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What does “doing NLP” 
actually look like?  

 
🤔 🤔 🤔
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NLP in Practice

Some 
Phenomena

Observed  
in Text

Interesting insights  
🧐

+
=
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NLP Applications

• (How) Are people of different genders described differently? 

• What discursive moves influence debate outcomes? 

• How do people talk about their political opinions?
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Common NLP Approaches

(How) Are people of different genders described differently?
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Common NLP Approaches

Descriptive 

• Top words 

• Word distributions

(How) Are people of different genders described differently?

http://benschmidt.org/profGender
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Common NLP Approaches

Descriptive 

• Top words 

• Word distributions

(How) Are people of different genders described differently?

http://benschmidt.org/profGender



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

Common NLP Approaches

Predictive  

• Given that we see the word ‘smart’ what is the probability 
the sentence describes a woman? 
 

(How) Are people of different genders described differently?
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Common NLP Approaches

Predictive  

• Given that we see the word ‘smart’ what is the probability 
the sentence describes a woman? 
 
Or, more generally: 

• Given that we see features X, can we classify this text as 
relating to gender G?

(How) Are people of different genders described differently?
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Common NLP Approaches

Given that we see features X, can we classify this text as relating 
to gender G?

P( = 1) = Φ(β X)G
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Common NLP Approaches

Given that we see features X, can we classify this text as relating 
to gender G?

P( = 1) = Φ(β X + ηf + ϵ)G



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

Common NLP Approaches

Given that we see features X, can we classify this text as relating 
to gender G?

P( = 1) = Φ(β X + ηf + ϵ)G

Probability 
gender = 1

Features X 
with weights  Bβ

Fixed effect for 
academic field

Error
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Common NLP Approaches

Given that we see features X, can we classify this text as relating 
to gender G?

P( = 1) = Φ(β X + ηf + ϵ)G

Probability 
gender = 1

Features X 
with weights  Bβ

Fixed effect for 
academic field

Error

NLP 
goes here
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Common NLP Approaches

What is            ?β X

βX = β1x1 + β2x2 + … + βnxn
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Common NLP Approaches

What is            ?β X

βX = β1x1 + β2x2 + … + βnxn

Weights

Features
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The Challenge:

How do we turn

into
x1, x2, …, xn

?
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Case Study 1

Why Keep Arguing?  
Predicting Engagement in Political 
Conversations Online

Sarah Shugars, Network Science Institute 
Nick Beauchamp, Department of Political Science
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Why do people bother  
arguing online?
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Online engagement is driven  
by individual, conversation, and 

content features
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Online engagement is driven  
by individual, conversation, and 

content features

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)
Probability 

of engagement

Some function of…

Individual features
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Online engagement is driven  
by individual, conversation, and 

content features

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)
Probability 

of engagement

Some function of…

Conversation features

Content features
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Online engagement is driven  
by individual, conversation, and 

content features

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)
Probability 

of engagement

Some function of…

Content features
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Hypotheses

Individual 
• Baseline activity 
• Popularity 

Conversations 
• Popularity 
• Recent engagement

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)
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Hypotheses

Content 
• Emotionally extreme users more likely to re-

engage 
• Emotionally extreme tweets more likely to 

receive a response 
• Topic effects

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)
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Data

• 7053 conversations 

• 63,671 tweets 

• Keyword “Trump” 

• October 2017

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)
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Data

• 7053 conversations 

• 63,671 tweets 

• 1,016,49 observations

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)
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Conversational data

t = 1

t = 2

t = 3

t = 4
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t = 4



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

Conversational data

For time t > 2, how does ideology influence  
who will remain active in a conversation?

? 
t = 2 t = 3 t = 4
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Conversational data

? 
t = 2 t = 3 t = 4

Candidates  
for re-entry:
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Conversational data

Candidates  
for re-entry:

Observed  
outcome:

1

0

t = 2 t = 3 t = 4
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Conversational data

Candidates  
for re-entry:

Observed  
outcome:

1

0

t = 2 t = 3 t = 4

Function of: 
individual, 
conversation, and  
content 
features
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Conversational data

t = 2 t = 3 t = 4

P(Tijt = 1) ∼ Φ(βXi + γXjt + ηXNLP)
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Findings
•  110,035 observations 

•  89% of observations are 0 (non-response) 

•  Achieve 94% accuracy with logistic regression 

•  98% accuracy with SVM
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Response predictors: Individual
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Response predictors: Conversation
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Response predictors: Content
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10-topic LDA

Blei et al, 2003
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10-topic LDA

Blei et al, 2003
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Side note about LDA

Blei, 2012
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Side note about LDA

Schmidt, 2012
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Sentiment and valence

• Positive tweets often received a positive response 

• Tweets often crossed topics and ideological divides

Topic correlations Emotional correlations
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Implications

• This is promising because even single-comment interventions 
have shown to improve discourse quality 

• Deliberative theory suggests that repeated interactions 
can have a greater positive impact on discourse quality

Friggeri et al., 2014; Munger, 2017; 
Bednar and Page, 2007; Habermas, 1984
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Summary

• Negative tweets spark sustained conversation 

• These conversations cross ideological divides 

• Some twitter conversations remain civil 

• There is hope for productive political conversations!
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Case Study 2

The Structure of Reasoning: 
Measuring Expressions  
of Political Preference

Sarah Shugars, Network Science Institute
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Case Study 2

Can we measure: 
➡ Individual variation in how  
➡People structure their political 

expressions 
➡And do we really care anyway? 
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Case Study 2

Spoiler Alert: Yes. 

Can we measure: 
➡ Individual variation in how  
➡People structure their political 

expressions 
➡And do we really care anyway? 
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Case Study 2

Spoiler Alert: Yes. 

Can we measure: 
➡ Individual variation in how  
➡People structure their political 

expressions 
➡Potential for behavioral insights
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New Tools for a Classic Problem

This idea is not new 

• A classic element of public opinion scholarship 

• Efforts used interviews or hand-coding of text 

• Largely abandoned as too difficult / time 
consuming 

Lane, 1962; Axelrod, 1976; Campbell, 1960
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New Tools for a Classic Problem

This idea is not new 

• A classic element of public opinion scholarship 

• Efforts used interviews or hand-coding of text 

• Largely abandoned as too difficult / time 
consuming 

➡ Modern computational tools make this task tractable

Lane, 1962; Axelrod, 1976; Campbell, 1960
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Roadmap

1. Elaborate on “structure” of political reasoning 

2. Define approach for inferring and measuring structure 

3. Demonstrate potential for behavioral insights  
— using two distinct datasets
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1. Political Reasoning is Structured

Wittgenstein, 1953; Austin, 1962



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

1. Political Reasoning is Structured

• Remembering 

• Learning

• Arguing 

• Justifying

Axelrod, 1976; Danowski, 1982; Carley, 1993

Toulmin, 1958; Walton, 1996

Collins & Loftus, 1975; Quillian, 1967
Shaffer et al., 2009; Shavelson, 1974
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1. Political Reasoning is Structured

Both have  
network structure

• Remembering 

• Learning

• Arguing 

• Justifying
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1. Political Reasoning is Structured

20
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1. Political Reasoning is Structured

Structure and content both 
influence the quality of political talk
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1. Political Reasoning is Structured

Structure and content both 
influence the quality of political talk  

Structure: 
➡ Sends a signal to interlocutor 

➡ Influences receptivity to new messages 

➡ Represents different philosophical approaches
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1. Political Reasoning is Structured

Multiple moral philosophies claim: 

Good* reasoning  
must be coherent* 

Sidgwick, 1907; Dancy, 1993 
McNaughton & Rawling, 2000; Rawls, 1993 
Thagard, 1998; Dorsey, 2006; Berker, 2015
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Multiple moral philosophies claim: 

Good* reasoning  
must be coherent* 

* For some definitions of  
“good” and “coherent”
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1. Political Reasoning is Structured

Multiple moral philosophies claim: 

Good* reasoning  
must be coherent* 

* For some definitions of  
“good” and “coherent”

* Sidgwick, 1907; Dancy, 1993
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1. Political Reasoning is Structured
Connectivity Complexity Hierarchy

Baseline Dancy, 1993 Sidgwick, 1907
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Roadmap: 

1. Elaborate on “structure” 

2. Define approach for inferring and measuring structure 

3. Demonstrate potential for behavioral insights  
— using two distinct datasets

The Structure of Reasoning
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2. Inferring Network Structure
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2. Inferring Network Structure

What are the nodes? 
➡ Concepts 

What are the edges? 
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2. Inferring Network Structure

What are the nodes? 
➡ Concepts 

What are the edges? 
➡ Connections between concepts (??) 
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2. Inferring Network Structure

What is a “concept” ? 

• Compressed representation of information 

• Collection of related “things” 

• Represented by words 

➡   Operationally, a collection of similar words

Collins & Loftus, 1975; Quillian, 1967
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2. Inferring Network Structure

Identifying similar words through embeddings:
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2. Inferring Network Structure

Identifying similar words through embeddings: 

• Words are high dimensional objects and  
can be embedded in high dimensional space 

• Do this in such a way that words which appear in 
similar contexts are geometrically close  

 
1
T

T

∑
t=1

∑
−c≤ j≤c,j≠0

log p(wt+j|wt)

Mikolov et al, 2013 
Spirling and Rodriguez, 2019
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2. Inferring Network Structure

Identifying similar words through embeddings:

I took my cat to the vet.
I took my dog to the vet.
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2. Inferring Network Structure

Identifying similar words through embeddings:

I took my cat to the vet.
I took my dog to the vet. dog

cat
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2. Inferring Network Structure

Identifying similar words through embeddings:

I took my cat to the vet.
I took my dog to the vet. dog

cat

My cat likes to sleep.
My dog plays fetch.
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2. Inferring Network Structure

Identifying similar words through embeddings:

I took my cat to the vet.
I took my dog to the vet.

My cat likes to sleep.
My dog plays fetch.

dog

cat
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2. Inferring Network Structure

Identifying similar words through embeddings:

I took my cat to the vet.
I took my dog to the vet.

My cat likes to sleep.
My dog plays fetch.

I caught a shuttle from the airport.

dog

cat
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2. Inferring Network Structure

Identifying similar words through embeddings:

I took my cat to the vet.
I took my dog to the vet.

My cat likes to sleep.
My dog plays fetch.

I caught a shuttle from the airport.

shuttle
dog

cat
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Sidenote: Continuous Bag of Words (CBOW)

Mikolov et al, 2013 
Rong, 2016
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Sidenote: Continuous Bag of Words (CBOW)

Mikolov et al, 2013 
Rong, 2016
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2. Inferring Network Structure

Identifying similar words through embeddings: 

• Words are high dimensional objects and  
can be embedded in high dimensional space 

• Do this in such a way that words which appear in 
similar contexts are geometrically close

circumstance

situation
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2. Inferring Network Structure

What are the nodes? 
➡ Concepts: “similar words” 

What are the edges? 
➡ Connections between concepts (??) 
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2. Inferring Network Structure

What are the nodes? 
➡ Concepts: “similar words” 

What are the edges? 
➡ Connections between words (??) 
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2. Inferring Network Structure

Example: 
Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Example: 
Word co-occurance

Bodily autonomy is a basic human right.
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Example: 
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Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Example: 
Word co-occurance:  

Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Example: 
Word co-occurance:  
Assumes connected concepts are syntactic close

Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Bodily autonomy is a basic human right.

Example: 
Word co-occurance:  
Assumes connected concepts are syntactic close
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2. Inferring Network Structure

Example: 
Grammatical structure: 

Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Bodily
ADJ

autonomy 

NOUN

is 
VERB

a 
DET

basic 

ADJ

human 

ADJ

right 
NOUN

compound nsubj

det

amod

amod

at t r

Example: 
Grammatical structure: 
Designed to encode implicit connections
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2. Inferring Network Structure

Bodily
ADJ

autonomy 

NOUN

is 
VERB

a 
DET

basic 

ADJ

human 

ADJ

right 
NOUN

compound nsubj

det

amod

amod

at t r

Example: 
Grammatical structure: 
Designed to encode implicit connections
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2. Inferring Network Structure

Example: 
Grammatical structure: 
Designed to encode implicit connections

Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Model steps 

1. Infer Part of Speech tags and grammatical structure

Bodily
ADJ

autonomy 

NOUN

is 
VERB

a 
DET

basic 

ADJ

human 

ADJ

right 
NOUN

compound nsubj

det

amod

amod

at t r



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

2. Inferring Network Structure

Model steps 

1. Infer Part of Speech tags and grammatical structure 

2. Turn negative words into negative ties

X is Y
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2. Inferring Network Structure

Model steps 

1. Infer Part of Speech tags and grammatical structure 

2. Turn negative words into negative ties

X is not Y
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2. Inferring Network Structure

Model steps 

1. Infer Part of Speech tags and grammatical structure 

2. Turn negative words into negative ties 

3. Remove stopwords, maintaining network structure

The X is a Y
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The X is a Y

2. Inferring Network Structure

Model steps 

1. Infer Part of Speech tags and grammatical structure 

2. Turn negative words into negative ties 

3. Remove stopwords, maintaining network structure
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2. Inferring Network Structure

Model steps 

1. Infer Part of Speech tags and grammatical structure 

2. Turn negative words into negative ties 

3. Remove stopwords, maintaining network structure

The X is a Y



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

2. Inferring Network Structure

Model steps 

1. Infer Part of Speech tags and grammatical structure 

2. Turn negative words into negative ties 

3. Remove stopwords, maintaining network structure 

4. Merge similar words using embeddings

circumstance

situation
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Sample Inferred Networks

abortion

legal

autonomy
bodily

right

government
intervene

basic

human

sense

belief

religious
suppose

favorset

childbirth

risk

situation

bear

massive

care

child
happen

women
choose

matter

life

valuable

bunch

cell

small

consciousness

true

Positive weight                      Negative weight

abortion

legal

rape

lead

behavior

place

dress
woman

belong

invite
wink

trouble

stare

man

sell

drink

intoxicated

bad

decision

male

evil

take

act

people
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Measuring Network Similarity
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Measuring Network Similarity

Boeing, 2017
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Measuring Network Similarity

Measuring similarity with Portrait Divergence 

• Bkj = # of nodes which have k nodes at distance l

density 0.2 0.2 0.2

k avg 3.0 3.0 3.0

clustering 0.2 0.4 0.3

giant component 1.0 0.4 1.0

entropy 0.0 1.5 1.0

disassortativity -1.0 -0.1 0.7
k std 0.0 3.0 3.5

Homogeneous Heterogenous



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

Roadmap: 

1. Elaborate on “structure” 

2. Define approach for inferring and measuring structure 

3. Demonstrate potential for behavioral insights 
— using two distinct datasets

The Structure of Reasoning
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Roadmap: 

1. Elaborate on “structure” 

2. Define approach for inferring and measuring structure 

3. Demonstrate potential for behavioral insights 
— using two distinct datasets

The Structure of Reasoning

Does the structure of expressed reasons 
convey useful information?



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

Data
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1.  Experiment and survey 

• 100 subjects, recruited through MTurk 
• Three methods of inferring networks, for two of three 

topics: (1) abortion (2) healthcare (3) childrearing 

• Extensive demographic and personality survey

Data

Shugars, Beauchamp, and Levine; 2019
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1.  Experiment and survey 

• 100 subjects, recruited through MTurk 
• Three methods of inferring networks, for two of three 

topics: (1) abortion (2) healthcare (3) childrearing 

• Extensive demographic and personality survey

Data

Hopkins and Noel, 2016

2.  Ideological “Turing test" 

• 1000 subjects, recruited by YouGov 

• Asked to provide “liberal” and “conservative” positions 
on one of three topics 
(1) abortion (2) minimum wage (3) national defense
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1.  Experiment and survey 

• 100 subjects, recruited through MTurk 
• Three methods of inferring networks, for two of three 

topics: (1) abortion (2) healthcare (3) childrearing 

• Extensive demographic and personality survey

Data

Research Questions 
• Does structure meaningfully correlate to known 

personality traits? 

Shugars, Beauchamp, and Levine; 2019



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

3. Potential for Behavioral Insights
Research Questions 

• Does structure meaningfully correlate to known 
personality traits?

• Purity (Moral Foundations) 
• Authority (Moral Foundations) 
• Ingroup (Moral Foundations) 
• Harm (Moral Foundations) 
• Fairness (Moral Foundations) 
• Progressivism (Moral Foundations) 

• Ideology: Conservative 
• Political Knowledge 
• Deliberativeness

• Extroversion (Big 5) 
• Agreeableness (Big 5) 
• Neuroticism (Big 5) 
• Conscientiousness (Big 5) 
• Openness (Big 5)

Haidt & Joseph, 2008; John & Srivastava, 1999 
Gastil et al., 2012; Carpini & Keeter, 1993 ; Pew, 2017
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3. Potential for Behavioral Insights
Research Questions 

• Does structure meaningfully correlate to known 
personality traits?

 s = βp + αt + ϵ
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3. Potential for Behavioral Insights
Research Questions 

• Does structure meaningfully correlate to known 
personality traits?

 s = βp + αt + ϵ

Network  
statistic Personality 

measure
Topic  
fixed effect
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3. Potential for Behavioral Insights
Research Questions 

• Does structure meaningfully correlate to known 
personality traits?

 s = βp + αt + ϵ

Network  
statistic Personality 

measure
Topic  
fixed effect
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3. Potential for Behavioral Insights

 s = βp + αt + ϵ
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3. Potential for Behavioral Insights
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3. Potential for Behavioral Insights
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1.  Experiment and survey 

• 100 subjects, recruited through MTurk 
• Three methods of inferring networks, for two of three 

topics: (1) abortion (2) healthcare (3) childrearing 

• Extensive demographic and personality survey

Data

Shugars, Beauchamp, and Levine; 2019

Research Questions 
• Does structure meaningfully correlate to known 

personality traits?  Yes.
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Data

2.  Ideological “Turing test" 

• 1000 subjects, recruited by YouGov 

• Asked to provide “liberal” and “conservative” 
positions on one of three topics 
(1) abortion (2) minimum wage (3) national defense

Hopkins and Noel, 2016
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Data

2.  Ideological “Turing test" 

• 1000 subjects, recruited by YouGov 

• Asked to provide “liberal” and “conservative” 
positions on one of three topics 
(1) abortion (2) minimum wage (3) national defense

Research Questions 
• Is structure driven by ideology or by individual traits 

• Does structure suggest argument quality?

Hopkins and Noel, 2016
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3. Potential for Behavioral Insights

Each subject provided 2 networks: 

• Liberal position & conservative position
My liberal essay v. 
My conservative essay

My liberal essay v. 
Your liberal essay

Which are more similar?
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3. Potential for Behavioral Insights

Identical 
Networks

Less 
Similar
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My liberal essay v. 
My conservative essay

3. Potential for Behavioral Insights

My liberal essay v. 
Your liberal essay
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3. Potential for Behavioral Insights

My liberal essay v. 
My conservative essay

My liberal essay v. 
Your liberal essay



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

R2: Sources of Similarity

p << 0.05
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R2: Sources of Similarity

p << 0.05
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Data

2.  Ideological “Turing test" 

• 1000 subjects, recruited by YouGov 

• Asked to provide “liberal” and “conservative” 
positions on one of three topics 
(1) abortion (2) minimum wage (3) national defense

Hopkins and Noel, 2016

Research Questions 
• Is structure driven by ideology or by individual traits?  

Individual traits. 
• Does structure suggest argument quality?
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liberal 

Data — Guess That Ideology!

The conservative / liberal position on abortion is:

This text was written by a:

conservative 
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liberal 

Data — Guess That Ideology!

The liberal position on abortion is:

This text was written by a:

conservative 
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liberal 

Data — Guess That Ideology!

The liberal position on abortion is:

This text was written by a:

conservative 

A woman has the right to determine  
what happens to her body
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liberal 

Data — Guess That Ideology!

The liberal position on abortion is:

This text was written by a:

conservative 

A woman has the right to determine  
what happens to her body

Coding = 1 
Authentic
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liberal 

Data — Guess That Ideology!

The liberal position on abortion is:

This text was written by a:

conservative 
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liberal 

Data — Guess That Ideology!

The liberal position on abortion is:

This text was written by a:

conservative 

It is okay to murder
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liberal 

Data — Guess That Ideology!

The liberal position on abortion is:

This text was written by a:

conservative 

It is okay to murder

Coding = 0 
Ironic
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liberal 

Data — Guess That Ideology!

The conservative position on abortion is:

This text was written by a:

conservative 
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liberal 

Data — Guess That Ideology!

The conservative position on abortion is:

This text was written by a:

conservative 

Women need guidance from  
more superior men!
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liberal 

Data — Guess That Ideology!

The conservative position on abortion is:

This text was written by a:

conservative 

Women need guidance from  
more superior men!

Coding = 0 
Ironic
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liberal 

Data — Guess That Ideology!

The conservative position on abortion is:

This text was written by a:
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liberal 

Data — Guess That Ideology!

The conservative position on abortion is:

This text was written by a:

conservative 

All life is sacred.



Sarah Shugars  |  @Shugars October 30, 2019  |  CS 6120/4120

liberal 

Data — Guess That Ideology!

The conservative position on abortion is:

This text was written by a:

conservative 

All life is sacred.

Coding = 1 
Authentic
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3. Potential for Behavioral Insights

Does structure suggest argument quality? 
➡ Can we tell “authentic” from “ironic” responses?
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3. Potential for Behavioral Insights

Does structure suggest argument quality? 
➡ Can we tell “authentic” from “ironic” responses?
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3. Potential for Behavioral Insights

Does structure suggest argument quality? 
➡ Can we tell “authentic” from “ironic” responses?
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3. Potential for Behavioral Insights
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3. Potential for Behavioral Insights

2.  Ideological “Turing test" 

• 1000 subjects, recruited by YouGov 

• Asked to provide “liberal” and “conservative” 
positions on one of three topics 
(1) abortion (2) minimum wage (3) national defense

Hopkins and Noel, 2016

Research Questions 
• Is structure driven by ideology or by individual traits?  

Individual traits. 
• Does structure suggest argument quality? Yes. 
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Summary

• New method for inferring structure of expressed reasons 

• Reveals small but meaningful individual variation 

• Correlated with known personality traits 

• Potential for new insights into dynamics of public opinion
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Final Thoughts

• NLP methods can be used to address a range of questions 

• The key is to figure out (1) how to operationalize your question 
and (2) what features are of interest 

• Remember: language is high dimensional

Sarah Shugars 
Northeastern University 

shugars.s@northeastern.edu 
@Shugars                      she/her

mailto:sarah.shugars@gmail.com
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Appendix
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Emotional Measures
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Data: Number of Users
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Data: Conversation Length
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Model 1: Findings

0

100

200

−1.0 −0.5 0.0 0.5 1.0
Inferred ideological positions

MCMC: 6 chains of 50k
Parameters: 2� + 4000 � + 4000 ✓

Inferred ideological positions
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Confusion Matrix

Truth

0 1

Prediction
0 0.898 0.012

1 0.008 0.082
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Topical correlation
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Emotional correlation
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Response predictors: Candidate’s prev. tweet
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Response predictors: Current tweet
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Response predictors: Potential respondent
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Response predictors: Conversation features


