9/16/19

CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Outline

* What is part-of-speech (POS) and POS tagging?
* Hidden Markov Model (HMM) for POS tagging
* Learning an HMM

* Prediction with an learned HMM (inference)

Parts of Speech

* Perhaps starting with Aristotle in the West (384—
322 BCE), there was the idea of having parts of
speech (POS)

* a.k.a lexical categories, word classes, “tags”

* Lowest level of syntactic analysis

English Parts of Speech (POS) Tagsets

* Original Brown corpus used a large set of 87 POS
tags.
* Most common in NLP today is the Penn Treebank
set of 45 tags.
» Tagset used in the slides.

* Reduced from the Brown set for use in the context of a
parsed corpus (i.e. Penn Treebank).

English Parts of Speech

* Noun (person, place or thing)
« Singular (NN): dog, fork
« Plural (NNS): dogs, forks
« Proper (NNP, NNPS): John, Springfields
« Personal pronoun (PRP): |, you, he, she, it
* Wh-pronoun (WP): who, what

« Verb (actions and processes)
« Base, infinitive (VB): eat
* Past tense (VBD): ate
« Gerund (VBG): eating
* Past participle (VBN): eaten
* Non 3 person singular present tense (VBP): eat
« 3 person singular present tense: (VBZ): eats
* Modal (MD): should, can
* To (TO): to (to eat)

English Parts of Speech (cont.)

« Adjective (modify nouns)
« Basic (J)): red, tall
« Comparative (JJR): redder, taller
« Superlative (JIS): reddest, tallest
« Adverb (modify verbs)
* Basic (RB): quickly
« Comparative (RBR): quicker
« Superlative (RBS): quickest
« Preposition (IN): on, in, by, to, with
* Determiner:
« Basic (DT) a, an, the
* WH-determiner (WDT): which, that
« Coordinating Conjunction (CC): and, but, or,
« Particle (RP): off (took off), up (put up)

http://www.ccs.neu.edu/home/luwang

Open vs. Closed classes

* Open vs. Closed classes

¢ Closed:
« determiners: a, an, the
 pronouns: she, he, |
* prepositions: on, under, over, near, by, ...
* Why “closed”?

* Open:
* Nouns, Verbs, Adjectives, Adverbs.

9/16/19

Open class (lexical) words

Nouns Verbs ‘ Adjectives ‘
Proper Common Main ‘Adverbs ‘
Numbers ... more

Closed class (functional)

Determiners
Conjunctions
Pronouns

Modals

Particles ... more
Interjections

Ambiguity in POS Tagging

« “Like” can be a verb or a preposition
* | like/VBP candy.
« Time flies like/IN an arrow.
* “Around” can be a preposition, particle, or adverb
* | bought it at the shop around/IN the corner.
* | never got around/RP to getting a car.
¢ A new Prius costs around/RB $25K.

POS Tagging

* The POS tagging problem is to determine the POS
tag for a particular instance of a word.

NN*: noun
VB*: verb

. UH: interjection
POS Tagglng JJ: adjective
RB: adverb
IN: preposition

* Input: plays well with others
* Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

e Qutput: Plays/VBZ well/RB with/IN others/NNS
e Uses:

* Text-to-speech (how do we pronounce “lead”?)

« Can write regexps over the output for phrase extraction
* Noun phrase: (Det) Adj* N+
 As input to or to speed up a full parser

POS tagging performance

* How many tags are correct? (Tag accuracy)
* About 97% currently
* But baseline is already 90%
« Baseline is performance of stupidest possible method
* Take an annotated corpus (or a dictionary), tag every word with
its most frequent tag
* Tag unknown words as nouns
* Partly easy because
* Many words are unambiguous

* You get points for them (the, g, etc.) and for punctuation
marks!

9/16/19

How difficult is POS tagging?

* Word types: roughly speaking, unique words

* About 11% of the word types in the Brown corpus
are ambiguous with regard to part of speech
* But they tend to be very common words. E.g., that
* | know he is honest = IN (preposition)
* Yes, that play was nice = DT (determiner)
* You can’t go that far = RB (adverb)
* 40% of the word tokens are ambiguous

Sources of information

* What are the main sources of information for POS
tagging? “Bill saw that man yesterday”
* Contextual: Knowledge of neighboring words
¢ Bill saw that man yesterday
« NNPNN DT NN NN
« VB VB(D)IN VB NN
* Local: Knowledge of word probabilities
* man is rarely used as a verb....
* The latter proves the most useful, but the former also
helps
» Sometimes these preferences are in conflict:
* The trash can is in the garage

More and Better Features =»
Feature-based tagger

 Can do surprisingly well just looking at a word by

itself:
* Word the: the —» DT
* Lowercased word Importantly: importantly — RB
* Prefixes unfathomable: un- — JJ
« Suffixes Importantly: -ly — RB

* Capitalization ~ Meridian: CAP — NNP
* Word shapes 35-year: d-x — JJ

POS Tagging Approaches

* Rule-Based: Human crafted rules based on lexical and
other linguistic knowledge.

* Learning-Based: Trained on human annotated corpora
like the Penn Treebank.

« Statistical models: Hidden Markov Model (HMM) — this
lecture!, Maximum Entropy Markov Model (MEMM),
Conditional Random Field (CRF)

* Rule learning: Transformation Based Learning (TBL)

* Neural networks: Recurrent networks like Long Short Term
Memory (LSTMs)

« Generally, learning-based approaches have been found
to be more effective overall, taking into account the
total amount of human expertise and effort involved.

Outline

* What is part-of-speech (POS) and POS tagging?
=) + Hidden Markov Model (HMM) for POS tagging

* Learning an HMM

* Prediction with an learned HMM (inference)

Hidden Markov Model

Markov Model / Markov Chain

« A finite state machine with probabilistic state
transitions.

* Makes Markov assumption that next state only
depends on the current state and independent of
previous history.

9/16/19

Sample Markov Model for POS
(a finite state machine)

Sample Markov Model for POS

P(PropNoun Verb Det Noun) = 0.4*0.8%0.25%0.95%0.1=0.0076

Hidden Markov Model

* Probabilistic generative model for sequences.

* Assume an underlying set of hidden (unobserved)
states in which the model can be (e.g. part-of-
speech).

* Assume probabilistic transitions between states over

time (e.g. transition from POS to another POS as
sequence is generated).

* Assume a probabilistic generation of tokens from
states (e.g. words generated for each POS).

Sample HMM Generation

saw
at eplayed

Sample HMM Generation

Sample HMM Generation

9/16/19

Sample HMM Generation

Sample HMM Generation

saw
aleplayed
hit gav

Sample HMM Generation

0.1
0.1
John bit

Sample HMM Generation

ate SAW
played
hit gave,

Sample HMM Generation

0.1
1

0.
John bit the

Sample HMM Generation

9/16/19

Sample HMM Generation

Sample HMM Generation

Formally, Markov Sequences

» Consider a sequence of random variables X, X5, ..., X
where m is the length of the sequence

» Each variable X; can take any value in {1,2,...,k}

» How do we model the joint distribution

The Markov Assumption
P(X; =1, X9 =1o,..., X =)
= P(Xy =) [[P(X; = 25| X1 = 21,..., Xjo1 = 51)
=2

m

= P(Xi =) [[P(X; = 25| Xjm1 = 251)
j=2

> The first equality is exact (by the chain rule).

» The second equality follows from the Markov assumption: for
all j=2...m,

P(X; =zl X1 =x1,...,Xjo1 = xj—1) = P(X; = zj|X;-1 = zj_1)

Homogeneous Markov Chains

» In a homogeneous Markov chain, we make an additional
assumption, that for j =2...m,

P(X; = 2l Xja = 251) = q(wj]aj-1)
where ¢(2'|z) is some function

» |dea behind this assumption: the transition probabilities do
not depend on the position in the Markov chain (do not
depend on the index j)

Homogeneous Markov Chains

» In a homogeneous Markov chain, we make an additional
assumption, that for 7 =2...m,

P(Xj = x| Xjm1 = xj-1) = q(wj]zj-1)
where ¢(2’|z) is some function

» |dea behind this assumption: the transition probabilities do
not depend on the position in the Markov chain (do not
depend on the index j)

“the Markov Chains follows the Markov assumption”

9/16/19

Markov Models

» Our model is then as follows:

ple1,wa, . wmi 0) = 1) [[alasleimn)
j=2

» Parameters in the model:

» q(z) forz ={1,2,...,k}
Constraints: g(x) >0 and 22:1 q(z) =1

> q(a'|z) for z = {1,2,..., k} and 2’ = {1,2,..., k}

Constraints: g(«/|z) >0 and YF,_, ¢(2'|x) = 1

Probabilistic Models for Sequence
Pairs —words and POS tags

» We have two sequences of random variables:
X1, Xo, ..., X and S1,5,, ..., S

» Intuitively, each X corresponds to an “observation” and each
S; corresponds to an underlying “state” that generated the
observation. Assume that each S; is in {1,2,...k}, and each
X;isin {1,2,...0}

» How do we model the joint distribution

Probabilistic Models for Sequence
Pairs —words and POS tags

» We have two sequences of random variables:
Xl.XQ....,/ m and 51.52,...,5"1
Words Part-of-Speech tags
» Intuitively, each X; corresponds to an “observation” and each
S; corresponds to an underlying “state” that generated the
observation. Assume that each S; is in {1,2,...k}, and each
X;isin {1,2,...0}

» How do we model the joint distribution

PXi=z1,...,Xm =2Tm, S1=51,..., Sm = Sm)

Firstly, why would we want to model the joint distribution?

P(Xl =T1y..., Xm = Tm, Sl = S1,..., Sm = Sm)
Words Part-of-Speech tags

Hidden Markov Models (HMMs)

» In HMMs, we assume that:

Words Part-of-Speech tags
P(X;=u,..., Xon = Ty S1 = 81, -+, Sn = Sm)

= P(S1 =) [[P(S; = 51Sj-1 = 55-1)

=2 J

P(X; =]S = s;

Il
-

9/16/19

» By the chain rule, the following equality is exact:

Independence Assumptions in HMMs

» By the chain rule, the following equality is exact:
P(Xy=uy,..., X = 2m|S1=81,.- ., Sm = Sm)
= [P =ajlS1 =51, .., S =5, X1 = 21, Xjo1 = 75)
= P(S1=s51,...,5m = sm) X J=1
P(Xi=x1,..., X = 2n|S1 = 51,..., 4 Sm = Sm)
» Assumption 2: each observation depends only on the
underlying state

» Assumption 1: the state sequence forms a Markov chain
P(X; =[St =51,.... = sm, X1 = 1,... Xj_1 = x5

e.g. Part-of-Speech tags = P(X; =zj|S; = s;)
P(S1=s1,..., Sm = sm) = P(S1 = s1) [[P(S; = 5,151 = 55-1)
=2
Formally Outline

» The model takes the following form:
m * What is part-of-speech (POS) and POS tagging?

P(T1. .. Tm,51. .. Smi0) =t(s1) Ht(sjlsj—l) He(rjlsj) * Hidden Markov Model (HMM) for POS tagging
=2 = =) ¢ Learning an HMM
* Prediction with an learned HMM (inference)

J

» Parameters in the model:

1. Initial state parameters t(s) for s € {1,2,..., k}
2. Transition parameters t(s'|s) for s,s" € {1,2,..., k}

3. Emission parameters e(z|s) for s € {1,2,..., k} and
ze{l,2,..., o}

HMM HMM

* Parameter estimation * Parameter estimation
* Learning the probabilities from training data
* P(verb|noun)?, P(apples|noun)?
(!)2, Plapples|) * Inference: Viterbi algorithm (dynamic

programming)
* Inference: Viterbi algorithm (dynamic
programming)
* Given a new sentence, what are the POS tags for the
words?

Parameter Estimation with Fully
Observed Data

» We'll now discuss parameter estimates in the case of fully
observed data: for i =1...n, we have pairs of sequences z; ;
forj=1...mand s;; for j =1...m. (i.e., we have n
training examples, each of length m.)

9/16/19

Parameter Estimation: Transition
Parameters

* P(verb|noun)?

» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences z;; for j =1...mand s;; for j=1...m

» Define count(i, s — s’) to be the number of times state s’
follows state s in the i'th training example. More formally:

m—1

count(i,s — s') = Z[[au =5Asijt1 =5
j=1

(We define [[x]] to be 1 if 7 is true, 0 otherwise.)

» The maximum-likelihood estimates of transition probabilities
are then N
> count(i, s — ')

t(s'|s) =
(1) Yo > count(i, s —)

Parameter Estimation: Emission
Parameters

* P(apples|noun)?

» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences z;; for j=1...mand s;; for j=1...m

» Define count(i, s ~» x) to be the number of times state s is
paired with emission z. More formally:
m
count(i, s ~ x) = Z[[g” =sAz; =1
j=1

» The maximum-likelihood estimates of emission probabilities
are then n)
> count(z, s ~)

S >, count(i, s ~)

e(z|s) =

Parameter Estimation: Initial State Parameters

» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences z; ; for j=1...mand s;; for j=1...m

» Define count(i, s) to be 1 if state s is the initial state in the
sequence, and 0 otherwise:

count(z, s) = [[s;1 = s]|

» The maximum-likelihood estimates of initial state probabilities

are: N
>, count(i, s)

n

t(s) =

9/16/19

Outline

* What is part-of-speech (POS) and POS tagging?
* Hidden Markov Model (HMM) for POS tagging
* Learning an HMM

=) ¢ Prediction with an learned HMM (inference)

HMM

* Parameter estimation

* Inference: Viterbi algorithm (dynamic
programming)

The Viterbi Algorithm

» This is the most likely state sequence s ... s, for the given
input sequence ... T,

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s3,s,,...5,,, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

John gave the dog an apple.

Det Noun PropNoun Verb

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s,,S,,...5n, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

John gave the dog an apple.

Det Noun PropNoun Verb

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s3,s,,...5,, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

John gave the dog an apple,

Det Noun PropNoun Verb

10

9/16/19

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s,,s,,...5n, that
generated this sequence from this model?

 Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

h ‘ John gave the dog an apple;
‘v Det Noun PropNoun Verb

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s3,s,,...5,,, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

B
O et
.-.jf

‘v Det Noun PropNoun Verb

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s,,S,,...5n, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

K’
S S SR
w John gave the dog an apple;

‘v Det Noun PropNoun Verb

Most Likely State Sequence

* Given an observation sequence, X, and a model, what
is the most likely state sequence, S=s3,s,,...5,,, that
generated this sequence from this model?

* Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

Each column contains all possible POS tags

start
state

X1 X2 X3 Xm-1 Xm

* Continue forward in time until reaching final time
point.
* The goal: find a path with highest probability

The Viterbi Algorithm

» Goal: for a given input sequence z,. .., Ty, find

» The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:
i,
will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally: [1, s] = t(s)e(x4]s), and for j > 1,

11

The Viterbi Algorithm

» Goal: for a given input sequence 1, ..., T, find

arg max p(ri...Tm,S1...5m;0)
S1yeenrSm

» The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:
7|-[J" 5] Why do we need this data structure?

will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally: (1, s] = t(s)e(z1|s), and for j > 1,

Viterbi Backpointers

9/16/19

The Viterbi Algorithm

» Initialization: for s =1... k%

w[l,s] = t(s)e(z1]s)

» Forj=2...m,s=1...k

ali o] = max falj — 18] x #(s]s') x e(ajls)]

» We then have

max p(y...Tm,51...5y,;0) = maxw[m, s
s

81...8m

v

The algorithm runs in O(mk?) time

Viterbi Backtrace

Most likely Sequence: sosx S1 Sz ...S2 Sk

The Viterbi Algorithm: Backpointers

» Initialization: for s =1...k

w[l, s] = t(s)e(z]s)

» Forj=2...m,s=1...k
mlj.s] = max [r[j — 1,5 x t(s]s') x e(z;]s)]
s'e{l.k}
and
y — 'S 7 — / J/ -ls
bplj, s] = arg Jax [l — 1,5 x t(s|s") x e(z;|s)]

» The bp entries are backpointers that will allow us to recover
the identity of the highest probability state sequence

» Highest probability for any sequence of states is

max 7[m, s|
s

» To recover identity of highest-probability sequence:
S = arg max «[m, s
s

and for j=m...2

sj-1 = bpl[J, 5]

» The sequence of states s ... sy, is then

arg max p(zy...Tm,S1...5m;0)

S1500Sm

12

Homework

* Reading J&M Ch5.1-5.5, Ch6.1-6.5
* For 3rd Edition:
https://web.stanford.edu/~jurafsky/slp3/8.pdf

* HMM notes
* http://www.cs.columbia.edu/~mcollins/hmms-

spring2013.pdf

« Start thinking about course project and find a
team.

9/16/19

13

https://web.stanford.edu/~jurafsky/slp3/4.pdf
http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf

