CS 6120/4120: Natural Language Processing

Developing NLP measures for social science applications

Sarah Shugars

Northeastern University

<u>shugars.s@northeastern.edu</u> she/her

What does "doing NLP" actually look like?

October 30, 2019 | CS 6120/4120

NLP in Practice

Interesting insights

Sarah Shugars | @Shugars

October 30, 2019 | CS 6120/4120

NLP Applications

- (How) Are people of different genders described differently?
- What discursive moves influence debate outcomes?
- How do people talk about their political opinions?

(How) Are people of different genders described differently?

(How) Are people of different genders described differently?

Words used to describe men

Descriptive

• Top words

Managers Use More Positive Words to Describe Men in Performance Reviews and More Negative Ones to Describe Women

SOURCE AN ANALYSIS OF 81,000 PERFORMANCE EVALUATIONS, DAVID G. SMITH ET AL., 2018

Words used to describe women

© HBR.ORG

(How) Are people of different genders described differently?

Descriptive

- Top words
- Word distributions

http://benschmidt.org/profGender

Uses per millions words of text

Sarah Shugars | @Shugars

October 30, 2019 | CS 6120/4120

(How) Are people of different genders described differently?

Descriptive

- Top words
- Word distributions

http://benschmidt.org/profGender

(How) Are people of different genders described differently?

Predictive

 Given that we see the word 'smart' what is the probability the sentence describes a woman?

(How) Are people of different genders described differently?

Predictive

 Given that we see the word 'smart' what is the probability the sentence describes a woman?

Or, more generally:

$$P(G=1) = \Phi(\beta \mathbf{X})$$

$$P(G=1) = \Phi(\beta \mathbf{X} + \eta_f + \epsilon)$$

What is $\beta \mathbf{X}$?

 $\beta \mathbf{X} = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$

What is $\beta \mathbf{X}$?

What is $\beta \mathbf{X}$?

The Challenge:

How do we turn

into

$$x_1, x_2, \dots, x_n$$

?

Sarah Shugars | @Shugars

Why Keep Arguing? Predicting Engagement in Political Conversations Online

Sarah Shugars, Network Science Institute

Nick Beauchamp, Department of Political Science

Why do people bother arguing online?

October 30, 2019 | CS 6120/4120

Hypotheses

Individual

• Baseline activity

$$P(T_{ijt} = 1) \sim \Phi\left(\beta \mathbf{X_i} \vdash \gamma \mathbf{X_{jt}} + \eta \mathbf{X_{NLP}}\right)$$

Popularity

Conversations

$$P(T_{ijt} = 1) \sim \Phi(\beta \mathbf{X_i} + \gamma \mathbf{X_{jt}} + \eta \mathbf{X_{NLP}})$$

- Popularity
- Recent engagement

Hypotheses

Content

- Emotionally extreme users more likely to reengage
- Emotionally extreme tweets more likely to receive a response
- Topic effects

$$P(T_{ijt} = 1) \sim \Phi(\beta \mathbf{X_i} + \gamma \mathbf{X_{jt}} + \eta \mathbf{X_{NLP}})$$

Data

- 7053 conversations
- 63,671 tweets
- Keyword "Trump"
- October 2017

Data

Sarah Shugars | @Shugars

Sarah Shugars | @Shugars

For time *t* > 2, how does ideology influence who will **remain active** in a conversation?

Candidates for re-entry:

Candidates for re-entry:

Ω

Candidates for re-entry:

Observed outcome:

Function of: individual, conversation, and content features

$P(T_{ijt} = 1) \sim \Phi(\beta \mathbf{X_i} + \gamma \mathbf{X_{jt}} + \eta \mathbf{X_{NLP}})$

October 30, 2019 | CS 6120/4120

Findings

- 110,035 observations
- 89% of observations are 0 (non-response)
- Achieve 94% accuracy with logistic regression
- 98% accuracy with SVM
Response predictors: Individual

Candidate respondent
Current tweet author

Response predictors: Conversation

Response predictors: Content

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
hope	love	people	good	people	thought	puerto	true	news	live
hillary	sad	pr	mayor	lol	evidence	rico	wrong	fake	usa
bot	big	money	day	black	funny	years	obama	real	war
agree	yeah	power	god	white	russian	lies	people	time	matter
cnn	people	dying	work	racist	means	people	president	flag	country
happen	dont	water	supplies	point	food	understand	vote	protest	marathi
states	person	tax	great	hate	read	party	thing	stand	tweeting
liar	blame	hurricane	job	guy	act	white	shit	talking	class
argument	WOW	taking	san	bad	facts	rich	care	watch	leader
clinton	pr	days	juan	problem	helping	world	donald	anthem	place

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
hope	love	people	good	people	thought	puerto	true	news	live
hillary	sad	pr	mayor	lol	evidence	rico	wrong	fake	usa
bot	big	money	day	black	funny	years	obama	real	war
agree	yeah	power	god	white	russian	lies	people	time	matter
cnn	people	dying	work	racist	means	people	president	flag	country
happen	dont	water	supplies	point	food	understand	vote	protest	marathi
states	person	tax	great	hate	read	party	thing	stand	tweeting
liar	blame	hurricane	job	guy	act	white	shit	talking	class
argument	wow	taking	san	bad	facts	rich	care	watch	leader
clinton	pr	days	juan	problem	helping	world	donald	anthem	place

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
hope	love	people	good	people	thought	puerto	true	news	live
hillary	sad	pr	mayor	lol	evidence	rico	wrong	fake	usa
bot	big	money	day	black	funny	years	obama	real	war
agree	yeah	power	god	white	russian	lies	people	time	matter
cnn	people	dying	work	racist	means	people	president	flag	country
happen	dont	water	supplies	point	food	understand	vote	protest	marathi
states	person	tax	great	hate	read	party	thing	stand	tweeting
liar	blame	hurricane	job	guy	act	white	shit	talking	class
argument	wow	taking	san	bad	facts	rich	care	watch	leader
clinton	pr	days	juan	problem	helping	world	donald	anthem	place

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
hope	love	people	good	people	thought	puerto	true	news	live
hillary	sad	pr	mayor	lol	evidence	rico	wrong	fake	usa
bot	big	money	day	black	funny	years	obama	real	war
agree	yeah	power	god	white	russian	lies	people	time	matter
cnn	people	dying	work	racist	means	people	president	flag	country
happen	dont	water	supplies	point	food	understand	vote	protest	marathi
states	person	tax	great	hate	read	party	thing	stand	tweeting
liar	blame	hurricane	job	guy	act	white	shit	talking	class
argument	wow	taking	san	bad	facts	rich	care	watch	leader
clinton	pr	days	juan	problem	helping	world	donald	anthem	place

Side note about LDA

Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of "topics," which are distributions over words, exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic. The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.

Sarah Shugars | @Shugars

October 30, 2019 | CS 6120/4120

Side note about LDA

Sarah Shugars | @Shugars

Sentiment and valence

- Positive tweets often received a positive response
- Tweets often crossed topics and ideological divides

Topic correlations

Sarah Shugars | @Shugars

Implications

- This is promising because even single-comment interventions have shown to improve discourse quality
- Deliberative theory suggests that repeated interactions can have a greater positive impact on discourse quality

Friggeri et al., 2014; Munger, 2017; Bednar and Page, 2007; Habermas, 1984

Summary

- Negative tweets spark sustained conversation
- These conversations cross ideological divides
- Some twitter conversations remain civil
- There is hope for productive political conversations!

The Structure of Reasoning: Measuring Expressions of Political Preference

Sarah Shugars, Network Science Institute

- Individual variation in how
- People structure their political expressions
- And do we really care anyway?

- Individual variation in how
- People structure their political expressions
- And do we really care anyway?

- Individual variation in how
- People structure their political expressions
- And do we really care anyway?

Individual variation in how

People structure their political expressions

And do we really care anyway?

Individual variation in how

- People structure their political expressions
- And do we really care anyway?

- Individual variation in how
- People structure their political expressions
- And do we really care anyway?

- Individual variation in how
- People structure their political expressions
- And do we really care anyway?

- Individual variation in how
- People structure their political expressions

Potential for behavioral insights

New Tools for a Classic Problem

This idea is not new

- A classic element of public opinion scholarship
- Efforts used interviews or hand-coding of text
- Largely abandoned as too difficult / time consuming

Lane, 1962; Axelrod, 1976; Campbell, 1960

New Tools for a Classic Problem

This idea is not new

- A classic element of public opinion scholarship
- Efforts used interviews or hand-coding of text
- Largely abandoned as too difficult / time consuming
 Lane, 1962; Axelrod, 1976; Campbell, 1960

Modern computational tools make this task tractable

Roadmap

- 1. Elaborate on "structure" of political reasoning
- 2. Define approach for inferring and measuring structure
- Demonstrate potential for behavioral insights — using two distinct datasets

Sarah Shugars | @Shugars

Structure and **content** both influence the quality of political talk

Structure and **content** both influence the quality of political talk

Structure:

- Sends a signal to interlocutor
- Influences receptivity to new messages
- Represents different philosophical approaches

Multiple moral philosophies claim:

Good* reasoning must be coherent*

Sidgwick, 1907; Dancy, 1993 McNaughton & Rawling, 2000; Rawls, 1993 Thagard, 1998; Dorsey, 2006; Berker, 2015

Multiple moral philosophies claim:

Good* reasoning must be coherent*

* For some definitions of "good" and "coherent"

Multiple moral philosophies claim:

Good* reasoning must be coherent*

* For some definitions of "good" and "coherent"

* Sidgwick, 1907; Dancy, 1993
1. Political Reasoning is Structured

Sarah Shugars | @Shugars

October 30, 2019 | CS 6120/4120

Roadmap:

- 1. Elaborate on "structure"
- 2. Define approach for inferring and measuring structure
- Demonstrate potential for behavioral insights – using two distinct datasets

October 30, 2019 | CS 6120/4120

What are the nodes?

What are the edges?

What are the nodes?

What are the edges?

Connections between concepts (??)

What is a "concept" ?

- Compressed representation of information
- Collection of related "things"
- Represented by words
 - Operationally, a collection of similar words

Collins & Loftus, 1975; Quillian, 1967

Identifying similar words through embeddings:

Identifying similar words through embeddings:

- Words are high dimensional objects and can be embedded in high dimensional space
- Do this in such a way that words which appear in similar contexts are geometrically close

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p\left(w_{t+j|w_t}\right)$$

Mikolov et al, 2013 Spirling and Rodriguez, 2019

Identifying similar words through embeddings:

- I took my **dog** to the vet.
- I took my cat to the vet.

Identifying similar words through embeddings:

I took my **dog** to the vet.

I took my cat to the vet.

Identifying similar words through embeddings:

I took my **dog** to the vet.

I took my cat to the vet.

My <mark>dog</mark> plays fetch. My <mark>cat</mark> likes to sleep.

Identifying similar words through embeddings:

I took my <mark>dog</mark> to the vet.

I took my cat to the vet.

My <mark>dog</mark> plays fetch. My <mark>cat</mark> likes to sleep.

Identifying similar words through embeddings:

I took my <mark>dog</mark> to the vet.

I took my cat to the vet.

My <mark>dog</mark> plays fetch. My <mark>cat</mark> likes to sleep.

I caught a shuttle from the airport.

Identifying similar words through embeddings:

- I took my **dog** to the vet.
- I took my cat to the vet.
- My <mark>dog</mark> plays fetch. My <mark>cat</mark> likes to sleep.
- I caught a shuttle from the airport.

Sidenote: Continuous Bag of Words (CBOW)

Figure 1: A simple CBOW model with only one word in the context

Mikolov et al, 2013 Rong, 2016

Sidenote: Continuous Bag of Words (CBOW)

Mikolov et al, 2013 Rong, 2016

October 30, 2019 | CS 6120/4120

Identifying similar words through embeddings:

- Words are high dimensional objects and can be embedded in high dimensional space
- Do this in such a way that words which appear in similar contexts are geometrically close

What are the nodes?

Concepts: "similar words"

What are the edges?

Connections between concepts (??)

What are the nodes?

Concepts: "similar words"

What are the edges?

Connections between words (??)

Example:

Example:

Word co-occurance

Example:

Word co-occurance

Example:

Word co-occurance:

Bodily autonomy is a basic human right.

October 30, 2019 | CS 6120/4120

Example:

Word co-occurance: Assumes connected concepts are syntactic close

Example:

Word co-occurance:

Assumes connected concepts are syntactic close

Example:

Grammatical structure:

Example:

Grammatical structure: Designed to encode implicit connections

Example:

Grammatical structure: Designed to encode implicit connections

Example:

Grammatical structure: Designed to encode implicit connections

Model steps

1. Infer Part of Speech tags and grammatical structure

- 1. Infer Part of Speech tags and grammatical structure
- 2. Turn negative words into negative ties

- 1. Infer Part of Speech tags and grammatical structure
- 2. Turn negative words into negative ties

Model steps

- 1. Infer Part of Speech tags and grammatical structure
- 2. Turn negative words into negative ties
- 3. Remove stopwords, maintaining network structure

The X is a Y

- 1. Infer Part of Speech tags and grammatical structure
- 2. Turn negative words into negative ties
- 3. Remove stopwords, maintaining network structure

- 1. Infer Part of Speech tags and grammatical structure
- 2. Turn negative words into negative ties
- 3. Remove stopwords, maintaining network structure

- 1. Infer Part of Speech tags and grammatical structure
- 2. Turn negative words into negative ties
- 3. Remove stopwords, maintaining network structure
- 4. Merge similar words using embeddings

Sample Inferred Networks

Sarah Shugars | @Shugars

Measuring Network Similarity

Measuring Network Similarity

Boeing, 2017

Measuring Network Similarity

Sarah Shugars | @Shugars

Roadmap:

- 1. Elaborate on "structure"
- 2. Define approach for inferring and measuring structure
- Demonstrate potential for behavioral insights – using two distinct datasets

Roadmap:

- 1. Elaborate on "structure"
- 2. Define approach for inferring and measuring structure
- Demonstrate potential for behavioral insights – using two distinct datasets

Does the structure of expressed reasons convey useful information?

1. Experiment and survey

- 100 subjects, recruited through MTurk
- Three methods of inferring networks, for two of three topics: (1) abortion (2) healthcare (3) childrearing
- Extensive demographic and personality survey

1. Experiment and survey

- 100 subjects, recruited through MTurk
- Three methods of inferring networks, for two of three topics: (1) abortion (2) healthcare (3) childrearing
- Extensive demographic and personality survey
- 2. Ideological "Turing test"
 - 1000 subjects, recruited by YouGov
 - Asked to provide "liberal" and "conservative" positions on one of three topics (1) abortion (2) minimum wage (3) national defense

Hopkins and Noel, 2016

1. Experiment and survey

- 100 subjects, recruited through MTurk
- Three methods of inferring networks, for two of three topics: (1) abortion (2) healthcare (3) childrearing
- Extensive demographic and personality survey

Research Questions

 Does structure meaningfully correlate to known personality traits?

Shugars, Beauchamp, and Levine; 2019

Research Questions

- Does structure meaningfully correlate to known personality traits?
 - Purity (Moral Foundations)
 - Authority (Moral Foundations)
 - Ingroup (Moral Foundations)
 - Harm (Moral Foundations)
 - Fairness (Moral Foundations)
 - Progressivism (Moral Foundations)
 - Ideology: Conservative
 - Political Knowledge
 - Deliberativeness

- Extroversion (Big 5)
- Agreeableness (Big 5)
- Neuroticism (Big 5)
- Conscientiousness (Big 5)
- Openness (Big 5)

Haidt & Joseph, 2008; John & Srivastava, 1999

Gastil et al., 2012; Carpini & Keeter, 1993; Pew, 2017

Research Questions

 Does structure meaningfully correlate to known personality traits?

$$s = \beta p + \alpha_t + \epsilon$$

Research Questions

 Does structure meaningfully correlate to known personality traits?

Research Questions

 Does structure meaningfully correlate to known personality traits?

- 3.0

-1.5

- 0.0

-1.5

-3.0

Complexity Hierarchy

1. Experiment and survey

- 100 subjects, recruited through MTurk
- Three methods of inferring networks, for two of three topics: (1) abortion (2) healthcare (3) childrearing
- Extensive demographic and personality survey

Research Questions

Does structure meaningfully correlate to known personality traits? Yes.

Shugars, Beauchamp, and Levine; 2019

- 2. Ideological "Turing test"
 - 1000 subjects, recruited by YouGov
 - Asked to provide "liberal" and "conservative" positions on one of three topics (1) abortion (2) minimum wage (3) national defense

2. Ideological "Turing test"

- 1000 subjects, recruited by YouGov
- Asked to provide "liberal" and "conservative" positions on one of three topics (1) abortion (2) minimum wage (3) national defense

Research Questions

- Is structure driven by ideology or by individual traits
- Does structure suggest argument quality?

Hopkins and Noel, 2016

Each subject provided 2 networks:

Liberal position & conservative position

My liberal essay v.

My conservative essay

My liberal essay v. Your liberal essay

Which are more similar?

R2: Sources of Similarity

R2: Sources of Similarity

Sarah Shugars | @Shugars

2. Ideological "Turing test"

- 1000 subjects, recruited by YouGov
- Asked to provide "liberal" and "conservative" positions on one of three topics (1) abortion (2) minimum wage (3) national defense

Research Questions

- Is structure driven by ideology or by individual traits?
 Individual traits.
- Does structure suggest argument quality?

Hopkins and Noel, 2016

The **conservative** / **liberal** position on abortion is:

This text was written by a:

conservative

The liberal position on abortion is:

This text was written by a:

conservative

Sarah Shugars | @Shugars

The liberal position on abortion is:

A woman has the right to determine what happens to her body

This text was written by a:

conservative

The liberal position on abortion is:

A woman has the right to determine what happens to her body

Coding = 1 Authentic

This text was written by a:

conservative

liberal

The liberal position on abortion is:

This text was written by a:

conservative

The liberal position on abortion is:

It is okay to murder

This text was written by a:

conservative

The liberal position on abortion is:

It is okay to murder

Coding = 0 Ironic

This text was written by a:

conservative

liberal

The **conservative** position on abortion is:

This text was written by a:

conservative

The **conservative** position on abortion is:

Women need guidance from more superior men!

This text was written by a:

conservative

The **conservative** position on abortion is:

Women need guidance from more superior men!

Coding = 0 Ironic

This text was written by a:

conservative

liberal

The **conservative** position on abortion is:

This text was written by a:

conservative

The **conservative** position on abortion is:

All life is sacred.

This text was written by a:

conservative

The **conservative** position on abortion is:

All life is sacred.

Coding = 1 Authentic

This text was written by a:

conservative

liberal

Does structure suggest argument quality?

Does structure suggest argument quality?

Does structure suggest argument quality?

Does structure suggest argument quality?

Model 1: Coarse features

Model 2: Network features

- Model 2: Network features
 - Model 3: M1 + M2

- 2. Ideological "Turing test"
 - 1000 subjects, recruited by YouGov
 - Asked to provide "liberal" and "conservative" positions on one of three topics (1) abortion (2) minimum wage (3) national defense

Research Questions

- Is structure driven by ideology or by individual traits?
 Individual traits.
- Does structure suggest argument quality? Yes.

Hopkins and Noel, 2016

Summary

- New method for inferring structure of expressed reasons
- Reveals small but meaningful individual variation
- Correlated with known personality traits
- Potential for new insights into dynamics of public opinion

Final Thoughts

- NLP methods can be used to address a range of questions
- The key is to figure out (1) how to operationalize your question and (2) what features are of interest
- Remember: language is high dimensional

Sarah Shugars

Northeastern University <u>shugars.s@northeastern.edu</u> @Shugars she/her

Appendix

Sarah Shugars | @Shugars

October 30, 2019 | CS 6120/4120

Emotional Measures

Data: Number of Users

Data: Conversation Length

Model 1: Findings

MCMC: 6 chains of 50k Parameters: $2\beta + 4000\gamma + 4000\theta$

Confusion Matrix

Sarah Shugars | @Shugars

October 30, 2019 | CS 6120/4120

Topical correlation

Emotional correlation

Response predictors: Candidate's prev. tweet

		Significance after p correction		
	Coef	FDR	Clust	FDR+Cl
prev response	0.883	***	***	***
favorite count	-0.311	***		
retweet count	-262.234	*		
reply count	0.141	***		
quality	262.523	*		
source	0.037	***		
xday	0.169	***	**	
yday	0.239	***	*	
xhour	0.048	***		
yhour	0.193	***	*	
chars	0.367	***	***	**
has url	0.037	***		
mentions	0.155	***		
hashtags	-0.078	***	**	*
sentiment	0.362	***	*	
vader neg	0.641	***	***	**
vader pos	-0.313	***	**	*
valence	-0.084	***		
arousal	0.151	***		
dominance	-0.174	***		
time since prev	-0.658	***	***	**
topic 2	1.853	***	**	
topic 3	-0.037			
topic 4	-0.364	***		
topic 5	0.246	***		
topic 6	-0.536	***		
topic 7	-1.153	***		
topic 8	-2.787	***	***	**
topic 9	-0.573	***		
topic 10	2.404	***	**	*
Note:		*p<0.1	; **p<0.0	5; ***p<0.01

Sarah Shugars | @Shugars

*p<0.1; **p<0.05; ***p<0.01

October 30, 2019 | CS 6120/4120

Response predictors: Current tweet

	Significance after p correc			p correction
	Coef	FDR	Clust	FDR+Cl
favorite count	1.657	***		
retweet count	9.171	***		
reply count	-10.055		***	***
quality	-43.260			
source	-0.348	***	***	***
xday	-0.354	***	***	**
yday	-0.345	***	***	***
xhour	0.146	***		
yhour	-0.044	***		
chars	0.649	***	***	***
has url	0.075	***		
mentions	-0.412	***	**	
hashtags	-0.083	***	**	
sentiment	-0.135	***		
vader neg	-0.111	***		
vader pos	0.152	***		
valence	-0.524	***	**	*
arousal	-0.116	***		
dominance	0.343	***	*	
topic 2	0.815	***		
topic 3	2.140	***	**	*
topic 4	1.541	***		
topic 5	2.913	***	***	**
topic 6	1.024	***		
topic 7	2.669	***	**	*
topic 8	1.537	***		
topic 9	-0.148	***		
topic 10	2.043	***	*	
difference	-0.036	***		
difference ²	0.188	***	**	

Sarah Shugars | @Shugars

Note:

*p<0.1; **p<0.05; ***p<0.01

October 30, 2019 | CS 6120/4120

Response predictors: Potential respondent

		Significance after p correction		
	Coef	FDR	Clust	FDR+Cl
verified	-0.625	***	**	*
followers count	-54.294	***		
following count	-0.187	***		
statuses count	0.026	***		
favourites count	0.005			
comments count	-0.170	***		

Note:

*p<0.1; **p<0.05; ***p<0.01

Response predictors: Conversation features

		Significance after p correction		
	Coef	FDR	Clust	FDR+Cl
participants	-0.179	***		
thread length	0.105	***		
thread length ²	-0.026	***	***	**
Note:		*p<0.1	l; **p<0.0	5; ***p<0.01

Sarah Shugars | @Shugars

October 30, 2019 | CS 6120/4120