CS 6120/CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University

Webpage: www.ccs.neu.edu/home/luwang

Outline

2

4

- Vector Semantics
- Sparse representation
 Pointwise Mutual Information (PMI)
- Dense representation
 - Singular Value Decomposition (SVD)
 - Brown Clusters
 - Neural Language Model

Sparse versus dense vectors

• PPMI vectors are

1

- **long** (length |V| = 20,000 to 50,000)
- sparse (most elements are zero)

Sparse versus dense vectors

- PPMI vectors are
 - long (length |V| = 20,000 to 50,000)
 - sparse (most elements are zero)
- · Alternative: learn vectors which are
 - short (length 200-1000)
 - dense (most elements are non-zero)

3

Sparse versus dense vectors

- Why dense vectors?
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

Two methods for getting short dense vectors

- Singular Value Decomposition (SVD)
- "Neural Language Model" inspired by predictive models

Singular Value Decomposition (SVD)

Rank of a Matrix

• What is the rank of a matrix A?

Rank of a Matrix

• What is the rank of a matrix A?

• Number of linearly independent columns of A

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

Rank of a Matrix

• What is the rank of a matrix A?

• Number of linearly independent columns of A

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

• We can rewrite A as two "basis" vectors: [1 2 1] [-2 -3 1]

9

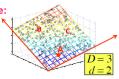
10

Rank as "Dimensionality"

Cloud of points 3D space:

Think of point positions

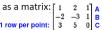
as a matrix: $\begin{bmatrix} 1 & 2 \\ -2 & -3 \\ 3 & 5 \end{bmatrix}$

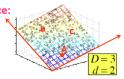


Rank as "Dimensionality"

Cloud of points 3D space:

Think of point positions





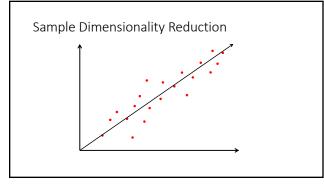
• Rewrite the coordinates in a more efficient way!

- Old basis vectors: [1 0 0], [0 1 0], [0 0 1]
- New basis vectors: [1 2 1], [-2 -3 1]

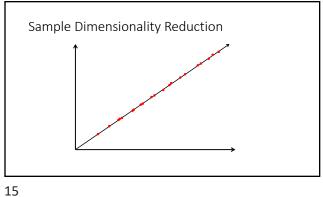
11

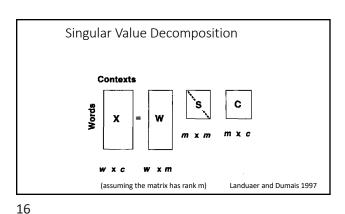
Intuition of Dimensionality Reduction

- Approximate an N-dimensional dataset using fewer dimensions
- By first rotating the axes into a new space
- In which the highest order dimension captures the most variance in the original dataset
- \bullet And the next dimension captures the next most variance, etc.



13 14





Singular Value Decomposition Any rectangular $w \times c$ matrix \mathbf{X} equals the product of 3 matrices: C W: rows corresponding to original but m columns represents a dimension in a new latent space, such that • m column vectors are orthogonal to each other Columns are ordered by the amount of variance in the dataset each new dimension accounts for

Singular Value Decomposition Any rectangular $w \times c$ matrix \mathbf{X} equals the product of 3 matrices: С W: rows corresponding to original but m columns represents a dimension in a new latent space, such that • m column vectors are orthogonal to each other Columns are ordered by the amount of variance in the dataset each new dimension accounts for S: diagonal m x m matrix of singular values expressing the importance of each dimension.

17 18

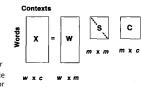
Any rectangular $w \times c$ matrix X equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a dimension in a new latent space, such that

- m column vectors are orthogonal to each other
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for

S: diagonal *m* x *m* matrix of **singular values** expressing the importance of each dimension.

C: columns corresponding to original but m rows corresponding to singular values



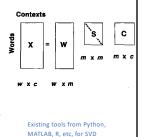
Singular Value Decomposition

Any rectangular $w \times c$ matrix X equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a dimension in a new latent space, such that

- m column vectors are orthogonal to each other
 Columns are ordered by the amount of variance
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for
- **S**: diagonal *m* x *m* matrix of **singular values** expressing the importance of each dimension.

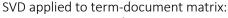
C: columns corresponding to original but m rows corresponding to singular values



19

20

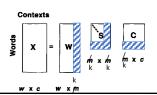
22



Latent Semantic Analysis

• If instead of keeping all m dimensions, we just keep the top k singular values.

- Let's say 300.
- \bullet Each row of W (keeping k columns of the original W):
 - A k-dimensional vector
 - Representing word w

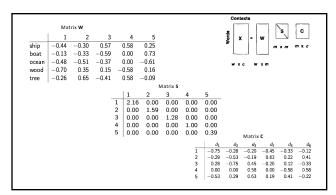


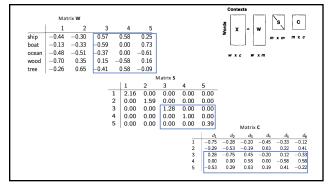
21

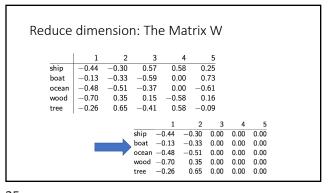
SVD on Term-Document Matrix: Example

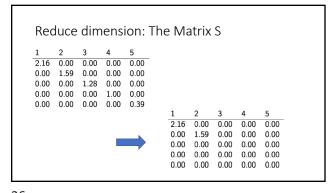
• The matrix X

	d_1	d_2	d_3	d_4	d_5	d_6
ship boat	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1



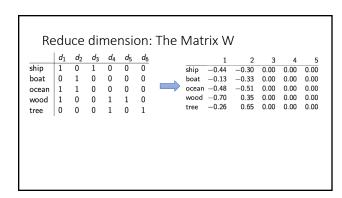




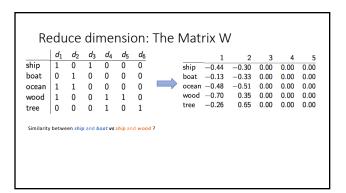


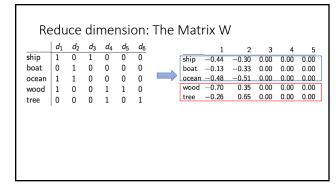
25 26

_											
R	edu	ce di	mer	ision	ı: Ih	e N	∕latri	хC			
d ₁	d ₂	d ₃	d ₄	d ₅	d ₆						
-0.75	-0.28	-0.20	-0.45	-0.33	-0.12						
-0.29	-0.53	-0.19	0.63	0.22	0.41						
0.28	-0.75	0.45	-0.20	0.12	-0.33						
0.00	0.00	0.58	0.00	-0.58	0.58						
-0.53	0.29	0.63	0.19	0.41	-0.22						
						d_1	d_2	d ₃	d ₄	d_5	d_6
					-0	.75	-0.28	-0.20	-0.45	-0.33	-0.12
					-0	.29	-0.53	-0.19	0.63	0.22	0.41
					0	.00	0.00	0.00	0.00	0.00	0.00
					0	.00	0.00	0.00	0.00	0.00	0.00
					0	.00	0.00	0.00	0.00	0.00	0.00
					-	-					



27 28





29 30

More details

- 300 dimensions are commonly used
- The cells are commonly weighted by a product of two weights (TF-IDF)
 - Local weight: term frequency (or log version)
 - Global weight: idf

31

Let's return to PPMI word-word matrices

• Can we apply to SVD to them?

32

34

SVD applied to term-term matrix

$$\begin{bmatrix} X \\ V \end{bmatrix} = \begin{bmatrix} W \\ W \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_V \end{bmatrix} \begin{bmatrix} C \\ V \\ V \\ V \end{bmatrix}$$

(assuming the matrix has rank |V|, may not be true)

33

SVD applied to term-term matrix

$$\begin{bmatrix} X \\ |V| \times |V| \end{bmatrix} = \begin{bmatrix} W \\ |V| \times |V| \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_V \end{bmatrix} \begin{bmatrix} C \\ |V| \times |V| \end{bmatrix}$$

$$|V| \times |V|$$
(assuming the matrix has rank $|V|$, may not be true)

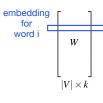
Truncated SVD on term-term matrix

$$\left[\begin{array}{c} X \\ |V| \times |V| \end{array}\right] = \left[\begin{array}{c} W \\ |V| \times |V| \end{array}\right] \left[\begin{array}{cccc} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_k \end{array}\right] \left[\begin{array}{c} C \\ k \times |V| \end{array}\right]$$

35 3

Truncated SVD produces embeddings

- \bullet Each row of W matrix is a k-dimensional representation of each word \boldsymbol{w}
- \bullet K might range from 50 to 1000
- Generally we keep the top k dimensions, but some experiments suggest that getting rid of the top 1 dimension or even the top 50 dimensions is helpful (Lapesa and Evert 2014).



Embeddings versus sparse vectors

- Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity
 - Denoising: low-order dimensions may represent unimportant information
 - Truncation may help the models generalize better to unseen data.
 - Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.
 - Dense models may do better at capturing higher order cooccurrence.