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CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
Northeastern University

Webpage: www.ccs.neu.edu/home/luwang
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Outline

• Vector Semantics

• Sparse representation
• Pointwise Mutual Information (PMI)

• Dense representation
• Singular Value Decomposition (SVD)
• Neural Language Model
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Sparse versus dense vectors

•PPMI vectors are
• long (length |V|= 20,000 to 50,000)
• sparse (most elements are zero)
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Sparse versus dense vectors

•PPMI vectors are
• long (length |V|= 20,000 to 50,000)
• sparse (most elements are zero)

•Alternative: learn vectors which are
• short (length 200-1000)
• dense (most elements are non-zero)
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Sparse versus dense vectors

• Why dense vectors?
• Short vectors may be easier to use as features in machine learning 

(less weights to tune)
• Dense vectors may generalize better than storing explicit counts
• They may do better at capturing synonymy:
• car and automobile are synonyms; but are represented as 

distinct dimensions; this fails to capture similarity between a 
word with car as a neighbor and a word with automobile as a 
neighbor
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Two methods for getting short dense vectors

•Singular Value Decomposition (SVD)

•“Neural Language Model” – inspired by predictive 
models
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http://www.ccs.neu.edu/home/luwang
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Singular Value Decomposition (SVD)
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Rank of a Matrix

• What is the rank of a matrix A?
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Rank of a Matrix

• What is the rank of a matrix A?

• Number of linearly independent columns of A
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Rank of a Matrix

• What is the rank of a matrix A?

• Number of linearly independent columns of A

• Rank is 2
• We can rewrite A as two “basis” vectors: [1 2 1] [-2 -3 1]
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Rank as “Dimensionality”

B C
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Rank as “Dimensionality”

• Rewrite the coordinates in a more efficient way!
• Old basis vectors: [1 0 0], [0 1 0], [0 0 1]
• New basis vectors: [1 2 1], [-2 -3 1]

B C
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Intuition of Dimensionality Reduction
• Approximate an N-dimensional dataset using fewer dimensions

• By first rotating the axes into a new space
• In which the highest order dimension captures the most variance in the 

original dataset
• And the next dimension captures the next most variance, etc.
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Sample Dimensionality Reduction
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Sample Dimensionality Reduction
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Singular Value Decomposition
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Appendix 

An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 
matrix (X) is equal to the product of  three other matrices (W, S, and 
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 

Contexts 

3= 
m x m  m x c  

w x c  w x m  

Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 

(assuming the matrix has rank m, m<c)
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Singular Value Decomposition

Any rectangular w x c matrix X equals the 
product of 3 matrices:
W: rows corresponding to original but m 
columns represents a dimension in a new 
latent space, such that 
• m column vectors are orthogonal to each other
• Columns are ordered by the amount of variance 

in the dataset each new dimension accounts for
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An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
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topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
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m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
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A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 
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Singular Value Decomposition

Any rectangular w x c matrix X equals the 
product of 3 matrices:
W: rows corresponding to original but m 
columns represents a dimension in a new 
latent space, such that 
• m column vectors are orthogonal to each other
• Columns are ordered by the amount of variance 

in the dataset each new dimension accounts for

S:  diagonal m x m matrix of singular values 
expressing the importance of each dimension.
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able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
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The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 
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Singular Value Decomposition
Any rectangular w x c matrix X equals the 
product of 3 matrices:
W: rows corresponding to original but m 
columns represents a dimension in a new 
latent space, such that 
• m column vectors are orthogonal to each other
• Columns are ordered by the amount of variance 

in the dataset each new dimension accounts for

S:  diagonal m x m matrix of singular values 
expressing the importance of each dimension.
C: columns corresponding to original but m 
rows corresponding to singular values
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Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
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discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
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See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 
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Singular Value Decomposition
Any rectangular w x c matrix X equals the 
product of 3 matrices:
W: rows corresponding to original but m 
columns represents a dimension in a new 
latent space, such that 
• m column vectors are orthogonal to each other
• Columns are ordered by the amount of variance 

in the dataset each new dimension accounts for

S:  diagonal m x m matrix of singular values 
expressing the importance of each dimension.
C: columns corresponding to original but m 
rows corresponding to singular values
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An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 
matrix (X) is equal to the product of  three other matrices (W, S, and 
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 

Contexts 

3= 
m x m  m x c  

w x c  w x m  

Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 

Existing tools from Python, 
MATLAB, R, etc, for SVD

20

SVD applied to term-document matrix:
Latent Semantic Analysis

• If instead of keeping all m dimensions, we just keep the top k singular values. 
Let’s say 300.
• Each row of W (keeping k columns of the original W):
• A k-dimensional vector
• Representing word w
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C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 
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Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 
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SVD on Term-Document Matrix: Example

• The matrix X
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there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 
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Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 

Matrix W

Matrix S

Matrix C
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returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
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c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 
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Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 
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Reduce dimension: The Matrix W

25

Reduce dimension: The Matrix S

26

Reduce dimension: The Matrix C

27

Reduce dimension: The Matrix W

28

Reduce dimension: The Matrix W

Similarity between ship and boat vs ship and wood ?

29

Reduce dimension: The Matrix W

30
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More details

• 300 dimensions are commonly used

• The cells are commonly weighted by a product of two weights (TF-IDF)
• Local weight: term frequency (or log version)
• Global weight: idf

31

Let’s return to PPMI word-word matrices

• Can we apply SVD to them?

32

SVD applied to term-term matrix

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).

(assuming the matrix has rank |V|, may not be true)

33

SVD applied to term-term matrix

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).

(assuming the matrix has rank |V|, may not be true)
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Truncated SVD on term-term matrix

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).
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Truncated SVD produces embeddings

• Each row of W matrix is a k-dimensional 
representation of each word w
• K might range from 50 to 1000

• Generally we keep the top k dimensions, but some 
experiments suggest that getting rid of the top 1 
dimension or  even the top 50 dimensions is 
helpful (Lapesa and Evert 2014).

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
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Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).
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Embeddings versus sparse vectors

•Dense SVD embeddings sometimes work better than 
sparse PPMI matrices at tasks like word similarity
• Denoising: low-order dimensions may represent unimportant 

information
• Truncation may help the models generalize better to unseen data.
• Having a smaller number of dimensions may make it easier for 

classifiers to properly weight the dimensions for the task.
• Dense models may do better at capturing higher order co-

occurrence. 
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