 Can be positive or negative 	18 03
Bounded	
Strictly increasing	-10
-(-) +	$\mathbf{h}(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$

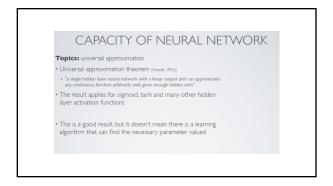


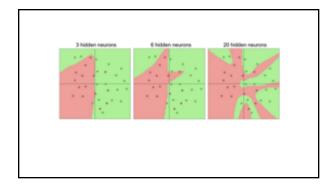


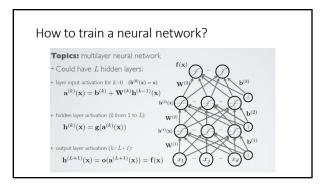


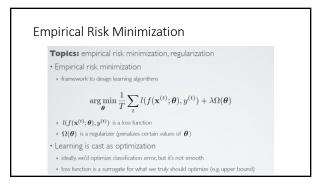


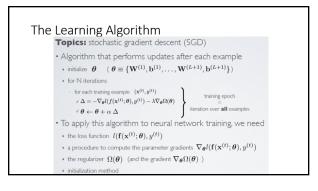


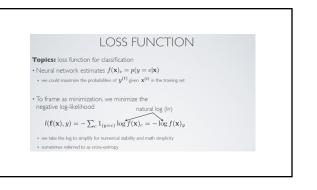


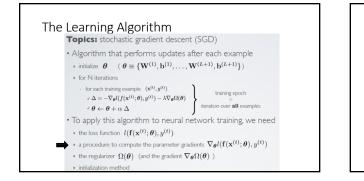




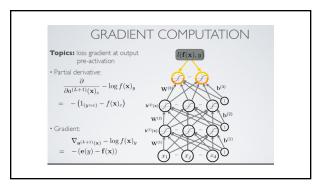




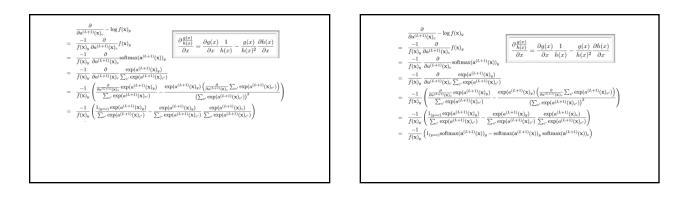


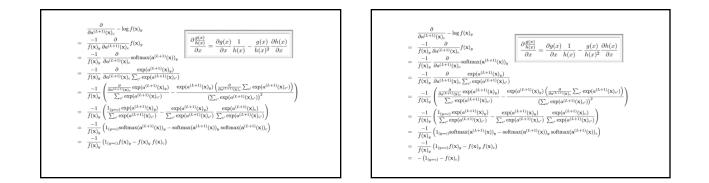


The rest of the slides are for reference only (not covered by lecture or exam)



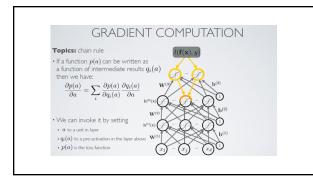
- Output layer gradient (o)
- Hidden layer gradient (h)
- Activation function gradient (a)
- Parameter gradient (W, b)

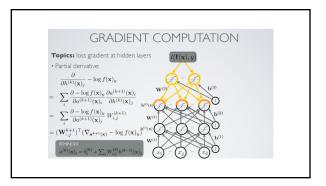

$rac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} - \mathbf{l} \mathbf{c}$	$\log f(\mathbf{x})_y$	

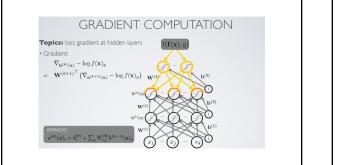

 $\begin{array}{l} \displaystyle \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} - \log f(\mathbf{x})_y \\ \displaystyle = & \displaystyle \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} f(\mathbf{x})_y \end{array}$

- $\begin{array}{l} \displaystyle \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \log f(\mathbf{x})_y \\ \\ \displaystyle = & \displaystyle \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} f(\mathbf{x})_y \\ \\ \displaystyle = & \displaystyle \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \text{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x}))_y \end{array}$

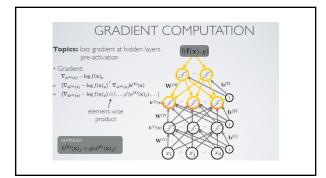
- $\begin{array}{l} \displaystyle \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \log f(\mathbf{x})_y \\ = & \displaystyle \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} f(\mathbf{x})_y \\ \\ = & \displaystyle \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \mathrm{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x}))_y \\ \\ = & \displaystyle \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \sum_{c'} \exp(a^{(L+1)}(\mathbf{x})_{c'}) \end{array}$

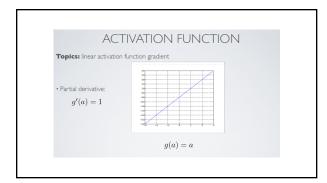


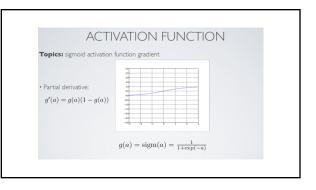


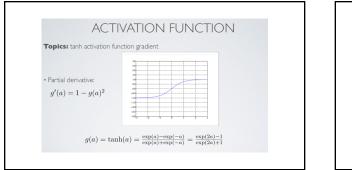


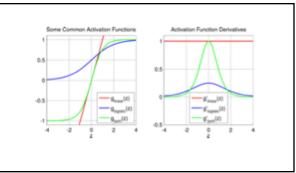


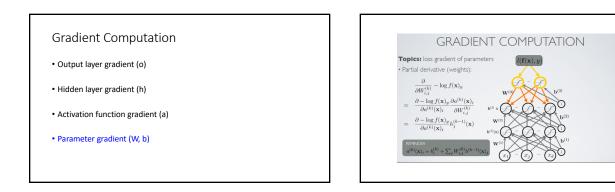

 $l(\mathbf{f}(\mathbf{x}), y)$

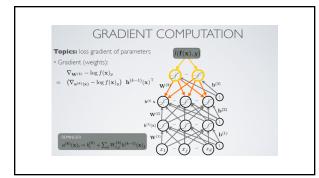


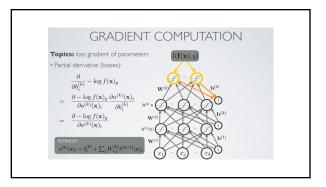


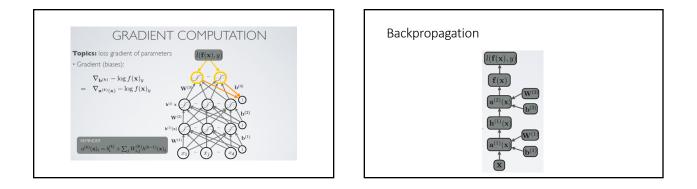


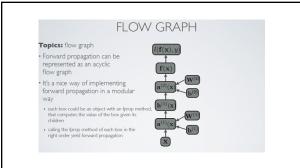

Gradient Computation

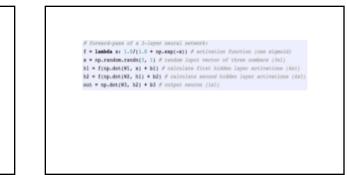

- Output layer gradient (o)
- Hidden layer gradient (h)
- Activation function gradient (a)
- Parameter gradient (W, b)

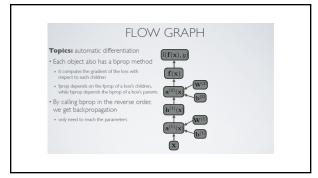


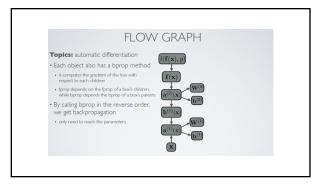


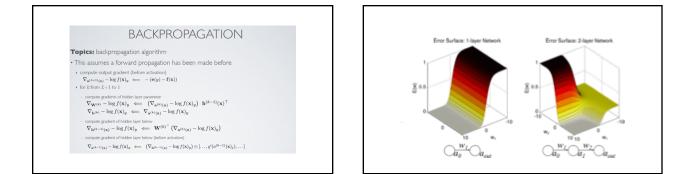


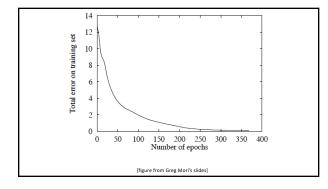


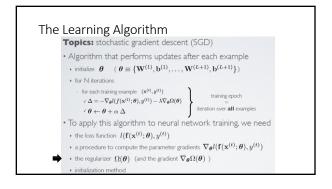












REGULARIZATION

Topics: L2 regularization

 $\Omega(\pmb{\theta}) = \sum_k \sum_i \sum_j \left(W_{i,j}^{(k)} \right)^2 = \sum_k ||\mathbf{W}^{(k)}||_F^2$

• Gradient: $\nabla_{\mathbf{W}^{(k)}} \Omega(\boldsymbol{\theta}) = 2\mathbf{W}^{(k)}$

Only applied on weights, not on biases (weight decay)
Can be interpreted as having a Gaussian prior over the weights

REGULARIZATION

Topics: L1 regularization

 $\Omega(\pmb{\theta}) = \sum_k \sum_i \sum_j |W_{i,j}^{(k)}|$

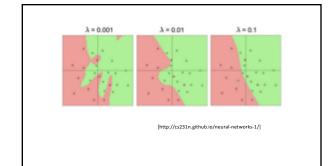
$$\begin{split} &\cdot \operatorname{Gradient} \, \nabla_{\mathbf{W}^{(k)}} \Omega(\theta) = \operatorname{sign}(\mathbf{W}^{(k)}) \\ &\cdot \operatorname{where} \, \operatorname{sign}(\mathbf{W}^{(k)})_{i,j} = \mathbf{1}_{\mathbf{W}^{(k)}_{i,j} = 0} - \mathbf{1}_{\mathbf{W}^{(k)}_{i,j} < 0} \\ &\cdot \operatorname{Also} \, \operatorname{only} \, \operatorname{applied} \, \operatorname{on} \, \operatorname{weights} \\ &\cdot \operatorname{Unlike} \, L2, \, L1 \, \operatorname{will} \, \operatorname{push} \, \operatorname{certain} \, \operatorname{weights} \, \operatorname{to} \, \operatorname{be} \, \operatorname{exactly} 0 \\ &\cdot \operatorname{Can} \, \operatorname{be} \, \operatorname{interpreted} \, \operatorname{as} \, \operatorname{having} \, a \, \operatorname{Laplacian} \, \operatorname{prior} \, \operatorname{over} \, \operatorname{the} \, \operatorname{weights} \end{split}$$

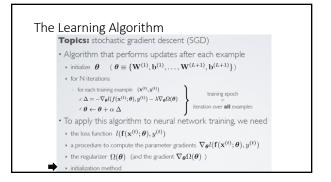
Empirical Risk Minimization

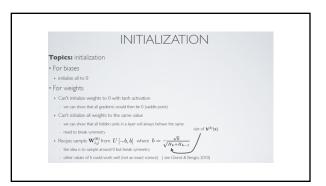
Topics: empirical risk minimization, regularization

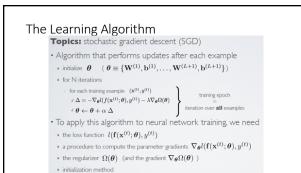
Empirical risk minimization

+ framework to design learning algorithms


 $\arg\min_{\boldsymbol{\theta}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$


+ $l(f(\mathbf{x}^{(t)}; \boldsymbol{ heta}), y^{(t)})$ is a loss function


+ $\Omega(oldsymbol{ heta})$ is a regularizer (penalizes certain values of $oldsymbol{ heta}$)


Learning is cast as optimization

ideally, we'd optimize classification error, but it's not smooth
 loss function is a surrogate for what we truly should optimize (e.g. upper bound)

