1/29/20

CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang

Outline

==) « Maximum Entropy
* Feedforward Neural Networks
* Recurrent Neural Networks

Maximum Entropy (MaxEnt)

* Or logistic regression

Features

* In these slides and most MaxEnt work: features (or feature
functions) fare elementary pieces of evidence that link
aspects of what we observe d with a category c that we want
to predict

* A feature is a function with a bounded real value: f: C x D —
R

Example Task: Named Entity Type

LOCATION
in Arcadia

LOCATION

in Québec taking Zantac saw Sue

Example features

* fi(c, d) = [c = LOCATION A w-1= “in” A isCapitalized(w)]
* fac, a ¢ =LOCATION A hasAccentedLatinChar(w)]
* fi(c, d) = [c = DRUG A ends(w, “c”)]

LOCATION
in Arcadia

LOCATION

in Québec taking Zantac saw Sue

* Models will assign to each feature a weight:
« A positive weight votes that this configuration is likely correct
« A negative weight votes that this configuration is likely incorrect

http://www.ccs.neu.edu/home/luwang

1/29/20

Example features

* fi(c, d)=[c =LOCATION A w-1="in" A isCapitalized(w)] -> weight 1.8
* f2(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
* fi(c, d) = [c = DRUG A ends(w, “c”)] > weight 0.3

* Weights will be learned by training on a labeled dataset

More about feature functions:
an indicator function — a yes/no boolean matching function — of properties
of the input and a particular class

[Value is 0 or 1]

Jie, d)=[D(d) Ac=c¢]

11

8
Feature-Based Models Feature-Based Linear Classifiers
* The decision about a data point is based only on the features active . e P N

at that point. * Linear classifiers at classification time:

« Linear function from feature sets {f} to classes {c}.

Data Data Data « Assign a weight 4 to each feature f.

BUSINESS: Stocks ... to restructure DT JJ NN ... - We consider each class for sample d
hit a yearly low ... bank:MONEY debt. The previous fall ... « For a pair (c,d), features vote with their weights:
Label: BUSINESS Label: MONEY Label: NN * vote(€) = 2A/ie.d)

Features Features Features PERSON LOCATION DRUG
{..., stocks, hit, a, {..., wa=restructure, {w=fall, £,=J) in Québec in Québec in Québec
yeaﬂy’ low, ...} w+1=debt, L=12, ...} wl:previous}

Text Classification Word Sense POS Tagging « Choose the class ¢ which maximizes $Afi(c,d)

Disambiguation
9 10

Feature-Based Linear Classifiers

* Maximum Entropy: A . P, .
. v " i . « fi(c, d) = [c =LOCATION A w-1="in" A isCapitalized(w)] -> weight 1.8
Make a probabilistic model from the linear combination 2 Aifi(c,d) « /¢, d) = [= LOCATION A hasAccentedLatinChar(w)] - weight -0.6
exp » A fi(c,d) * fi(c, d) = [c = DRUG A ends(w, “c”)] -> weight 0.3
P(c|d,2) = 2L °
Sew S AL d)
12

1/29/20

fi(c, d) = [c = LOCATION A w-1= “in” A isCapitalized(w)] -> weight 1.8
f2(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6

f3(c, d)=[c=DRUG A ends(w, “¢”)] -> weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination ZAii(c,d)

xp 2 f(e.d)
b S 7 d)

P(c|d,7) =

fi(e, d)=[c=LOCATION A w-1=“in" A isCapitalized(w)] -> weight 1.8
f2(c, d) = [c = LOCATION A hasAccentedLatinChar(w)] -> weight -0.6
fi(c, d)=[c=DRUG A ends(w, “c”)] > weight 0.3

* Maximum Entropy:
* Make a probabilistic model from the linear combination ZAfi(c,d)

Pleld.h) exp 3 (e d)
cld,A)= -
> exp P AL, (' d) —[Normalizes votes |

 P(lin Québec) = e'-8e-0-6/(e!-8e-06 + €03 + €%) = 0.586
- P(lin Québec) = %3 /(e'-8e706 + 03 + %) = 0.238
. P(lin Québec) = e° /(e'8e70-6 + 03 + %) = 0.176

» The weights are the parameters of the probability
model, combined via a “soft max” function

13 14
Feature-Based Linear Classifiers Outline
* Given this model form, we will choose parameters {;} that maximize * Maximum Entropy
the conditional likelihood of the data according to this model. == « Feedforward Neural Networks
* Parameter learning is omitted and not required for this course, but is « Recurrent Neural Networks
often discussed in a machine learning class.
+ E.g. gradient descent for parameter learning
15 16
Neural Network Learning ARTIFICIAL NEURON
« Learning approach based on modeling adaptation in biological neural B = el e ac e ioniiincion
systems. * Neuron pre-activation (or input activation):
* Perceptron: Initial algorithm for learning simple neural networks a(x) =b+ 3, wir; = b+ w'x
(single layer) developed in the 1950’s.
. . . . + Neuron (output) activation
* Backpropagation: More complex algorithm for learning multi-layer e £ e
neural networks developed in the 1980’s. (not required for this class) i(x) = gla(x)) = g(b+ 3, wiar;)
+ W are the connection weights
* b is the neuron bias
+ g(-) is called the activation function
17 18

1/29/20

ARTIFICIAL NEURON

Toplcs: connection weights, bias, activation function

(s
jr ':Z.‘.Z::‘;z"ii X,
4 ﬂ#ﬂ?’

1 e
range determined Zll[PEsss
org() o s
e S22
gl
i
<

bias b only
%
1 "::? changes the
0~ position of
the riff

(from Pascal Vincent's slides)

ACTIVATION FUNCTION

Topics: linear activation function

» Performs no input
squashing

* Not very interesting...

gla)=a

19

20

ACTIVATION FUNCTION

Topics: sigmoid activation function

* Squashes the neuron’s
pre-activation between
Oand |

* Always positive
* Bounded

« Strictly increasing

g(a) = sigm(a) = m

ACTIVATION FUNCTION

Topics: hyperbolic tangent (“tanh") activation function

* Squashes the neuron’s
pre-activation between
-land |

* Can be positive or
negative

* Bounded

* Strictly increasing

e _ exp(a)—exp(—a) _ exp(2a)-1
g(a) = tanh(a) = exp(a)fexp(—a) — exp(2a)F1

21

22

ACTIVATION FUNCTION

Topics: rectified linear activation function

+ Bounded below by O
(always non-negative)

« Not upper bounded N e

« Strictly increasing <

* Tends to give neurons
with sparse activities

g(a) = reclin(a) = max(0, a)

class Neuron(object):

def forward(inputs):

cell body_sum = np.sum(inputs * self.weights) + self.bias
firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) # sig
return firing rate

" assume inputs and weights are 1-D numpy arrays and bias is a number """

23

24

Linear Separator

« Since one-layer neuron (aka perceptron) uses linear threshold
function, it is searching for a linear separator that
discriminates the classes.

03

02

ARTIFICIAL NEURON

Topics: capacity of single neuron

+ Can solve linearly separable problems

OR (21, 22) AND (77, AND (21, 73)
.
~a a | a /% o o,
al o~ o 4 ’
= N = ’ ’
of o™ a of .70 o of o 7a
.
N .
0 I 0 1 0 1
@y oy @y

25

26

ARTIFICIAL NEURON

Topics: capacity of single neuron

» Can't solve non linearly separable problems.

XOR (21, z2) XOR (a1, 2)
| A o N A
Q‘ ? N Ay
0 o A o N A
N
[o]
e AND (77)

* .. unless the input is transformed in a better representation

NEURAL NETWORK

Topics: single hidden layer neural network
- Hidden layer pre-activation
a(x) =b® + Whx
(a0 =80 + 53, Wz5)
« Hidden layer activation:
h(x) = g(a(x))

- Output layer activation ‘/Vz'(l)

fx) =0 (;,<2>+W(Z>Th<1>x)@ () J

output activation function

27

28

NEURAL NETWORK

Topics: softmax activation function
« For mutti-class classification:
» we need multiple outputs (1 output per class)

» we would like to estimate the conditional probability p(y = ¢|X)

* We use the softmax activation function at the output:

o) i
o(a) = softmax(a) = [(22(@)_ M]

T [Zexplac) T K explac)

» strictly positive

» sums to one

* Predicted class is the one with highest estimated probability

NEURAL NETWORK

Toplcs: multilayer neural network
* Could have L hidden layers:

» layer pre-activation for k>0 (h®)(x) = x)
a®)(x) = b® + W=D (x)

h)

» hidden layer activation (k from 1 to L)

h®)(x) = g(a® (x))

(1) § b®
» output layer activation (k=L 1) w

B+ (x

29

30

1/29/20

)/(1.0 + np.exp(-x)) #
x = np.random.randn(3, 1)
hl = f(np.dot(Wl, x) + bl)
h2 = f(np.dot (W2, hl) + b2)
out = np.dot (W3, h2) + b3 #

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent' sides)

31

32

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

@)

(from Pascal Vincents slides)

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent’s sides)

33

34

CAPACITY OF NEURAL NETWORK

Topics: universal approximation

* Universal approximation theorem (Homik, 1991):
» “a single hidden layer neural network with a lincar output unit can approximate
any continuous function arbitrarily well, given enough hidden units”
« The result applies for sigmoid, tanh and many other hidden
layer activation functions

* This is a good result, but it doesn't mean there is a learning
algorithm that can find the necessary parameter values!

3 hidden neurons 6 hidden neurons 20 hidden neurons
o ° a3 Ry ool o
. o . o . o
o . o
o o . . o e . o &
o o . o d o o o
. o . o . o
R o o ® Y o o & e ¢
o o o o o
Py e B i e ol TS
o . .
o o .

35

36

1/29/20

How to train a neural network? (Not covered
in this course, only for reference)
Topics: multilayer neural network
* Could have L hidden layers:

» layer input activation for k>0 (h©(x) = x)
» hidden layer activation (k from 1 to L):
h®)(x) = g(a® (x))

» output layer activation (k=L-+1):

h(L+1)(x) e o(a(L“)(x)) = f(x)

Empirical Risk Minimization

Topics: empirical risk minimization, regularization

* Empirical risk minimization

» framework to design learning algorithms

arg;nin % Z 1(f(x®;0),yD) + 12(0)
t

> 1(f(x®;8),y®) is aloss function
» (8) is aregularizer (penalizes certain values of @)
» Learning is cast as optimization
» ideally we'd optimize dlassification error; but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g. upper bound)

37

38

LOSS FUNCTION

Topics: oss function for classification

- Neural network estimates f(x)e = p(y = clx)

» we could maximize the probabilities of /(%) gven x(® in the training set

* To frame as minimization, we minimize the
negative log-likelihood natural log (In)

I(f(x),y) = =32, Liy—c) log f(x)e = —log f(x),

» we take the log to simplify for numerical stability and math simplicity

» sometimes referred to as cross-entropy

Total error on training set

0 L n . N
0 50 100 150 200 250 300 350 400
Number of epochs

[figure from Greg Mori's slides]

39

40

REGULARIZATION

Topics: L2 regularization

O =5, 25, (W) = S WO

Empirical Risk Minimization

Topics: empirical risk minimization, regularization

* Empirical risk minimization

» framework to design learning algorithms
i
arg min — U(f x®:0 ,ym + A6
min g 32U 0:0):0) +2006)

» I(f(x®;8),y®) is aloss function
» ©(8) is a regularizer (penalizes certain values of)
» Learning is cast as optimization
» ideally, we'd optimize classification error; but it's not smooth

» loss function is a surrogate for what we truly should optimize (e.g upper bound)

41

42

1/29/20

A=0.001 A=0.01
B 4 e

[http://cs231n.github.io/neural-networks-1/]

INITIALIZATION

Topics: initialization
» For biases

» intialize all to O
* For weights

» Can't initialize weights to O with tanh activation

- we can show that all gradients wouid then be 0 (saddle point)

» Can't initialize all weights to the same value

er will always behave the same

- wea that al hidden units in a

sze of h(x)
need to break symmetry

» Recipe: sample W from U [—b, b] wher

=<
/Hi+

other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

the idea is to

around 0 but break symmetry

43

44

Model Learning

* Backpropagation (BP) algorithm (not required for this course)

* Further reading on BP:

* https://towardsdatascience.com/understanding-backpropagation-algorithm-
bb3aa2f95fd

* https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-
example

Outline

* Maximum Entropy
* Feedforward Neural Networks
== « Recurrent Neural Networks

45

46

Long Distance Dependencies

« It is very difficult to train NNs to retain information over many time steps

* This makes it very difficult to handle long-distance dependencies, such as
subject-verb agreement.

* E.g. Jane walked into the room. John walked in too. It was late in the day. Jane
said hito _?_

Recurrent Neural Networks

Feed-forward NN Recurrent NN
h=g(Vx+c) h; = g(Vx; + Uh;_; +¢)

¥=Wh+b ¥ =Wh, +b
]

[—
.:% c =
 —

x

47

48

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

1/29/20

Long-Short Term Memory Networks (LSTMs)

® ® ®
1 i 1

A []al:Il ‘ A [
[

T |
(2) ® &

Neural Network ~ Pointwise Vector
Layer Operation Transfer ~ Comcatenate Copy

49

Sequence to Sequence

 Encoder/Decoder framework maps one sequence to a "deep vector"
then another LSTM maps this vector to an output sequence.

Encoder Decoder

oo o ‘oo

C’est mon chat

50

Summary of LSTM Application Architectures

one to many many to one many to many many to many

I R TN
[HH] [HH] [HHHH] [HH]

t t ot ot t ot t tt
il 0oo [0oo 0oo

Image Captioning Video Activity Recog
Text Classification

Video Captioning POS Tagging
Machine Translation

51

Successful Applications of LSTMs

* Speech recognition: Language and acoustic modeling
« Sequence labeling

* POS Tagging

* NER
* Phrase Chunking
* Neural syntactic and semantic parsing
* Image captioning
* Sequence to Sequence

* Machine Translation (Sustkever, Vinyals, & Le, 2014)
* Summarization

« Video Captioning (input sequence of CNN frame outputs)

52

