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NLP in Practice

Some

Phenomena

- .
"\
Observed A
in Text E

Interesting insights
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NLP Applications

e (How)Are people of different genders described differently?
e What discursive moves influence debate outcomes?

e How do people talk about their political opinions?
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Common NLP Approaches

(How) Are people of different genders described differently?
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Common NLP Approaches

(How) Are people of different genders described differently?

Descriptive

e TOp words

Sarah Shugars | @Shugars

Managers Use More Positive Words to Describe Men in Performance
Reviews and More Negative Ones to Describe Women

Words used to describe men Words used to describe women
Analytical Compassionate
Competent Inept
Athletic Enthusiastic Selfish
Dependable Arrogant Energetic Frivolous
Confident Passive
Versatile Organized Scattered
. IN DESCENDING ORDER . L.
Articulate OF RELATIVE FREQUENCY Opportunistic
Level-headed Gossip
Irresponsible Excitable
Logical Vain
Practical Panicky
Temperamental
Indecisive
POSITIVE NEGATIVE POSITIVE NEGATIVE
SOURCE AN ANALYSIS OF 81,000 PERFORMANCE EVALUATIONS, DAVID G. SMITH ET AL., 2018 © HBR.ORG
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Common NLP Approaches

(How) Are people of different genders described differently?

gender

[ ] [ ]
Descrlptlve Smart -female
Political Science - [
TO W O r d S Philosophy - °
® p Physics o
Engineering o
° ° ° Science o
e Word distributions :
Anthropology [
Biology o
History — [
English — o
Economics — o
Humanities o
Criminal Justice o
Sociology o
Psychology — o
Business [
Computer Science - o
Mathematics — ]
Health Science [
Communication o
Accounting @
Education - o
Languages o
Fine Arts — o

Music T T T T 1S T T T T T T T 1
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http://benschmidt.org/profGender Sl AL R SRR
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Common NLP Approaches

(How) Are people of different genders described differently?
Predictive

e Given that we see the word 'smart’ what is the probability
the sentence describes a woman?
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Common NLP Approaches

(How) Are people of different genders described differently?
Predictive

e Given that we see the word 'smart’ what is the probability
the sentence describes a woman?

Or, more generally:

e Given that we see features X, can we classify this text as
relating to gender G?
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Common NLP Approaches

Given that we see features X, can we classify this text as relating
to gender G?

P(G=1) = ®(pX)
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Common NLP Approaches

Given that we see features X, can we classify this text as relating
to gender G?

P(G=1) = ®(fX + 1+ ¢)
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Common NLP Approaches

Given that we see features X, can we classify this text as relating
to gender G?

P(G=1) = ®(fX + 15+ ¢)
— — l

Probability Features X
gender =1 with weightsﬂ Error

\4

Fixed effect for
academic field

Sarah Shugars | @Shugars October 30, 2019 | CS 6120/4120




Common NLP Approaches

Given that we see features X, can we classify this text as relating
to gender G?

/\ NLP

R oes here
PG=1) = O(fX)n+e)

Probability Features X l
gender =1 with weightsﬂ Error
v

Fixed effect for
academic field
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Common NLP Approaches

Whatis # X ?

PR = pix;+ oy + ...+ Px,
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Common NLP Approaches

Whatis # X ?

Features
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Common NLP Approaches

Whatis # X ?

pX

Features

\

Weights
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The Challenge:

How do we turn
into

X1y Xyy eens X,

?
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Case Study 1

Why Keep Arguing?
Predicting Engagement in Political
Conversations Online

Sarah Shugars, Network Science Institute

Nick Beauchamp, Department of Political Science
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Why do people bother
arguing online?
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Online engagement is driven
by individual, conversation, and
content features
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Online engagement is driven
by individual, conversation, and
content features

P (Tvl‘] " — 1) ~Y @ . ‘?
——/

Probability
of engagement

Individual features

Some function of...
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Online engagement is driven
by individual, conversation, and
content features

Conversation features

Probability
of engagement

Content features

Some function of...
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Online engagement is driven
by individual, conversation, and
content features

Probability Content features

of engagement

Some function of...
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Hypotheses

Individual
e Baseline activity
e Popularity

Conversations P(Ty = 1) ~ ®(FX; +y
e Popularity
e Recent engagement
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Hypotheses

Content

e Emotionally extreme users more likely to re-
engage

o Emotionally extreme tweets more likely to
receive a response

e Topic effects

P(T. =1)~ CIJ(,BXi + X

gt
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Data

e /053 conversations

e 63,671tweets

o Keyword “Trump”
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Data

e /053 conversations

e 63,671tweets

e 1,016,49 observations
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Conversational data

L 4 t=1
RN




Conversational data
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Conversational data

For time t > 2, how does ideology influence
who will remain active in a conversation?
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Conversational data

Candidates
for re-entry:

.

L
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Conversational data

Candidates Observed
for re-entry: outcome:

y 1
y 0
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Conversational data

Candidates
for re-entry:

L
L
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Conversational data

P(T; = 1) ~ ®(BX; + yX; + nXnrp)
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Findings

110,035 observations
« 89% of observations are 0 (non-response)

« Achieve 94% accuracy with logistic regression

« 98% accuracy with SVM
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Response predictors: Individual

comments e + ®
following - S ! ®
verified{ | . |
statuses A —o1e
favourites - | | | ® P | |
-1.0 -0.5 0.0 0.5 1.0

}e{ Candidate respondent
le{ Current tweet author
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Response predictors: Conversation

response - | o |

difference? -

thread length -
(thread length)? - H
difference A

candidate comments A

participants -

time since prevy | ® |
—1.0 —0.5 0.0 0.5 1.0
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Response predictors: Content

topic5 A
chars - H_+_| P
_ topic7
dominance - ,
topic3 -
vader pos |_._| - topic10 -
xhour - Tad favorites -
url - e topic4 -
yhour 1 b topic8 -
topic6
hashtags - |'|
topic2
vader neg A ]
arousal - 4
sentiment 1 e
topic9 - —e
yday - e e
source - e «
xday - o I
mentions - —o—
valence 1 —e—1
-4 -2 0

Sarah Shugars | @Shugars

}e{ Candidate respondent
le| Current tweet author
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10-topic LDA

Topic 1 Topic 2 Topic 3 Topic4 | Topics Topic 6 Topic 7 Topic 8 Topic9 | Topic 10
hope love people good people thought puerto true news live
hillary sad pr mayor lol evidence rico wrong fake usa
bot big money day black funny years obama real war
agree yeah power god white russian lies people time matter
cnn people dying work racist means people president flag country
happen dont water supplies point food understand vote protest marathi
states person tax great hate read party thing stand tweeting
liar blame hurricane job guy act white shit talking class
argument WOW taking san bad facts rich care watch leader
clinton pr days juan problem helping world donald anthem place

Blei et al, 2003
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10-topic LDA
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10-topic LDA
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10-topic LDA
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Side note about LDA

Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,
exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the

histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic.
The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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Side note about LDA

Distribution of points across a 9-topic model
Top ten points in each topic in red
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Sentiment and valence

e Positive tweets often received a positive response

o Tweets often crossed topics and ideological divides

Topic correlations Emotional correlations
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Implications

e Thisis promising because even single-comment interventions
have shown to improve discourse quality

o Deliberative theory suggests that repeated interactions
can have a greater positive impact on discourse quality

Friggeri et al., 2014; Munger, 2017,
Bednar and Page, 2007; Habermas, 1984
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Summary

e Negative tweets spark sustained conversation
e These conversations cross ideological divides
e Some twitter conversations remain civil

e Thereishope for productive political conversations!
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Case Study 2

The Structure of Reasoning:
Measuring Expressions
of Political Preference

Sarah Shugars, Network Science Institute
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Case Study 2

Can we measure:
= |ndividual variation in how

= People structure their political
expressions

= And do we really care anyway?
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Case Study 2

Can we measure:
= Individual variation in how

= People structure their political
expressions

= And do we really care anyway?
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Case Study 2

Can we measure:
= |ndividual variation in how

= People structure their political
expressions

= And do we really care anyway?
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Case Study 2

Can we measure:
= |ndividual variation in how

= People structure their political
expressions

= Potential for behavioral insights
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New Tools for a Classic Problem

This idea is not new

e A classic element of public opinion scholarship
o Effortsusedinterviews or hand-coding of text

e Largely abandoned as too difficult / time

consumin
J Lane, 1962; Axelrod, 1976; Campbell, 1960
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New Tools for a Classic Problem

This idea is not new

e A classic element of public opinion scholarship
o Effortsusedinterviews or hand-coding of text

e Largely abandoned as too difficult / time

consumin
J Lane, 1962; Axelrod, 1976; Campbell, 1960

= Modern computational tools make this task tractable
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Roadmap

1. Elaborate on “structure” of political reasoning
2. Define approach for inferring and measuring structure

5. Demonstrate potential for behavioral insights
— using two distinct datasets

Sarah Shugars | @Shugars October 30, 2019 | CS 6120/4120




1. Political Reasoning is Structured

>

Wittgenstein, 1953; Austin, 1962
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1. Political Reasoning is Structured

Remembering

Learning

Collins & Loftus, 1975; Quillian, 1967
Shaffer et al., 2009; Shavelson, 1974

/-Arguing

« Justifying

Toulmin, 1958; Walton, 1996
Axelrod, 1976; Danowski, 1982; Carley, 1993
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1. Political Reasoning is Structured

Remembering

Learning

Both have
network structure

/-Arguing
« Justifying
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1. Political Reasoning is Structured
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1. Political Reasoning is Structured
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1. Political Reasoning is Structured

¥
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1. Political Reasoning is Structured

¥
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1. Political Reasoning is Structured

Structure and content both
influence the quality of political talk
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1. Political Reasoning is Structured

Structure and content both
influence the quality of political talk

Structure:

= Sends a signal to interlocutor
= |nfluences receptivity to new messages

= Represents different philosophical approaches
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1. Political Reasoning is Structured

Multiple moral philosophies claim:

Good™ reasoning
must be coherent™

Sidgwick, 1907; Dancy, 1993
McNaughton & Rawling, 2000; Rawls, 1993
Thagard, 1998; Dorsey, 2006; Berker, 2015
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1. Political Reasoning is Structured

Multiple moral philosophies claim:

Good™ reasoning
must be coherent™

*For some definitions of
“‘good” and “coherent”
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1. Political Reasoning is Structured

Multiple moral philosophies claim:

Good™ reasoning
must be coherent™

*For some definitions of
“‘good” and “coherent”

*Sidgwick, 1907; Dancy, 1993
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1. Political Reasoning is Structured

Connectivity Complexity Hierarchy
Baseline Dancy, 1993 Sidgwick, 1907

2%
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The Structure of Reasoning

Roadmap:
1. Elaborate on “structure”

2. Define approach for inferring and measuring structure

3. Demonstrate potential for behavioral insights
— using two distinct datasets

October 30, 2019 | CS 6120/4120
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2. Inferring Network Structure

—
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2. Inferring Network Structure

What are the nodes?

What are the edges?
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2. Inferring Network Structure

What are the nodes?

= Concepts

What are the edges?

= Connections between concepts(??)
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2. Inferring Network Structure

What is a “concept” ?

e Compressed representation of information
e Collection of related “things”

e Represented by words

= QOperationally, a collection of similar words

Collins & Loftus, 1975; Quillian, 1967
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2. Inferring Network Structure

ldentifying similar words through embeddings:
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2. Inferring Network Structure

ldentifying similar words through embeddings:

« Words are high dimensional objects and
can be embedded in high dimensional space

« Do thisinsuch a way that words which appear in
similar contexts are geometrically close

1 T
T Z Z logp (Wt+j|wt>
=1 —c<j<c,j#0

Mikolov et al, 2013
Spirling and Rodriguez, 2019
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2. Inferring Network Structure

ldentifying similar words through embeddings:

| took my dog to the vet.
| took my cat to the vet.
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2. Inferring Network Structure

ldentifying similar words through embeddings:

| took my dog to the vet.
| took my cat to the vet.

dog
cat
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2. Inferring Network Structure

ldentifying similar words through embeddings:

| took my dog to the vet.
| took my cat to the vet.

dog
cat

My dog plays fetch.
My cat likes to sleep.
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2. Inferring Network Structure

ldentifying similar words through embeddings:

| took my dog to the vet.
| took my cat to the vet.

My dog plays fetch.
My cat likes to sleep.

Sarah Shugars | @Shugars October 30, 2019 | CS 6120/4120




2. Inferring Network Structure

ldentifying similar words through embeddings:

| took my dog to the vet.
| took my cat to the vet.

My dog plays fetch.
My cat likes to sleep.

| caught a shuttle from the airport.
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2. Inferring Network Structure

ldentifying similar words through embeddings:

| took my dog to the vet.
| took my cat to the vet.

My dog plays fetch.
My cat likes to sleep.

| caught a shuttle from the airport.
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Sidenote: Continuous Bag of Words (CBOW)

Input layer Hidden layer Output layer
X; 1O O\
X2 |10 Q|
X3 C.) hl o (?)73

> MmO >
Xk |O h, O Ol);
WVxNz{wkl} hN C:) W’Nx V={w 'lj}
Xy 1O Oy

Figure 1: A simple CBOW model with only one word in the context

Mikolov et al, 2013
Rong, 2016
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Sidenote: Continuous Bag of Words (CBOW)

E Input layer
Xie 9
Wy
-
S Hidden laye
3
X lo| Wy fh; Wiy
: 6
= N-dim
S Wy
Xck [
PV CxV-dim

Output layer

Mikolov et al, 2013
Rong, 2016
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2. Inferring Network Structure

ldentifying similar words through embeddings:

« Words are high dimensional objects and
can be embedded in high dimensional space

« Do thisinsuch a way that words which appear in
similar contexts are geometrically close
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2. Inferring Network Structure

What are the nodes?

= Concepts: “similar words”

What are the edges?

= Connections between concepts(??)
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2. Inferring Network Structure

What are the nodes?

= Concepts: “similar words”

What are the edges?

= Connections between words (??)
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2. Inferring Network Structure

Example:
Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Example:

Word co-occurance

Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Example:

Word co-occurance

Bodily autonomy is a basic human right.

—
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2. Inferring Network Structure

Example:

Word co-occurance:

Bodily autonomy isa-basic human right.

—
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2. Inferring Network Structure

Example:

Word co-occurance:
Assumes connected concepts are syntactic close

Bodily autonomy isa basic human right.

—
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2. Inferring Network Structure

Example:

Word co-occurance:
Assumes connected concepts are syntactic close

Bodily autonomy) .
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2. Inferring Network Structure

Example:

Grammatical structure:

Bodily autonomy is a basic human right.
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2. Inferring Network Structure

Example:

Grammatical structure:
Designed to encode implicit connections

attr

det

amod
Bodily autonomy a basic human right
ADJ NOUN VERB DET ADJ ADJ NOUN
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2. Inferring Network Structure

Example:

Grammatical structure:
Designed to encode implicit connections

attr

e~
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2. Inferring Network Structure

Example:

Grammatical structure:
Designed to encode implicit connections

.

Bodily autonomy)is aasic human right.
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2. Inferring Network Structure

Model steps

1. Infer Part of Speech tags and grammatical structure

attr

det

amod
Bodily autonomy a basic human right
ADJ NOUN VERB DET ADJ ADJ NOUN
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2. Inferring Network Structure

Model steps
1. Infer Part of Speech tags and grammatical structure

2. Turn negative words into negative ties

XisY
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2. Inferring Network Structure

Model steps
1. Infer Part of Speech tags and grammatical structure

2. Turn negative words into negative ties

XisnotY

9O
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2. Inferring Network Structure

Model steps
1. Infer Part of Speech tags and grammatical structure
2. Turn negative words into negative ties

3. Remove stopwords, maintaining network structure

The XisayY
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2. Inferring Network Structure

Model steps
1. Infer Part of Speech tags and grammatical structure
2. Turn negative words into negative ties

3. Remove stopwords, maintaining network structure

The XisayY
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2. Inferring Network Structure

Model steps
1. Infer Part of Speech tags and grammatical structure
2. Turn negative words into negative ties

3. Remove stopwords, maintaining network structure

The XisaY

o—9@
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2. Inferring Network Structure

Model steps
1. Infer Part of Speech tags and grammatical structure
Turn negative words into negative ties

Remove stopwords, maintaining network structure

BN

Merge similar words using embeddings

Sarah Shugars | @Shugars October 30, 2019 | CS 6120/4120



Sample Inferred Networks

small
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Measuring Network Similarity
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Measuring Network Similarity

§ PY §

%
-

N
.

Homogeneous E

density 0.2 ':
k avg 3.0 3.0 3.0
clustering 0.2 | 0.4 0.3
giant component 1.0 0.4 | 1.0
entropy 0.0 Z 1.5 E 1.0
disassortativity -1.0 | -0.1 | 0.7
k std 0.0 | 3.0 | 3.5
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The Structure of Reasoning

Roadmap:
1. Elaborate on “structure”

2. Define approach for inferring and measuring structure

3. Demonstrate potential for behavioral insights
— using two distinct datasets
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The Structure of Reasoning

Roadmap:
1. Elaborate on “structure”

2. Define approach for inferring and measuring structure

3. Demonstrate potential for behavioral insights
— using two distinct datasets

Does the structure of expressed reasons
convey useful information?
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Data
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Data

1. Experiment and survey
« 100 subjects, recruited through MTurk

« Three methods of inferring networks, for two of three
topics: (1) abortion (2) healthcare (3) childrearing

« Extensive demographic and personality survey

Shugars, Beauchamp, and Levine; 2019
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Data

1. Experiment and survey
« 100 subjects, recruited through MTurk

« Three methods of inferring networks, for two of three
topics: (1) abortion (2) healthcare (3) childrearing

« Extensive demographic and personality survey

2. ldeological “Turing test”
« 1000 subjects, recruited by YouGov

« Asked to provide “liberal” and “conservative” positions

on one of three topics
(1) abortion (2) minimum wage (3) national defense

Hopkins and Noel, 2016
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Data

1. Experiment and survey
« 100 subjects, recruited through MTurk

« Three methods of inferring networks, for two of three
topics: (1) abortion (2) healthcare (3) childrearing

« Extensive demographic and personality survey

Research Questions

« Does structure meaningfully correlate to known
personality traits?

Shugars, Beauchamp, and Levine; 2019
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3. Potential for Behavioral Insights

Research Questions

« Does structure meaningfully correlate to known
personality traits?

 Purity (Moral Foundations) Extroversion(Big b)
Authority (Moral Foundations) « Agreeableness(Big5b)
 Ingroup (Moral Foundations) Neuroticism (Big 5)

« Harm (Moral Foundations) Conscientiousness(Bigb)
 Fairness(Moral Foundations) Openness(Bigb)

« Progressivism(Moral Foundations)

 ldeology: Conservative
 Political Knowledge

» Deliberativeness Haidt & Joseph, 2008; John & Srivastava, 1999
Gastil et al., 2012; Carpini & Keeter, 1993 ; Pew, 2017
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3. Potential for Behavioral Insights

Research Questions

« Does structure meaningfully correlate to known
personality traits?

s=pp+a+c¢€
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3. Potential for Behavioral Insights

Research Questions

« Does structure meaningfully correlate to known
personality traits?

s=pp+a+c¢€

o

Network

statistic ~ Personality Topic

measure fixed effect
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3. Potential for Behavioral Insights

Research Questions

« Does structure meaningfully correlate to known

personality traits? I
s=pp+a+c¢€

o

Network -0.0

statistic ~ Personality Topic

measure fixed effect oy
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3. Potential for Behavioral Insights
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3. Potential for Behavioral Insights

small
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3. Potential for Behavioral Insights

(lack of)
intoxicated !
Connectivity
bad
behavior decision
stare
belong
trouble man
h invite
woman
dress
people
evil
act legal
take abortion
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Data

1. Experiment and survey
« 100 subjects, recruited through MTurk

« Three methods of inferring networks, for two of three
topics: (1) abortion (2) healthcare (3) childrearing

« Extensive demographic and personality survey

Research Questions

« Does structure meaningfully correlate to known
personality traits? Yes.

Shugars, Beauchamp, and Levine; 2019
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Data

2. ldeological “Turing test”
« 1000 subjects, recruited by YouGov

« Asked to provide “liberal” and “conservative”
positions on one of three topics
(1) abortion (2) minimum wage (3) national defense

Hopkins and Noel, 2016
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Data

2. ldeological “Turing test”
« 1000 subjects, recruited by YouGov

« Asked to provide “liberal” and “conservative”
positions on one of three topics
(1) abortion (2) minimum wage (3) national defense

Research Questions
« |sstructure driven by ideology or by individual traits

« Does structure suggest argument quality?

Hopkins and Noel, 2016
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3. Potential for Behavioral Insights

Each subject provided 2 networks:

- Liberal position & conservative position

My liberal essay v. My liberal essay v.
My conservative essay Your liberal essay

Which are more similar?
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3. Potential for Behavioral Insights

|dentical
Networks
ﬁ Less
Similar
0.00 0.25 0.50 0.75 100 125 150 175

Distance
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3. Potential for Behavioral Insights

My liberal essay v. My liberal essay v.
My conservative essay Your liberal essay
0.60 0.I25 O.E’)O O.|75 1.60 1.125 1.:50 1.I75
Distance
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3. Potential for Behavioral Insights

My liberal essay v. My liberal essay v.
Your liberal essay My conservative essay
0.60 0.I25 O.E’)O O.I75 1.60 1.125 1.:50 1.I75
Distance
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R2: Sources of Similarity
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R2: Sources of Similarity
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Data

2. ldeological “Turing test”
« 1000 subjects, recruited by YouGov

« Asked to provide “liberal” and “conservative”
positions on one of three topics
(1) abortion (2) minimum wage (3) national defense

Research Questions

« |sstructure driven by ideology or by individual traits?
Individual traits.

« Does structure suggest argument quality?

Hopkins and Noel, 2016
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Data — Guess That Ideology!

The conservative / liberal position on abortion is:

This text was written by a:
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Data — Guess That Ideology!

The liberal position on abortion is:

This text was written by a:
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Data — Guess That Ideology!

The liberal position on abortion is:

A woman has the right to determine

what happens to her body

This text was written by a:
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Data — Guess That Ideology!

The liberal position on abortion is:

A woman has the right to determine

what happens to her body

Coding =1
Authentic

This text was written by a:
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Data — Guess That Ideology!

The liberal position on abortion is:

This text was written by a:
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Data — Guess That Ideology!

The liberal position on abortion is:

It is okay to murder

This text was written by a:
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Data — Guess That Ideology!

The liberal position on abortion is:

It is okay to murder

Coding=0
Ironic

This text was written by a:

conservative
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Data — Guess That Ideology!

The conservative position on abortionis:

This text was written by a:
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Data — Guess That Ideology!

The conservative position on abortionis:

Women need guidance from

more superior men!

This text was written by a:
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Data — Guess That Ideology!

The conservative position on abortionis:

Women need guidance from

more superior men!

Coding=0
Ironic

This text was written by a:
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Data — Guess That Ideology!

The conservative position on abortionis:

This text was written by a:
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Data — Guess That Ideology!

The conservative position on abortionis:

All life is sacred.

This text was written by a:

Sarah Shugars | @Shugars October 30, 2019 | CS 6120/4120



Data — Guess That Ideology!

The conservative position on abortionis:

All life is sacred.

Coding =1
Authentic

This text was written by a:
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3. Potential for Behavioral Insights

Does structure suggest argument quality?

= Can we tell “authentic” from “ironic” responses?
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3. Potential for Behavioral Insights

Does structure suggest argument quality?

= Can we tell “authentic” from “ironic” responses?
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3. Potential for Behavioral Insights

Does structure suggest argument quality?

= Can we tell “authentic” from “ironic” responses?

Accuracy
ol
I o
1 o%
|
|
|
|
> I 5
N
R
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Sarah Shugars | @Shugars October 30, 2019 | CS 6120/4120



3. Potential for Behavioral Insights

Does structure suggest argument quality?

= Can we tell “authentic” from “ironic” responses?

B86% 70%

56%
5°°/2----| ...........

Accuracy
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3. Potential for Behavioral Insights

l® Model 1: Coarse features
l®# Model 2: Network features

Word Count -
Flesch Kincaid A

k avg -

density -

Giant Component A
Clustering -
Assortativity -

k std -

entropy -

—1.00 -0.75 -0.50 -0.25 0.00
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3. Potential for Behavioral Insights

l®# Model 1: Coarse features
l®# Model 2: Network features
Model 3: M1 + M2

Word Count - —e—
Flesch Kincaid - | - ¢ |
k avg - | O —
density - — e |
Giant Component - — @ | -
Clustering - F e |

Assortativity - | @

k std - | o — |

entropy - — O |

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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3. Potential for Behavioral Insights

2. ldeological “Turing test”
« 1000 subjects, recruited by YouGov

« Asked to provide “liberal” and “conservative”
positions on one of three topics
(1) abortion (2) minimum wage (3) national defense

Research Questions

« |sstructure driven by ideology or by individual traits?
Individual traits.

« Does structure suggest argument quality? Yes.

Hopkins and Noel, 2016
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Summary

e New method for inferring structure of expressed reasons
e Reveals small but meaningful individual variation
e Correlated with known personality traits

o Potential for new insights into dynamics of public opinion
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Final Thoughts

e NLP methods can be used to address a range of questions

e The key s to figure out (1) how to operationalize your question
and (2) what features are of interest

e Remember: language is high dimensional

Sarah Shugars

Northeastern University
shugars.s@northeastern.edu

@Shugars she/her
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Appendix
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Emotional Measures
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Data: Number of Users
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Data: Conversation Length
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Model 1: Findings

MCMC: 6 chains of 50k
Parameters: 2 5 + 4000~ + 4000 6

200 -

100 -

0 - —_—

-1.0 -0.5 0.0 0.5 1.0

nferred ideological positions
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Confusion Matrix

Truth
0 1
0 0.898 0.012
Prediction
1 0.008 0.082
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Topical correlation
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Emotional correlation

03
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Response predictors: Candidate’s prev. tweet

Significance after p correction

Coef FDR Clust FDR+C1
prev response 0.883 M e M
favorite count —0.311 wxx
retweet count —262.234 *
reply count 0.141 e
quality 262.523 *
source 0.037 e
xday 0.169 e *
yday 0.239 e *
xhour 0.048 e
yhour 0.193 . *
chars 0.367 wrx *ex *
has url 0.037 e
mentions 0.155 T
hashtags —0.078 e ** *
sentiment 0.362 e *
vader neg 0.641 e *EE **
vader pos —0.313 M ** *
valence —0.084 e
arousal 0.151 e
dominance —0.174 s
time since prev —0.658 . e =
topic 2 1.853 e =
topic 3 —0.037
topic 4 —0.364 M
topic 5 0.246 o
topic 6 —0.536 N
topic 7 —1.153 M
topic 8 —2.787 M e =
topic 9 —0.573 M
topic 10 2.404 e ** *
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Response predictors: Current tweet

Significance after p correction
Coef FDR Clust FDR+C1

favorite count 1.657  ***

retweet count 9.171 e

reply count —10.055 e *rE
quality —43.260

source —0.348 e e e
Xday _0.354 * %k %%k #
}rda‘y _0.345 *Exk %k %k * k%
xhour 0.146  ***

yhour —0.044  ***

chars 0.649  *** e o
has url 0.075 wEE

mentions —0.412 e *

hashtags —0.083  *** **

sentiment —0.135 T

vader neg —0.111 ***

vader pos 0.152  ***

valence —0.524  *** ** *
arousal —-0.116  ***

dominance 0.343  *** *

topic 2 0.815  ***

topic 3 2.140 o * *
topic 4 1.541  **

topic 5 2.913  *** e **
topic 6 1.024  ***

topic 7 2.669  *** ** *
topic 8 1.537  ***

topic 9 —0.148  ***

topic 10 2.043 ™ *

difference —0.036  ***

difference? 0.188  *** **
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Response predictors: Potential respondent

Significance after p correction

Coef FDR Clust FDR+4CI

verified —0.625 e * *
followers count —54.294 e

following count —0.187  ***

statuses count 0.026 e

favourites count 0.005

comments count —0.170 e

Note: *p<0.1; **p<0.05; ***p<0.01
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Response predictors: Conversation features

Significance after p correction

Coef FDR Clust FDR+CI1

participants —-0.179  ***

thread length 0.105  ***

thread length? —0.026  *** . e
NOte: *p<01’ **p<005’ ***p<0.01
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