9/30/19

CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Outline

m=) « Maximum Entropy

* Feedforward Neural Networks
* Recurrent Neural Networks

Introduction

« So far we’ve looked at “joint (or generative) models”
* Language models, Naive Bayes, HMM
* But there is now much use of conditional or discriminative
probabilistic models in NLP, Speech, information retrieval (and
machine learning generally)
* Because:

* They give high accuracy performance
* They make it easy to incorporate lots of linguistically important features

Joint vs. Conditional Models

* We have some data {(d, c)} of paired observations d and hidden
classes c.
place probabilities over both observed data
and the hidden stuff (generate the observed data from hidden stuff):

p(c/d)=p(c,d)/p(d)

* All the classic statistic NLP models:

* n-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free
1BM machine i i models

Joint vs. Conditional Models

 Discriminative (conditional) models take the data as given, and put a
probability over hidden structure given the data:
Plcld)
* Logistic regression/maximum entropy models (this lecture), conditional random fields

* Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly
probabilistic)

Conditional vs. Joint Likelihood

<A model gives probabilities P(d,c) and tries to maximize this joint
likelihood.
* A conditional model gives probabilities P(c|d). It takes the data as
given and models only the conditional probability of the class.
* We seek to maximize conditional likelihood.
« More closely related to classification error.

http://www.ccs.neu.edu/home/luwang

9/30/19

Maximum Entropy (MaxEnt)

« Or logistic regression

Features

* In these slides and most MaxEnt work: features (or feature
functions) fare elementary pieces of evidence that link
aspects of what we observe d with a category c that we want
to predict

* A feature is a function with a bounded real value: /: C x D —
R

Example Task: Named Entity Type

LOCATION LOCATION .
in Arcadia in Québec taking Zantac saw Sue

Example features

LOCATION A w-1=“in” A isCapitalized(w)]
LOCATION A hasAccentedLatinChar(w)]

LOCATION LOCATION .
in Arcadia in Québec taking Zantac saw Sue
* Models will assign to each feature a weight:
* A positive weight votes that this configuration is likely correct
* A negative weight votes that this configuration is likely incorrect

Example features

* fi(c, d)=[c = LOCATION A w-1= “in” A isCapitalized(w)] -> weight 1.8
* /¢, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
* fi(c, d) = [c=DRUG A ends(w, “c”)] > weight 0.3

* Weights will be learned by training on a labeled dataset

More about feature functions:
an indicator function — a yes/no boolean matching function — of properties
of the input and a particular class

fl(C, d) = [(D(d) ANC= C,] [Valueis 0 or 1]

9/30/19

Feature-Based Models

* The decision about a data point is based only on the features active

at that point.

Data
BUSINESS: Stocks
hit a yearly low ...

Data
... to restructure

bank:MONEY debt.

Data

DT il NN ...
The previous fall ...

Label: BUSINESS
Features

{..., stocks, hit, a,

yearly, low, ...}

Label: MONEY
Features

{..., wa=restructure,

wa=debt, L=12, ...}

Label: NN
Features
{w=fall, z,=))
w.=previous}

Text Classification

Word Sense

POS Tagging

Disambiguation

Feature-Based Linear Classifiers

* Linear classifiers at classification time:
« Linear function from feature sets {f;} to classes {c}.
« Assign a weight 4 to each feature fi.
« We consider each class for sample d
« For a pair (c,d), features vote with their weights:
* vote(©) = ZAfi(c.d)

PERSON LOCATION DRUG
in Québec in Québec in Québec

« Choose the class ¢ which maximizes $Afi(c,d)

* Maximum Entropy:
* Make a probabilistic model from the linear combination ZAii(c,d)

exp 3 Aufi(c.d)

P(c|d,A)= -
R S o S A d) — Moz v

Feature-Based Linear Classifiers

* fi(c, d) = [c = LOCATION A w-1=“in" A isCapitalized(w)] -> weight 1.8
¢ =LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
* fi(c, d) =[c=DRUG A ends(w, “c”)] > weight 0.3

fi(e, d) =[c=LOCATION A w-1=“in” A isCapitalized(w)] -> weight 1.8
fo(c, d) = [c=LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
fc, d)=[c=DRUG A ends(w, “c”)] > weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination ZAfi(c,d)

oxp 3 A (e,d)
S exp 3 2./, d) —{Normalizes votes]

P(c|d.2) =

fi(c, d) = [c=LOCATION A w-1 = “in” AisCapitalized(w)] -> weight 1.8
fo(c, d) =[c=LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
fi(c, d)=[c=DRUG Aends(w, “c”)] > weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination ZAifi(c,d)

oxp 3 Afi(e.d)

Pl d,) - e
Sexp 3 hS(cd)
« P(lin Québec) = e'-8e-0-6/(e! 896 + 03 + ¢0) = 0.586
« P(lin Québec) = €%3 /(e'-8e0-6 + €03 + ¢0) = 0.238
« P(lin Québec) = €° /(e'8e0-6 + 93 + &%) = 0.176

» The weights are the parameters of the probability
model, combined via a “soft max” function

9/30/19

Feature-Based Linear Classifiers

* Given this model form, we will choose parameters {1;} that maximize
the conditional likelihood of the data according to this model.
* Parameter learning is omitted and not required for this course, but is
often discussed in a machine learning class.
* E.g. gradient descent for parameter learning

* We construct not only classifications, but probability distributions
over classifications.

* There are other (good!) ways of discriminating classes — SVMs,

boosting, even perceptrons — but these methods are not as trivial
to interpret as distributions over classes.

Other MaxEnt Classifier Examples

* You can use a MaxEnt classifier whenever you want to assign data points
to one of a number of classes:
* Sentence boundary detection (mikheev 2000)
* Is a period end of sentence or abbreviation?
« Sentiment analysis (pang and Lee 2002)
* Word unigrams, bigrams, POS counts, ...
* Prepositional phrase attachment (ratnaparkhi 1998)
+ Attach to verb or noun? Features of head noun, preposition, etc.
* Parsing decisions (ratnaparkhi 1997; Johnson et al. 1999, etc.)

Outline

* Maximum Entropy
== . Feedforward Neural Networks
* Recurrent Neural Networks

Neural Network Learning

* Learning approach based on modeling adaptation in biological neural
systems.

* Perceptron: Initial algorithm for learning simple neural networks
(single layer) developed in the 1950’s.

* Backpropagation: More complex algorithm for learning multi-layer
neural networks developed in the 1980’s. (not required for this class)

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

+ Neuron pre-activation (or input activation);

a(x) = b+ Y wim; = b+ w'x

« Neuron (output) activation

h(x) = gla(x)) = g(b+ X, wir;)

* W are the connection weights
+ b is the neuron bias

+ g(-) is called the activation function

ARTIFICIAL NEURON

Toplcs: connection weights, bias, activation function

range determined [
oy g(-)

from Pascal Vincents

9/30/19

ACTIVATION FUNCTION

Toplcs: linear activation function

= Performs no input
squashing

+ Not very interesting

ACTIVATION FUNCTION

Toplcs: sigmoid activation function

* Squashes the neuron’s
pre-activation between
Oand |

* Always positive

* Bounded

* Strictly increasing

i 1
Trexp(—a)

ACTIVATION FUNCTION

Toplcs: hyperbolic tangent (“tanh”) activation function

* Squashes the neuron’s
pre-activation between
-land |

* Can be positive or
negative

* Bounded

« Strictly increasing i

exp(a)—exp(~a) _ exp(2a)-1

g(a) = tanh(a) = EEGTEN=0 = S T

ACTIVATION FUNCTION

Toplcs: rectified linear activation function

* Bounded below by O
(always non-negative)

+ Not upper bounded

* Strictly increasing

* Tends to give neurons
with sparse activities

g(a) = reclin(a) = max(0, a)

class Neuron(object):

def forward(inputs):
""" assume inputs and weights are 1-D numpy arrays and bias is a number
cell body_sum = np.sum(inputs * self.weights) + self.bias

.0 / (1.0 + math.exp(-cell_body_sum)) #

firing_rate
return firing_rate

Linear Separator

* Since one-layer neuron (aka perceptron) uses linear threshold
function, it is searching for a linear separator that
discriminates the classes.

03

02

9/30/19

ARTIFICIAL NEURON

Topics: capacity of single neuron

+ Can solve linearly separable problems

OR (11, 1) AND (71.25) AND (1,7)

.
| | a0 | o o,
a a ’ a ,
& & . & ,
0| of,”0 o 0| o /A
,
) | o | o [
1 T T

ARTIFICIAL NEURON

Topics: capacity of single neuron

- Can't solve non linearly separable problems..

XOR (2, 29) XOR (z1, z2)
! A o - s A
& ? N
0 o A 0 oM A
N
o 1) [
1 AND (77,

* .. unless the input is transformed in a better representation

NEURAL NETWORK

Toplcs: single hidden layer neural network
« Hidden layer pre-activation:
a(x) = bW + Wix

(a0 =0+ 5, W,

- Hidden layer activation:
h(x) = g(a(x) @

« Output layer activation:

1) :[(i‘ OO &

output activation function

NEURAL NETWORK

Topics: softmax activation function

* For mufti-class classification:

» we need multple outputs (1 output per class)

abilty ply = ¢[x)

» we would like to estimate the conditional pro

+ We use the softmax activation function at the output:
T
explar explac)
o(a) = softmax(a) = [Zc B e
» strictly positive

* Predicted class is the one with highest estimated probability

NEURAL NETWORK

Topics: multilayer neural network
* Could have L hidden layers:
» layer pre-activation for k-0 (H(x) = x)
a®(x) = b® + WMk (x)
I
» hidden layer activation (kfrom 10 1))

h®)(x) = g(a®(x)) @

» output layer activation (k—I+ 1) w J

B (x) = ofal")(x)) = £(x)

f = lambda x: 1.0/(1.0 + np.exp(-x)) #
x = np.random.randn(3, 1) # x
1= £(np.dot(Wl, x) + bl)
2 = £(np.dot(W2, hl) + b2)
out = np.dot(W3, h2) + b3 # o

9/30/19

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincents i)

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(irom Pascal Vincents sides)

CAPACITY OF NEURAL NETWORK

Topics: universal approximation

« Universal approximation theorem (Homik, 1991):

e hidden layer neural network with a finear output unit can approximate:
ntinuous function arbitrarily well, given enough hidden units’”

- The resutt applies for sigmoid, tanh and many other hidden
layer activation functions

+ This is a good result, but it doesn't mean there is a learning
algorithm that can find the necessary parameter values!

3 hidden neurons 6 hidden neurons 20 hidden neurons
o o . o . °
o o o = P 5 o 4
. o o d . o 4 o
. o . o . o
.. .. e
« o .« o e
o . . . o .
e S e Hs o oa T °
o o o

How to train a neural network?

Toplcs: multilayer neural network
* Could have L hidden layers:

» layer input activation for k>0 (b (x) = x)

a®)(x) = b®) + WORK-D ()

» hidden layer activation (k from 1 to L)
h®)(x) = g(a® (x))

» output layer activation (k=L+1):

h(L+l)(x) = o(a(L+1)(x)) =f(x)

9/30/19

Empirical Risk Minimization

Topics: empirical risk minimization, regularization

* Empirical risk minimization

» framework to design learning algorithms
i

arg min — U(f x(f);e ,y(‘) + AQ(0

in - 3 50).0) +2(0)

» U(f(x);6), y®) isa loss function
» Q(8) is a regularizer (penalizes certain values of 6)

* Learning is cast as optimization
» ideally, we'd optimize classification error; but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

LOSS FUNCTION

Topics: loss function for classification
- Neural network estimates f(x). = p(y = c|x)

» we could maximize the probabilties of %) given x®) in the training set

* To frame as minimization, we minimize the

negative log-likelihood natural log (In)

U(E(x),y) = = 2 1y=c) log f (%) = —log f(x)y

» we take the log to simplfy for numerical stability and math simplicity

» sometimes referred to as cross-entropy

Total error on training set

0 . . . "
0 50 100 150 200 250 300 350 400
Number of epochs

[figure from Greg Mori’s slides]

REGULARIZATION

Topics: L2 regularization

20 =225, (W) = Swe

Empirical Risk Minimization

Topics: empirical risk minimization, regularization

+ Empirical risk minimization

+ framework o design learning algorithms
1
argmin— > (f(x?;8),5®) + AQ(0
i 31036, 4%) + 916)

» U(f(x®;0),y®) isaloss function
» Q(O) is a regularizer (penalizes certain values of @)
* Learning is cast as optimization
» ideally, we'd optimize classification error, but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g upper bound)

A =0.001 A=0.01
e - -
3 o > . o ¢
: y

[http://cs231n github.io/neural-networks-1/]

9/30/19

eradients would then be

ights to the sa

alue
at all hicden units in a layer wil

ymetry

sample W from U [—b, b] where b=

the idea is to sample around 0 but bres

et 1T 1
ymmetry
other values of b could work well (1o

see Glorol & Bengo, 2010)

INITIALIZATION Model Learning
Topics: initialization
* For biases
» initalize all to O
« For weights
» Can'Uinitialize weights Lo 0 with tanh ac

* Further reading on BP:

* Backpropagation (BP) algorithm (not required for this course)

* https://towardsdatascience.com/understanding-backpropagation-algorithm-
Zbb32a2foofd
example/

Outline

* Maximum Entropy

* Feedforward Neural Networks
== . Recurrent Neural Networks

Long Distance Dependencies
« It is very difficult to train NNs to retain information over many time steps
« This makes it very difficult to handle long-distance dependencies, such as
subject-verb agreement.
said hito _?_

®

* E.g. Jane walked into the room. John walked in too. It was late in the day. Jane

Recurrent Neural Networks

Feed-forward NN
h=g¢g(Vx+c)

h; = ¢(Vx; + Uhy;_4 +¢)
y=Wh+b y:=Wh; +b

Recurrent NN

Recurrent Neural Networks

Feed-forward NN
h=g(Vx+c) hp=

TAV
T g

Recurrent NN

ettt
y=Wh+b h, = g(V[x;;h 1] +¢)
y:=Wh:+b
| I I——

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

9/30/19

Long-Short Term Memory Networks (LSTMs)
®

1 0 — > <

Neural Network ~ Pointwise Vector
Operation Transfer ~ COncatenate Copy

Another Visualization

Forget some of the past Add gew memories
/\ﬁq‘
)

Capable of modeling long-distant dependencies between states.

Figure: Christopher Olah

Long-Short Term Memory Networks (LSTMs)

i o(Wilxe, he] + b))
fo | _ [o(Wilxe b +by)
o o(Wolxe, he] + bo)
g F(Wlxe, he] + bg)

ce=fixce1tixg

he = o, * f(ct)

Use gates to control the information to
be added from the input, forgot from the
previous memories, and outputted

G and f are sigmoid and tanh function
respectively, to map the value to [-1, 1]

Sequence to Sequence

* Encoder/Decoder framework maps one sequence to a "deep vector"
then another LSTM maps this vector to an output sequence.

Encoder Decoder
| |

1 \ D [

This is my cat C’est mon chat

Summary of LSTM Application Architectures

many to many many to many

ST R /s I
DI DO G

tot

I Ooo oo il

Video Captioning POS Tagging
Machine Translation Language Modeling

Image Captioning Video Activity Recog
Text Classification

Successful Applications of LSTMs
* Speech recognition: Language and acoustic modeling

* Sequence labeling
* POS Tagging
* NER
* Phrase Chunking
* Neural syntactic and semantic parsing
* Image captioning
* Sequence to Sequence

* Machine Translation (Sustkever, Vinyals, & Le, 2014)
* Video Captioning (input sequence of CNN frame outputs)

10

