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Outline

• Maximum Entropy
• Feedforward Neural Networks
• Recurrent Neural Networks



Introduction

• So far we’ve looked at “joint (or generative) models”
• Language models, Naive Bayes, HMM

• But there is now much use of conditional or discriminative 
probabilistic models in NLP, Speech, information retrieval (and 
machine learning generally)
• Because:
• They give high accuracy performance
• They make it easy to incorporate lots of linguistically important features



Joint vs. Conditional Models

• We have some data {(d, c)} of paired observations d and hidden 
classes c.
• Joint (generative) models place probabilities over both observed data 

and the hidden stuff (generate the observed data from hidden stuff): 

• All the classic statistic NLP models:
• n-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free 

grammars, IBM machine translation alignment models

p(c|d)=p(c,d)/p(d)



Joint vs. Conditional Models

• Discriminative (conditional) models take the data as given, and put a 
probability over hidden structure given the data:

• Logistic regression/maximum entropy models (this lecture), conditional random fields
• Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly 

probabilistic)

P(c|d)



Conditional vs. Joint Likelihood

• A joint model gives probabilities P(d,c) and tries to maximize this joint 
likelihood.
• A conditional model gives probabilities P(c|d). It takes the data as 

given and models only the conditional probability of the class.
• We seek to maximize conditional likelihood.
• More closely related to classification error.



Maximum Entropy (MaxEnt)

• Or logistic regression



Features

• In these slides and most MaxEnt work: features (or feature 
functions) f are elementary pieces of evidence that link 
aspects of what we observe d with a category c that we want 
to predict
• A feature is a function with a bounded real value: f: C ´ D → 
ℝ



Example Task: Named Entity Type

LOCATION
in Québec

PERSON
saw Sue

DRUG
taking Zantac

LOCATION
in Arcadia



Example features

• f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)]
• f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)]
• f3(c, d) º [c = DRUG Ù ends(w, “c”)]

• Models will assign to each feature a weight:
• A positive weight votes that this configuration is likely correct
• A negative weight votes that this configuration is likely incorrect

LOCATION
in Québec

PERSON
saw Sue

DRUG
taking Zantac

LOCATION
in Arcadia



Example features

• f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)] -> weight 1.8
• f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)] -> weight  -0.6
• f3(c, d) º [c = DRUG Ù ends(w, “c”)] -> weight  0.3

• Weights will be learned by training on a labeled dataset



More about feature functions:
an indicator function – a yes/no boolean matching function – of properties 
of the input and a particular class

fi(c, d) º [Φ(d) Ù c = cj] [Value is 0 or 1]



Feature-Based Models
• The decision about a data point is based only on the features active 

at that point.

BUSINESS: Stocks 
hit a yearly low …

Data

Features
{…, stocks, hit, a, 
yearly, low, …}

Label: BUSINESS

Text Classification

… to restructure 
bank:MONEY debt.

Data

Features
{…, w-1=restructure, 
w+1=debt, L=12, …}

Label: MONEY

Word Sense 
Disambiguation

DT      JJ       NN …
The previous fall …

Data

Features
{w=fall, t-1=JJ 
w-1=previous}

Label: NN

POS Tagging



Feature-Based Linear Classifiers

• Linear classifiers at classification time:
• Linear function from feature sets {fi} to classes {c}.
• Assign a weight li to each feature fi.
• We consider each class for sample d
• For a pair (c,d), features vote with their weights: 

• vote(c) = Slifi(c,d)

• Choose the class c which maximizes Slifi(c,d)

LOCATION
in Québec

DRUG
in Québec

PERSON
in Québec

i

i



• Maximum Entropy:
• Make a probabilistic model from the linear combination Slifi(c,d)
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Feature-Based Linear Classifiers

• f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)] -> weight 1.8
• f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)] -> weight  -0.6
• f3(c, d) º [c = DRUG Ù ends(w, “c”)] -> weight  0.3



• Maximum Entropy:
• Make a probabilistic model from the linear combination Slifi(c,d)
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f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)] -> weight 1.8
f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)] -> weight  -0.6
f3(c, d) º [c = DRUG Ù ends(w, “c”)] -> weight  0.3



• Maximum Entropy:
• Make a probabilistic model from the linear combination Slifi(c,d)

• P(LOCATION|in Québec) = e1.8e–0.6/(e1.8e–0.6 + e0.3 + e0) = 0.586
• P(DRUG|in Québec) = e0.3 /(e1.8e–0.6 + e0.3 + e0) = 0.238
• P(PERSON|in Québec) = e0 /(e1.8e–0.6 + e0.3 + e0) = 0.176

• The weights are the parameters of the probability 
model, combined via a “soft max” function
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f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)] -> weight 1.8
f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)] -> weight  -0.6
f3(c, d) º [c = DRUG Ù ends(w, “c”)] -> weight  0.3



Feature-Based Linear Classifiers

• Given this model form, we will choose parameters {li} that maximize 
the conditional likelihood of the data according to this model.
• Parameter learning is omitted and not required for this course, but is 

often discussed in a machine learning class. 
• E.g. gradient descent for parameter learning

• We construct not only classifications, but probability distributions 
over classifications.
• There are other (good!) ways of discriminating classes – SVMs, 

boosting, even perceptrons – but these methods are not as trivial 
to interpret as distributions over classes.



Other MaxEnt Classifier Examples

• You can use a MaxEnt classifier whenever you want to assign data points 
to one of a number of classes:
• Sentence boundary detection (Mikheev 2000)

• Is a period end of sentence or abbreviation?
• Sentiment analysis (Pang and Lee 2002)

• Word unigrams, bigrams, POS counts, …
• Prepositional phrase attachment (Ratnaparkhi 1998)

• Attach to verb or noun? Features of head noun, preposition, etc.
• Parsing decisions (Ratnaparkhi 1997; Johnson et al. 1999, etc.)



Outline

• Maximum Entropy
• Feedforward Neural Networks
• Recurrent Neural Networks



Neural Network Learning

• Learning approach based on modeling adaptation in biological neural 
systems.
• Perceptron: Initial algorithm for learning simple neural networks 

(single layer) developed in the 1950’s.
• Backpropagation: More complex algorithm for learning multi-layer 

neural networks developed in the 1980’s. (not required for this class)

















Linear Separator
• Since one-layer neuron (aka perceptron) uses linear threshold 

function, it is searching for a linear separator that 
discriminates the classes.

o3

o2

??

























How to train a neural network?



Empirical Risk Minimization





[figure from Greg Mori’s slides]





Empirical Risk Minimization



[http://cs231n.github.io/neural-networks-1/]





Model Learning

• Backpropagation (BP) algorithm (not required for this course)
• Further reading on BP:
• https://towardsdatascience.com/understanding-backpropagation-algorithm-

7bb3aa2f95fd
• https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-

example/

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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Long Distance Dependencies
• It is very difficult to train NNs to retain information over many time steps
• This makes it very difficult to handle long-distance dependencies, such as 

subject-verb agreement.
• E.g. Jane walked into the room. John walked in too. It was late in the day. Jane 

said hi to _?_



Recurrent Neural Networks



Recurrent Neural Networks



Long-Short Term Memory Networks (LSTMs)



Another Visualization

Figure: Christopher Olah

Capable of modeling long-distant dependencies between states. 



Long-Short Term Memory Networks (LSTMs)

Use gates to control the information to
be added from the input, forgot from the
previous memories, and outputted.
σ and f are sigmoid and tanh function 
respectively, to map the value to [-1, 1]



Sequence to Sequence
• Encoder/Decoder framework maps one sequence to a "deep vector" 

then another LSTM maps this vector to an output sequence.

This is my cat C’est mon chat

Encoder Decoder



Summary of LSTM Application Architectures

Image Captioning Video Activity Recog
Text Classification

Video Captioning
Machine Translation

POS Tagging
Language Modeling



Successful Applications of LSTMs
• Speech recognition: Language and acoustic modeling
• Sequence labeling

• POS Tagging 
• NER
• Phrase Chunking 

• Neural syntactic and semantic parsing
• Image captioning
• Sequence to Sequence

• Machine Translation (Sustkever, Vinyals, & Le, 2014)
• Video Captioning (input sequence of CNN frame outputs)


