CS4120: Natural Language Processing

Instructor: Prof. Lu Wang
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang



http://www.ccs.neu.edu/home/luwang

Outline

* VVector Semantics

* Sparse representation
e Pointwise Mutual Information (PMl)

* Dense representation
 Singular Value Decomposition (SVD)
* Neural Language Model



Sparse versus dense vectors

* PPMI vectors are
* long (length |V|= 20,000 to 50,000)
* sparse (most elements are zero)



Sparse versus dense vectors

* PPMI vectors are
* long (length |V|= 20,000 to 50,000)
* sparse (most elements are zero)

e Alternative: learn vectors which are

* short (length 200-1000)
* dense (most elements are non-zero)



Sparse versus dense vectors

* Why dense vectors?
* Short vectors may be easier to use as features in machine learning
(less weights to tune)
* Dense vectors may generalize better than storing explicit counts
* They may do better at capturing synonymy:

e car and automobile are synonyms; but are represented as
distinct dimensions; this fails to capture similarity between a
word with car as a neighbor and a word with automobile as a
neighbor



Two methods for getting short dense vectors

 Singular Value Decomposition (SVD)

* “Neural Language Model” — inspired by predictive
models



Singular Value Decomposition (SVD)



Rank of a Matrix

e What is the rank of a matrix A?
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* What is the rank of a matrix A?
* Number of linearly independent columns of A
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Rank of a Matrix

* What is the rank of a matrix A?
* Number of linearly independent columns of A

1 2 1
A=|_2 _3 i
3 5 0

e Rankis 2

 We can rewrite A as two “basis” vectors: [1 2 1] [-2 -3 1]



Rank as “Dimensionality”

Cloud of points 3D space:

* Think of point positions

asamatrix:[1 2 1]a
-2 -3 1|B
Trowperpoint: (3 § 0|C




Rank as “Dimensionality”

Cloud of points 3D space: A,}g -
‘ p't'g b;;évﬁ* ?J-::‘--.x‘ d;-' .
* Think of point positions N\ ST . ot

asamatrix:[1 2 1]a
-2 -3 1|B
Trowperpoint: | 3 3 0|C

* Rewrite the coordinates in a more efficient way!
e Old basis vectors: [100],[010], [00 1]
 New basis vectors: [1 2 1], [-2 -3 1]



Intuition of Dimensionality Reduction

* Approximate an N-dimensional dataset using fewer dimensions
* By first rotating the axes into a new space

* In which the highest order dimension captures the most variance in the
original dataset

* And the next dimension captures the next most variance, etc.



Sample Dimensionality Reduction

A




Sample Dimensionality Reduction

A




Singular Value Decomposition

Contexts
% ‘Sv“ c
ol X [=| W .
=
m X m mXx ¢
W X C W Xm

(assuming the matrix has rank m, m<c)



Singular Value Decomposition

Any rectangular w x ¢ matrix X equals the
product of 3 matrices:

W: rows corresponding to original but m
columns represents a dimension in a new
latent space, such that

* m column vectors are orthogonal to each other

* Columns are ordered by the amount of variance
in the dataset each new dimension accounts for
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Singular Value Decomposition

Any rectangular w x ¢ matrix X equals the
product of 3 matrices:

W: rows corresponding to original but m
columns represents a dimension in a new
latent space, such that

* m column vectors are orthogonal to each other

* Columns are ordered by the amount of variance
in the dataset each new dimension accounts for

S: diagonal m x m matrix of singular values

expressing the importance of each dimension.

C: columns corresponding to original but m
rows corresponding to singular values

Contexts
® 'S C
5| x w
o = >
=
m x m mXo_ ¢
W Xe W xm

Existing tools from Python,
MATLAB, R, etc, for SVD




SVD applied to term-document matrix:
Latent Semantic Analysis

* If instead of keeping all m dimensions, we just keep the top k singular values.
Let’s say 300.

e Each row of W (keeping k columns of the original W):
* A k-dimensional vector
* Representing word w

Contexts
“‘l?
[ S% C
S| x |=|w W
hxh Mmxc
_ k kK
k
W X C WK,‘H



SVD on Term-Document Matrix: Example

e The matrix X

di dy d3 dy ds ds
ship 1 0 1 0 0 O
boat |10 1 0 0 O O
ocecan |1 1 O O O O
wood |1 O O 1 1 O
tree 0O 0 O 1 o0 1




Contexts

Matrix W . "S o
1 2 3 4 5 g X =W
ship —0.44 —-0.30 0.57 0.58 0.25 mxm mMXc
boat | —0.13 —-0.33 —-0.59 0.00 0.73
ocean | —048 —051 —0.37 0.00 -0.61 Ve woaxm
wood | —0.70 0.35 0.15 —-0.58 0.16
tree —0.26 0.6 —-041 0.58 —-0.09
Matrix S
1 2 3 4 5
1 [2.16 0.00 0.00 0.00 0.00
2 [0.00 159 0.00 0.00 0.00
3 [0.00 0.00 1.28 0.00 0.00
4 | 0.00 0.00 0.00 1.00 0.00
5 10.00 0.00 0.00 0.00 0.39 _
Matrix C
dy d» d3 dy ds de
1 —-0.75 -028 —-0.20 -045 -0.33 -0.12
2 —-0.29 -053 —-0.19 063 0.22 0.41
3 028 -0.75 045 -020 0.12 -0.33
4 000 000 058 0.00 -0.58 0.58
5 —-053 029 063 019 041 -0.22




Contexts

Matrix W a "S c
1 2 3 4 5 _E_ = | W
ship —0.44 —-0.30 0.57 0.58 0.25 mxm mxc
boat | —0.13 —-0.33 }0.59 0.00 0.73
ocean | —0.48 —-051 }0.37 0.00 -0.61 Wwxe Wxm
wood | —0.70 0.35 0.15 -0.58 0.16
tree —0.26 0.65 041 0.58 —-0.09
Matrix S
1 2 3 4 5
1 2.16 0.00 0.00 0.00 o0.00
2 [0.00 159 0.00 0.00 0.00
3 [0.00 000 |1.28 0.00 0.00
4 | 000 0.00 |0.00 1.00 0.00
5 [ 0.00 0.00 |0.00 0.00 0.39 _
Matrix C
dy d> d3 ds ds de
1 -0.7% —-0.28 —-0.20 -0.45 -0.33 -0.12
2 —-0.29 -0.53 -0.19 0.63 0.22 0.41
3 028 —0.75 0.45 —-0.20 0.12 -0.33
4 0.00 0.00 0.58 0.00 -0.58 0.58
5 —0.53 0.29 0.63 0.19 041 -0.22




Reduce dimension: The Matrix W

1 2 3 4 5
ship —0.44 —-0.30 0.57 0.58 0.25
boat —0.13 —-0.33 —-0.59 0.00 0.73
ocean | —0.48 —-051 —-0.37 0.00 -—-0.61
wood | —0.70 0.35 0.15 —-0.58 0.16
tree —0.26 0.65 —-0.41 0.58 —-0.09

1 2 3 4 5

ship —0.44 —-0.30 0.00 0.00 0.00

‘boat —0.13 —-0.33 0.00 0.00 0.00

ocean —0.48 —-0.51 0.00 0.00 0.00

wood —0.70 0.35 0.00 0.00 0.00

tree —0.26 0.65 0.00 0.00 0.00



Reduce dimension: The Matrix S
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Reduce dimension: The Matrix C

i & d d ds
—0.75 —028 —020 —045 —033 —0.2
~029 -053 —019 063 022 041
028 075 045 —020 012 —0.33
000 000 058 000 -058 0.58
~0.53 029 063 019 041 —0.22

di b d d d5s d

—0.75 —028 020 045 —033 —0.12

-029 —0.53 —0.19 063 022 041

‘ 0.00 000 000 000 000 0.0

0.00 000 000 000 000 0.00

0.00 000 000 000 000 0.00



Reduce dimension: The Matrix W

d d» d3 dy dy dg 1 5 3 4 .
ship |1 0 1 0 0 O ship —0.44 —030 0.00 0.00 0.00
boat |0 1 0 0 0 O boat —0.13 —0.33 0.00 0.00 0.00
ocean | 1 1 0 0 0 0 :> ocean —0.48 —-0.51 0.00 0.00 0.00
wood |1 0 0 1 1 0 wood —0.70 0.35 0.00 0.00 0.00
ree 100 0 1 0 1 tree —026 0.65 0.00 0.00 0.00




Reduce dimension: The Matrix W

d d» d3 dy dy dg 1 5 3 4 .
ship |1 0 1 0 0 O ship —0.44 —030 0.00 0.00 0.00
boat |0 1 0 0 0 O boat —0.13 —0.33 0.00 0.00 0.00
ocean | 1 1 0 0 0 0 :> ocean —0.48 —-0.51 0.00 0.00 0.00
wood |1 0 0 1 1 0 wood —0.70 0.35 0.00 0.00 0.00
ree 100 0 1 0 1 tree —026 0.65 0.00 0.00 0.00

Similarity between ship and boat vs ship and wood ?



Reduce dimension: The Matrix W

di dy d3 dy dyg dg 1 5 3 4 .
ship |1 0 1 0 0 O ship —0.44 —-030 000 0.00 0.00
boat [0 1 0 0 0 O boat —0.13 —0.33 0.00 0.00 0.00
ocean | 1 1 0 0 0 0 :> ocean —0.48 —0.51 0.00 0.00 0.00
wood |1 0 0 1 1 0 wood —0.70 0.35 0.00 0.00 0.00
ree 100 0 1 0 1 tree —026 0.65 0.00 0.00 0.00




More details

* 300 dimensions are commonly used

* The cells are commonly weighted by a product of two weights (TF-IDF)

* Local weight: term frequency (or log version)
* Global weight: idf



Let’s return to PPMI word-word matrices

* Can we apply SVD to them?



SVD applied to term-term matrix

Vx|V

Vx|V

0 0 0 ..
Vx|V

. Oy

Vx|V

(assuming the matrix has rank |V|, may not be true)



SVD applied to term-term matrix

Vx|V

op 0 O 0
0 oo 0O 0

OOO.GV

V| x [V V| x|V] V| x|V

(assuming the matrix has rank |V|, may not be true)



Truncated SVD on term-term matrix

I ] I 1o 0 0 O_[ C
0 oo O 0 kx V]

Vx|V V| xk kxk



Truncated SVD produces embeddings

e Each row of W matrix is a k-dimensional embedding T -
representation of each word w for
. A I .
* K might range from 50 to 1000 word |

* Generally we keep the top k dimensions, but some
experiments suggest that getting rid of the top 1
dimension or even the top 50 dimensions is
helpful (Lapesa and Evert 2014).




Embeddings versus sparse vectors

* Dense SVD embeddings sometimes work better than

sparse PPMI matrices at tasks like word similarity

* Denoising: low-order dimensions may represent unimportant
information

* Truncation may help the models generalize better to unseen data.

* Having a smaller number of dimensions may make it easier for
classifiers to properly weight the dimensions for the task.

* Dense models may do better at capturing higher order co-
occurrence.



