IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

Resource Conscious Diagnosis and
Reconfiguration for NoC Permanent Faults

Ritesh Parikh, Member, IEEE and Valeria Bertacco, Senior Member, IEEE

Abstract—Networks-on-chip (NoCs) have been increasingly adopted in recent years due to the extensive integration of many
components in modern multicore processors and system-on-chip designs. At the same time, transistor reliability is becoming a major
concern due to the continuous scaling of silicon. As the sole medium of on-chip communication, it is critical for a NoC to be able to
tolerate many permanent transistor failures. In this paper, we propose uDIREC, a unified framework for permanent fault diagnosis and
subsequent reconfiguration in NoCs, which provides graceful performance degradation with an increasing number of faults. Upon
in-field transistor failures, uDIREC leverages a fine-resolution diagnosis mechanism to disable faulty components very sparingly. At its
core, uDIREC employs MOUNT, a novel routing algorithm to find reliable and deadlock-free routes that utilize all the still-functional links

in the NoC. We implement uDIREC'’s reconfiguration as a truly-distributed hardware solution, still keeping the area overhead at a
minimum. We also propose a software-implemented reconfiguration that provides greater integration with our software-based
diagnosis scheme, at the cost of distributed nature of implementation. Regardless of the adopted implementation scheme, uDIREC
places no restriction on topology, router architecture and number and location of faults. Experimental results show that uDIREC,
implemented in a 64-node NoC, drops 3x fewer nodes and provides greater than 25 percent throughput improvement (beyond 15
faults) when compared to other state-of-the-art fault-tolerance solutions. uDIREC’s improvement over prior-art grows further with more
faults, making it a effective NoC reliability solution for a wide range of fault rates.

Index Terms—NoC, permanent faults, diagnosis, reconfiguration, reliability

1 INTRODUCTION

AS silicon scales, chip multi-processors (CMP) and sys-
tem-on-chip (SoC) designs are dramatically changing
from limited and robust logic blocks to integrating many
fragile transistors into a growing number of simple, power-
efficient cores/IPs. The corresponding transition from
computation-centric to communication-centric designs has
compelled architects to design complex high-performance
on-chip interconnects, most commonly, networks-on-chip
(NoCs). Although highly scalable, NoCs as the sole medium
for on-chip communication, can become a single point of fail-
ure under transistor malfunctions. A large scale processor
reliability study has observed a permanent failure rate that is
an order of magnitude higher than previously assumed [1].
Moreover, technology experts predict more frequent failures
in the field at future technology nodes [2], [3].

Researchers have already proposed architectures that
can gracefully tolerate up to a few hundred (~500) proces-
sor-logic permanent faults [4], [5] in a 64-node CMP. How-
ever, to extend a chip’s lifespan, comparable fault-tolerant
solutions are required for both processors and the fabric
interconnecting them. Faults in the interconnection net-
work can potentially lead to a disconnected network and

o R. Parikh is with Intel Corporation, Santa Clara, CA 95054.
E-mail: ritesh.parikh@intel.com.

e V. Bertacco is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109.
E-mail: valeria@umich.edu.

Manuscript received 21 July 2014; revised 11 July 2015; accepted 29 Aug.
2015. Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by].D. Bruguera.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2015.2479586

to the loss of healthy processing elements (PEs). State-of-
the-art permanent fault-tolerant solutions for NoCs (fault-
diagnosis: [6], reconfiguration: [7], [8]) fall significantly
short of this goal, dropping the majority of potentially-
healthy nodes at a high number of faults. To address this
problem, we propose a novel solution, called uDIREC,
which drops over 3x fewer nodes due to NoC-faults
than existing solutions, and thus minimizes the network-
induced loss of processing capability.

Existing NoC reliability solutions can be broadly divided
into architectural protection against faults in the router logic
[6], [9], [10] and route-reconfiguration solutions to bypass
faulty links or routers [6], [7], [8], [11], [12]. Reconfiguration
solutions may serve as fallback reliability schemes when
router components are beyond the architectural repair capa-
bilities. A common technique in this regard is to model a
transistor failure in the router logic as failure of all links
connected to the affected router, and then re-routing around
the faulty links. In this paper, we focus on reconfiguration
solutions, as they provide protection against all types of
NoC faults.

Fine-resolution diagnosis of permanent faults is essential
to minimize functionality or processing loss due to reconfig-
uration. Fortunately, majority of a router’s logic faults
affects only small localized portions of the router [6]. To
accurately assess this phenomenon, we injected stuck-at
faults in a five-port wormhole router gate-level netlist, with
a spatial distribution proportional to the silicon area of gates
and wires. Our analysis of the fault sites revealed that most
(96 percent) faults affect only small fractions of the router
logic: their functionality can be entirely masked by dis-
abling and re-routing around a single unidirectional router
link. Assuming a mechanism capable of such fine-resolution

0018-9340 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

N

70 max
P IS mlt et el ot e St e il el dnin b i st

50 | ! ~2/3 loss of on-chip
20 .’ processor nodes .
oSl Vi et

I
20
I
]

1
I
1
|
10 Lo
0 &< G#ﬁﬁ . e
0 20 40 60 80
number of NoC permanent faults

NoC fault-induced loss of
nodes with state-of-the-art
dagnosis and reconfiguration

Fig. 1. Loss of healthy nodes due to faults in a 64 node mesh NoC
equipped with state-of-the-art diagnosis [6] and reconfiguration [7].
Approximately 2/3rd nodes are unreachable at only 60 NoC faults.

diagnosis, an efficient reconfiguration scheme can poten-
tially shield against many NoC faults, disabling only a sin-
gle unidirectional link for each fault. However, existing on-
chip, topology-agnostic route-reconfiguration solutions [7],
[8] fail to exploit this opportunity as they can operate with
bidirectional links only. For example, both Ariadne [7] and
Immunet [8] view the network as an undirected graph, and
are based on the construction of a new undirected spanning
tree after each failure. The routes derived from such span-
ning tree approaches are therefore valid only when all edges
in the graph provide bidirectional connectivity. Therefore,
these reconfiguration schemes unnecessarily consider a
fault in one direction to be fatal for the entire bidirectional
link, and cannot benefit from the fine-grained diagnosis
information. Therefore, we explore a route-reconfiguration
solution capable of separately exploring unidirectional
paths (routes) away and towards the root node of the span-
ning tree.

1.1 Motivation

We back our claim that current NoC fault-tolerance tech-
niques are insufficiently robust with a quantitative study.
Industrial CMP designs [13], [14], dedicate 6-15 percent of
the chip area to the NoC and roughly 50 percent to
the processor logic, while the rest is dedicated to memory,
I/0, etc. Assuming uniform distribution of faults over sili-
con area, the NoC should be able to gracefully tolerate up
to 60-150 faults to match processor-oriented reliability
schemes [4], [5]. To analyze the effect of faults, we mod-
eled a 64-node NoC, equipped with state-of-the-art fault-
diagnosis [6] and route-reconfiguration [7] schemes. Fig. 1
plots the average number of processing nodes unreach-
able by such a NoC with increasing number of faults. This
figure shows that existing solutions deteriorate consider-
ably beyond 30 transistor faults, dropping many nodes
with just a few additional faults (see slope change). At
60 NoC-related faults, almost 2/3rd of the nodes become
isolated, many of which are expected to be functional
cores. In addition, even at as few as five faults, the net-
work can potentially drop all the nodes (max-line), corre-
sponding to the situation when faults accumulate around
the node running fault detection and reconfiguration rou-
tines. The figure also plots minimum number of lost nodes
(min-line) for a given number of faults. Low number of
dropped nodes on the min-line shows previous solution’s
heavy dependency on fault locations.

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

1.2 Our Approach

Existing approaches for building fault-tolerant NoCs dis-
able whole routers and links to recover the communication
fabric from permanent faults. This heavy-handed approach
to recovery cannot tolerate the fault density predicted for
future silicon. To this end, we first proposed uDIREC in
[15]: a frugal approach to reliable NoC design, pairing a
fine-resolution diagnosis and careful shutdown with a
capable routing algorithm. In this work, we evolve uDIREC
into an end-to-end reliability solution by integrating a
fully-distributed and lightweight hardware-based recon-
figuration algorithm that repairs and restarts the NoC after
fault manifestation. We also present an in-depth design
and analysis of various reconfiguration implementation
choices, while expanding on reliability evaluations. Our
experiments on a 64-node NoC with 10-60 faults show that
uDIREC drops 60-75 percent fewer nodes and provides 14-
40 percent higher throughput over other state-of-the-art
fault-tolerance solutions. Moreover, uDIREC’s distributed
hardware costs less than 3 percent area over the NoC, and
executes the reconfiguration in around 1M NoC hardware
cycles. uDIREC (unified DIagnosis and REConfiguration)
integrates the following solutions:

i) A low-cost diagnosis scheme that localizes faults at
unidirectional link granularity.

ii) A novel routing algorithm (MOUNT) to maximize
the utilization of unidirectional links in fault-ridden
irregular networks that result from the application of
our fine-grain fault diagnosis scheme to faulty NoCs.

iii) A reconfiguration scheme to provide end-to-end
NoC reliability. It implements our MOUNT routing
algorithm to discover a new set of deadlock-free
routes on each fault manifestation. It places no
restriction on topology, router architecture or the
number and location of faults. Our reconfiguration
scheme can be implemented by leveraging fully-dis-
tributed hardware or via a more flexible software
solution. Each implementation comes with its pros,
and the choice provides designers with the option of
optimizing based on system requirements.

2 RELATED WORK

Ensuring reliability in NoCs has been the subject of much
previous research, focusing on a variety of aspects. Works
such as [16], [17], [18] focus on NoC protection against soft
faults. Other methods enhance NoC reliability against per-
manent faults by enabling one or a combination of the fol-
lowing features: i) detection of erroneous behavior [6], [17],
[19], ii) diagnosis of fault site [6], [19], [20], [21], [22], [23],
iii) recovery from erroneous state [17], [24], iv) system
reconfiguration to bypass the permanent faults [6], [7], [8],
[11], [12] or v) architectural protection for router logic [6],
[9], [10]. In contrast, uDIREC provides unified detection,
diagnosis and reconfiguration capabilities, enabling an end-
to-end reliability solution.

uDIREC is orthogonal to architectural approaches that
extend the lifetime of NoC links or components, such as,
ECC [17], reversible transmission [25], partially-faulty
links [26], and reliable components ([9], [10]). Once the
components or links are beyond the repair capabilities of

PARIKH AND BERTACCO: RESOURCE CONSCIOUS DIAGNOSIS AND RECONFIGURATION FOR NOC PERMANENT FAULTS 3

TABLE 1
uDIREC’s Comparison with Other Reconfiguration Solutions
. diagnosis resolution node-drop reconf
solution - >
support diagnosis reconf rate area
off-chip NO - bi-link high, >3x 23%
Immunet NO - bi-link high, >3x 6%
Vicis YES sgmt-pair bi-link high,dlock 1.5%
Ariadne NO - bi-link high, >3x 2%
uDIREC YES segment u-link low, 1x 1-3%

uDIREC provides unified fault diagnosis and reconfiguration at fine granular-
ity leading to greater robustness. Moreover, uDIREC’s hardware additions are
small and simple. The area numbers for schemes other than uDIREC are
reported from prior-work [7].

such schemes, uDIREC provides fault tolerance by rout-
ing around these faulty parts. uDIREC also differentiate
itself against adaptive routing algorithms, such as [27],
[28], [29], [30], that utilize escape VCs or turn-model to
overcome only a few faults in regular topologies. Certain
other routing algorithms [22], [31], [32] flood or deflect
packets to random neighbors to provide probabilistic
reliability. In this work, we specifically investigate fine-
resolution diagnosis and route-reconfiguration to cope
with permanent faults.

During route-reconfiguration on fault detection, a new
set of deadlock-free routes are generated to replace the cur-
rent routes. The unpredictable number and location of fault
occurrences, result in reconfiguration solutions designed for
a bounded number [27], [33], fixed pattern [34], [35], [36] or
constrained region [37] of faults being unfit for NoCs.
Therefore, we only compare against solutions that put
no constraints on number and location of faults. Table 1
presents a qualitative comparison of the algorithms in this
domain. All previous reconfiguration algorithms, either off-
chip [38], [39], [40] or on-chip [6], [7], [8], [12], are limited to
the granularity of a bidirectional link, if not any coarser.
Therefore, they fail to capitalize on the performance and
reliability benefits of using the still-healthy unidirectional
links. This is confirmed by the fact that uDIREC drops less
than 1/3rd of the nodes when compared to the best per-
forming prior-art [7].

Except for Vicis [6], which uses a costly BIST (10 percent
overhead [41]) unit for diagnosis, no other previous solution
presented a unified approach to diagnosis and reconfigura-
tion. Typically, standalone route-reconfiguration schemes
assume an ideal accuracy diagnosis scheme, which either
localizes a fault to an entire link/router [8], [38], [39], [40],
or to a datapath segment pair (defined in Section 3) [7].

uDIREC uses lightweight hardware additions to imple-
ment its reconfiguration, incurring an area cost comparable
to the area-efficient route-reconfiguration schemes [6], [7].
Both Ariadne [7] and Immunet [8], however, do not include
a diagnosis mechanism, including which would signifi-
cantly increase their area footprint. On the other hand,
implementing off-chip reconfiguration schemes requires
dedicated reliable resources for the collection of the surviv-
ing topology and the distribution of routing tables, to and
from a central node, respectively. Ariadne [7] reports that
the software-managed reconfiguration algorithms for off-
chip networks, lead to 23.2 percent area overhead, if imple-
mented on-chip without any modifications.

Immunet [8] ensures reliable deadlock-free routes by
reserving an escape virtual network with large buffers,

which, in the worst case, reconfigures to form a unidirec-
tional ring of surviving nodes. This leads to a high area and
power overhead. On the other hand, Vicis’s [6] reconfigura-
tion can be implemented at low-cost, however, the underly-
ing routing algorithm is not deadlock-free, and it often
deadlocks at high number of faults.

3 FINE-RESOLUTION FAULT DIAGNOSIS

NoC faults, though most only affecting the functionality of a
single unidirectional link, are difficult to diagnose at this
fine-granularity. Vicis [6] and [21] proposed embedding a
BIST unit at each router for this purpose. However, an area
overhead of > 10 percent makes such a solution expensive.
Although low-cost assertion checkers for fault detection
have recently been proposed [42], they do not provide
diagnostic information about the faulty components. Fortu-
nately, a low-cost, passive, fine-grained scheme for detec-
tion and diagnosis of NoC link faults was proposed in [23].
Their approach leverages a centralized scoreboard that
maintains the probability of each NoC link being faulty in
software. The scoreboard is updated by passively monitor-
ing traffic delivered at each network node. Ref. [23] also
adds flit-level end-to-end ECC to detect and correct data
faults in the transmitted packet. Upon an erroneous trans-
mission, the work in [23] uses the ECC information to cor-
rect the packet and extract its source and destination
addresses. This information is then sent to a designated
“supervisor node” responsible for maintaining the score-
board. The “supervisor node” updates all scoreboard
entries corresponding to the links in the routing path of the
erroneous packet (determined by analyzing the source and
destination node addresses), to track the likelihood of any
of these links being faulty. After accumulating the fault
probabilities from just a few erroneous packets (>=15),
the scoreboard entry with the highest accumulated fault
probability is declared faulty. The diagnosis approach was
reported to be accurate more than 98 percent of the time,
with the accuracy increasing over more monitored packets.
Note that [23] reports that this solution is successful both on
deterministic and minimally adaptive routing algorithms.
However, this diagnosis scheme is limited to faults affecting
the links between the routers and it does not tackle faults
within the router logic.

The work in [23] was extended by [19], [43], where each
fault is mapped at the architectural level to one or more link
failures. Consequently, [43] can localize fault manifestations
in any router component (links, datapath or control logic).
This solution achieves the same high accuracy of diagnosis
as [23], at an area cost of less than 3 percent [43], and with-
out introducing any test-specific traffic into the NoC. The
improvements were driven from the perception of the
router’s datapath as an extension of the links connected to
it. More specifically, faults in the following set of datapath
components were considered non-differentiable from a
diagnosis perspective: i) output buffer at the upstream
router, ii) link between routers, iii) input buffer at the down-
stream router, and iv) crossbar contacts to (from) the output
(input) port. Fig. 2 shows a high-level diagram of neighbor-
ing routers, and it highlights the components that are non-
differentiable from a diagnosis perspective.

to other from other

u u wi u
stream router royters downstream router

routers input port
; Hp outer 111 -
g s
En 1 comen: H 2
571 e

A to other from other
routers routers

output por

Fig. 2. A datapath segment includes the crossbar contacts to the output
port and the output port in the upstream router, the link, the input port
and the crossbar contacts from it in the downstream router.

Thus, faults in all these components can be modeled as
a single link failure, and handled by re-routing around
that link. We call the combined set of these datapath com-
ponents, a datapath segment, while we refer to datapath seg-
ments corresponding to opposite unidirectional links as a
datapath segment pair. In this work, we further the diagnosis
resolution by recognizing that the two opposite unidirec-
tional links between adjacent routers, are associated with
independent datapath segments, and faults in one datapath
segment do not affect the functionality of the other. We
empirically studied the micro-architecture of wormhole
routers to establish that a majority of faults can indeed be
masked by re-routing around a single datapath segment.
To this end, we synthesized a five-port baseline mesh
router, and conceptually divided all router components
into two pools: i) components that only affect one datapath
segment’s functionality, and ii) components that affect the
entire router’s functionality. Examples in the former cate-
gory are crossbars, output ports, input ports and links,
while the latter category includes arbiters, allocators and
routing table. Components that only affect one datapath-
segment, accounted for 96 percent of the router’s silicon
area, that is, 96 percent of the faults affects only one data-
path segment, assuming an area-uniform fault distribution.
The remaining 4 percent transistor faults typically lead to
the loss of the entire router, which from the point of view
of our diagnosis scheme is equivalent to the malfunction-
ing of all links connected to it. Our diagnosis scheme will
report the links connected to the defective router faulty
one-by-one, and our reconfiguration scheme will reconfig-
ure after each new diagnosis.

Since the majority of a router’s area is dedicated to
datapath components, most NoC faults can be masked by
disabling only single unidirectional links. For simplicity
of presentation, we will predominantly use the term
“unidirectional link” to refer to a datapath segment. In our
experimental evaluation, we have modeled our extension of
[43], which can localize most fault manifestations to the res-
olution of a single datapath segment. The same diagnosis
information is provided to all evaluated route-reconfigura-
tion schemes (uUDIREC and prior works).

4 ROUTING ALGORITHM

In previous reconfiguration approaches, a fault affecting one
unidirectional link is tagged as a failure of the entire bidirec-
tional link. This constrains the residual network to have bidi-
rectional links only. Reconfiguration solutions [6], [7], [8]
based on such a fault model are therefore often inspired by

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

routing algorithms designed for irregular networks with
bidirectional links only [38], [44]. Up*/down* routing [38] is
a classic example of a topology-agnostic algorithm for net-
works with bidirectional links that was adopted for provid-
ing fault-tolerance via route-reconfiguration [7]. Up*/down*
works by assigning directions to all links in the network: up
or down. Links towards the root node (connecting to a node
closer to the root) are tagged as up links, while links away
from the root are tagged as down links. Links between nodes
equidistant from the root are tagged arbitrarily. All cyclic
dependencies are broken by disallowing routes traversing a
down link followed by an up link.

Unfortunately, up*/down* routing cannot utilize the
additional unidirectional links reported as healthy by our
fine-grained diagnosis scheme. Therefore, we developed a
novel routing algorithm, called MOUNT, that fully utilizes
the healthy unidirectional links, while still providing dead-
lock-free connectivity. The constraint that all network links
must be bidirectional enables a desirable property: if a path
between two nodes exists, irregular routing algorithms
based on spanning tree construction can enable at least
one deadlock-free route between them. In contrast, finding
deadlock-free routes between any pair of nodes in a con-
nected network is not always possible if the network has
unidirectional links. Since the MOUNT routing algorithm
must enable only deadlock-free routes, it may sacrifice the
connectivity between a few nodes to achieve this goal. The
connectivity and deadlock-freedom aspect of networks with
unidirectional links is covered in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TC.2015.2479586.

4.1 MOUNT Routing Algorithm
MOUNT stands for Matched Ordering in UNidirectional
Trees and it is a deadlock-free routing algorithm designed
to maximally utilize unidirectional links. uDIREC deploys
MOUNT on each fault manifestation, to quickly discover reli-
able routes between the still-connected nodes. The MOUNT
routing algorithm works by constructing two separate span-
ning trees of unidirectional links: one for connections moving
traffic away from the root node (down-tree), and the other for
connections moving traffic towards the root node (up-tree).
Each node is then assigned a unique identifier corresponding
to each tree: identifiers increase numerically with increasing
distance from (to) the root in the down-tree (up-tree), while
equidistant nodes are ordered arbitrarily. This leads to a
unique ordering of nodes (lower order = closer to root) in
each tree. Thereafter, the up link is defined as the unidirec-
tional link towards the node with the lower identifier in the
up-tree and the down link is defined as the unidirectional link
towards the node with the lower identifier in the down-tree.
Lockstep construction. Note that the two spanning trees
cannot be constructed independently of each other. Because
we use unidirectional links, such an approach could lead to
a mismatch in the node ordering between the trees, and con-
sequently a link could be assigned inconsistent tags: up and
down. An example of such situation is shown in Fig. 3,
where mismatched node orderings lead to link R1 — R2
being tagged up in the up-tree and down in the down-tree.
Thus, the construction of the two trees must proceed in lock-
step, guaranteeing matched ordering by construction.

PARIKH AND BERTACCO: RESOURCE CONSCIOUS DIAGNOSIS AND RECONFIGURATION FOR NOC PERMANENT FAULTS 5

== up spanning tree » down spanning tree {X}node order

ordering conflict

®\Iabeling

conflict

up up
(a) link labels for up-tree (b) link labels for down-tree

Fig. 3. The independent construction of up-tree and down-tree
causes inconsistent labeling of link R1 — R2. (a) Up-tree: link is towards
the root; hence tagged up. (b) Down-tree: link is between nodes at the
same level; hence tagged arbitrarily as down.

Matched-ordering by construction. MOUNT builds the two
trees using a breadth-first search, but advances the con-
struction of the two trees in lockstep, expanding to new
nodes only if a node order matching on both trees exists. To
this end, each leaf node reached in the network expands the
two trees to its descendants only when the node itself is
reachable by both the up-tree and the down-tree. Otherwise,
the up-tree (down-tree) construction is halted until both tree
constructions reach that node. All nodes that are reachable
by both the up-tree and the down-tree can communicate
among themselves by enabling deadlock-free routes. All
other unreachable nodes timeout after waiting for one or
both tree(s) to reach them. As shown in Fig. 5a, starting
from the root node (R0), both the up-tree and the down-tree
expand to R2 using the bidirectional link RO < R2; hence R2
can expand to its descendants. At the same time, the down-
tree expands to R1 and halts at R1 for the up-tree to catch-
up. In the next iteration, R2 expands the up-tree to R1, cancel-
ling the halting status of R1. At the end of construction, both
trees reach all nodes, while agreeing on node ordering; con-
sequently the links are assigned consistent tags. Thereafter,
all routes traversing a down link followed by an up link
(down — up turn) are disallowed. Finally, a route search
algorithm finds the minimal route(s) between each source-
destination pair. The pseudo-code of the MOUNT routing
algorithm is shown in Fig. 4. The proofs for MOUNT’s con-
nectivity and deadlock-freedom characteristics are detailed
in Appendix B, available in the online supplemental material.

Root node selection. The structure of both trees greatly
depends on the root node selection. However, as shown
in Fig. 5, this aspect may also affect the connectivity charac-
teristics of the network. In that example, if instead of RO

ROOT = pick_root ()

newly_reached = up-tree = down-tree = ROOT;
/*Begin up-tree and down-tree constructionx/
do:

| for (NODE in newly_reached) :

| | up-tree += nodes_with_link_ to (NODE)

| | down-tree += nodes_with_link from(NODE)

| newly_reached = new_overlap(up-tree,down-tree)
while (newly_reached != NULL)
disable_unreached_nodes ()

order = order_nodes_reachable by both_trees|()
apply_down_up_turn_restrictions (order)

find minimal_ routes_with_ turn_restrictions()

Fig. 4. MOUNT routing algorithm to determine deadlock-free routes in
networks with unidirectional links. To guarantee a matched node order-
ing, nodes expand the trees to their neighbors only if both up-tree and
down-tree have reached them. The resulting matched-ordering governs
the turn restrictions, and the evaluated minimal routes adhere to these
turn restrictions.

== up spanning tree = down spanning tree ["M°H,, Jhalt flag

/R1\ root

$(R1)

disable
down—up turn

RO | ~ timeout
— up s b
(a) Success

(b) Failure

Fig. 5. Growing the up-tree and down-tree in lockstep. The choice of
root affects connectivity. (a) Success with root RO: both up-tree and
down-tree connect all nodes with consistent labeling. (b) Failure with
root R1: up-tree (down-tree) halted at RO(R2).

(Fig. 5a), R1 (Fig. 5b) is chosen as root, MOUNT is unable to
find deadlock-free routes to any other node in the network.
With R1 as root in Fig. 5b, the up-tree uses the link R0 — R1
to expand to RO and the down-tree takes the link R1 — R2 to
expand to R2. Both trees halt at their frontier nodes (R0 for
up-tree; R2 for down-tree) waiting for their counterpart trees.
The algorithm terminates with R1 connected to no other
node, as the down-tree (up-tree) never reaches R0 (R2) in this
configuration. Therefore, optimal root selection can improve
the connectivity characteristics of the network when using
the MOUNT routing algorithm. Notice this is in contrast of
networks with bidirectional links (traditional up*/down*),
where connectivity within a subnetwork is independent of
the choice of the root node.

5 RECONFIGURATION

Reconfiguration in uDIREC is invoked upon a permanent
failure and it implements the MOUNT routing scheme.
Remember from Fig. 5 that the structure of the constructed
network depends on the choice of root node, and therefore,
the optimal root node is selected by considering them all.
During reconfiguration, first, each node in turn (starting
from the node detecting the failure), is appointed as the
temporary root node and the number of nodes it can con-
nect is calculated. The optimal root-selection is finalized
when one of the following two conditions occur: (i) a root
node that provides deadlock-free connectivity among all
nodes is found; or (ii) all nodes have been considered as
root node. The pseudo-code of our reconfiguration algo-
rithm is shown in Fig. 6. The rest of this section describes
and compares two versions of the reconfiguration algo-
rithm: i) a centralized software implementation and ii) a dis-
tributed hardware implementation.

5.1 Software-Based Reconfiguration

We first proposed the software solution in [15] as a low-cost
and flexible way to implement reconfiguration. In this
paper, we provide a short summary of that approach to be
able to contrast against a more robust hardware solution,
which is the subject of this work. For the software imple-
mentation, we designate any one node in the multi-core
system as the “supervisor”. This node performs the recon-
figuration in software. The fault diagnosis scheme we
utilize already stores the topology information in a soft-
ware-maintained scoreboard at the supervisor node. In this
manner, we avoid hardware overhead incurred by conven-
tional software-based reconfiguration solutions [38], [39] to
reliably collect the topology information at a central node.
Upon a new fault detection, the supervisor node transmits

/* Root Selection by connectivity evaluation */

ROOTwin = —1; max_connectivity = 0

for (ROOT in all_nodes) :

| connectivity = eval_uDIREC_connectivity (ROOT)
| if (connectivity == num_nodes) :

| | ROOTwin = ROOT; break;

| if(connectivity > max_connectivity):

| | ROOTwin = ROOT;

| | max_connectivity = connectivity

/* Route Construction for winner root */
apply_MOUNT _routing_algo (ROOT win)

Fig. 6. uDIREC’s reconfiguration algorithm. All nodes are evaluated
as root, and the root that provides maximum connectivity is chosen to
build the new network. Within each root trial, the MOUNT routing algo-
rithm determines the deadlock-free routes.

a reserved message to all routers/nodes in the system,
informing them about recovery initiation. At the reception
of this message, all routers suspend their current operation
and wait for routing function updates from the supervisor,
while the nodes stop new packet injections. In the mean-
time, the supervisor computes the optimal root node and
deadlock-free routes for the surviving topology in software,
using the MOUNT routing algorithm described in the pre-
vious section. Finally, our software-based reconfiguration
algorithm conveys the computed routing tables to all
routers, following which the supervisor node broadcasts a
trigger message to resume normal operation.

The software solution drastically reduce the overhead of
distributing the newly computed routing tables by noting
that permanent faults are rare occurrences and all reconfigu-
ration-specific transmissions can be done serially over a
single wire. To this end, our software solution leverages a
lightweight routing table distribution network that is imple-
mented as 2-bit wide unidirectional ring consisting of
one control and one data wire, with snooping controllers at
each hop. This lightweight network trades-off reconfigura-
tion latency for area and power savings. The wiring over-
head of this network is a mere 0.34 percent over our baseline
mesh NoC.

5.2 Hardware-Based Reconfiguration
During reconfiguration, the root node that maximizes con-
nectivity is identified via exhaustive search. This forms the
first phase of our reconfiguration algorithm, which we call
the (root) selection phase. At the end of the selection phase,
each node is aware of the winner-root, i.e., the node that
could connect the maximum number of nodes when chosen
as root. The steps of the selection phase are shown graphi-
cally in Fig. 7a and discussed in the next section. Following
selection, the winner-root deploys the MOUNT routing algo-
rithm to connect the network using deadlock free routes:
routes to each node are explored in turn, starting from
finding the routes to the winner-root. We call this phase
the construction phase, and its steps are outlined in Fig. 7b
and Section 5.2.2. Our algorithm is fully distributed, i.e.,
given only local information, state-machines at each router
run in lockstep to collectively reconfigure the network.
All nodes locally compute/maintain just enough informa-
tion to orchestrate the reconfiguration.

To enable distributed reconfiguration, each node broad-
casts two 1-bit flags to all other nodes in a co-ordinated fash-
ion. The first 1-bit ‘notification” flag is broadcasted to notify

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

connects
node

0 /8
¢ 9 \ connects 4
-tree
[P down-tree nodes
*root
O reachable
(a) root selection phase @ unreachable

vaI| routes rogt

7\"’
routes ? routes to 3 routes to 3
-
&Y

node#1 is winner-root;
b) route construction phase selected for construction

Fig. 7. uDIREC’s hardware-based reconfiguration algorithm. a) Root
selection phase: all nodes are tried as root and the root that provides
maximum connectivity is chosen to build the new network (node#1 in the
figure). Within each root trial, both up-tree and down-tree are con-
structed using the MOUNT routing algorithm to assess the number of
connected nodes. b) Route construction phase: after disabling dead-
lock-causing turns (2—0—1 and 2—3—1 in the figure) corresponding to
the winner-root, valid routes to each node are discovered.

all nodes about recovery initiation, whereas the second 1-bit
‘connection” flag is broadcasted to discover the underlying
topology and build deadlock-free routes.

5.2.1 Selection Phase

The selection phase is partitioned into epochs, one for each
choice of root node (N, in an N-nodes network). Each epoch
is further partitioned into broadcasts by each node (N in
total), starting from the node serving as root during the cur-
rent epoch. Remember, the goal of a selection epoch is to
evaluate the connectivity of all choices of root. Therefore,
within one selection epoch, all nodes should try to discover
routes to all other reachable nodes, so that the connectivity
information is available locally at each node. To this end,
within a selection epoch, each node broadcasts in turn, let-
ting other nodes know the route(s) (if it exists) to reach it.

After the completion of one selection epoch, the next one
is initiated by a new root node by broadcasting the 1-bit
‘notification” and ‘connection’ flags to all other nodes. A node
performs different operations upon receiving different flags
(notification or connection), as discussed in Section 5.2.3.
Fig. 8 summarizes the actions performed during each selection
epoch. This figure also clarifies the timing of each epoch and
all broadcasts within one epoch.

Since each broadcast completes within 2*N cycles (as
explained later), one selection epoch deterministically com-
pletes in 2*N? cycles (broadcasts by N nodes). All nodes
automatically switch to the construction phase after the last
(N™) selection epoch. Therefore, the selection phase all
together takes a total of 2*N° cycles (N epochs, containing N
broadcasts each, and 2N cycles for each broadcast). How-
ever, if any of the root nodes is found to connect all nodes in
the network, the system terminates the reconfiguration pro-
cess (ending selection and skipping construction). Thus the
minimum amount of time spent in selection is 2*N?,

PARIKH AND BERTACCO: RESOURCE CONSCIOUS DIAGNOSIS AND RECONFIGURATION FOR NOC PERMANENT FAULTS 7

Selection Phase: Vnode X — initiate Selection Epoch — node X is root;
€ one Selection Epoch activity >

cycle/? broadcast#1 2N broadcast#2

2'2N (N-1)*2N broadcast#N N*2N

] 1
i «

e : X" node (ROOT) broadcasts : (X+1)" node broadcasts : : (X-1)" node broadcasts :_
- -t _d__ A—-——————— ===
c Ig c :1. trigger recovery initiation : _ : : :
g |'§ .g | invalidate Routing Table (RT); | no notification | no notification

B |=g %I - freeze router pipeline | broadcasted or received | : broadcasted or received |
;:-g § | fwd notification flag to neighbors | | e o o | :
s < e
= '5 advance up-tree & down-tree** F + t ™
B | ince up-tr | | has the node b hed | | has the node been reached |
§ :gé | t:g I|r;1k directions . | b;sbotﬁ 88 fdfﬁﬂ {?:ecs'_f | | by both up & down trees? |
E | g §: bf}sbf,tﬁ Egdg?(?oev?,ﬂ {.%ae%?ed |{1. node discovers route to (X+1) }: {12 rf“zge disccf:lvers route t?(‘(x_:)k H
£ :8 €, [3. node discovers route to X** \\ 2. fwd conn flags via working links N conn flags via working links |
£ _1\4 fwdoomn flags viaworkinglinks [__ _____ _______ B S |

| Selectlon N*Time(Epoch) = N*(2N?)cycles Il

|'| Construction: 1*Time(Epoch) = (2N?) cycles; |i

** advancing up-tree and down-tree (Op2) and finding routes (Op3) can be done concurrently during root broadcast

Fig. 8. Epoch activity. Both selection and construction phases are partitioned into epochs, one for each choice of root. Each epoch is further parti-
tioned into broadcasts by all nodes, starting from the node serving as root during the current epoch. Different actions are performed during
‘notification’” and ‘connection’ flag reception, as well as during root and non-root broadcasts. Each epoch completes in 2N? cycles.

corresponding to the case when the first selection epoch
leads to full connectivity.

5.2.2 Construction Phase

The construction phase activity is similar to that of the selec-
tion phase, except that only the winner-root constructs the
new deadlock-free routes. All nodes are independently
aware of the end of the selection phase and at the start of the
construction phase, the winner-root tries to initiate the con-
struction of the network, with itself as root. The winner-root
starts by broadcasting the notification and connection flags,
similarly to a selection epoch. Note that it takes exactly N
broadcasts to complete the construction phase.

5.2.3 Reconfiguration via Flag Broadcasts

The ‘notification” flag is broadcasted only during the root
broadcast at the beginning of each epoch. It is not broad-
casted in the successive N-1 broadcasts by non-root nodes
within each epoch. If a node receives the notification flag
while in “normal” state, then it invalidates its routing paths,
freezes the router pipeline and sets the router’s state to
“selecting”. Additionally, upon reception, the node recog-
nizes the beginning of a new epoch and sets a local epoch-
status register (ESR). The node will automatically reset the
ESR after 2*N? cycles, indicating the end of the current
epoch. Finally, the notification flag is forwarded to all port
(s) from which the flag was not previously received. Note
that notification flags are forwarded across all ports, irre-
spective of the condition of the corresponding network link
(failed or working). The timeline on the top-half of Fig. 8
summarizes the actions taken by a node upon reception of
the notification flag.

The ‘connection’ flag is used to build up and down trees.
Specifically, upon receiving a connection flag, a node per-
forms the following operations (bottom-half of Fig. 8):

1) Tagging link directions. This is performed only during
the root broadcast at the start of each epoch. Distinct
to (broadcasting node) and from (broadcasting node)
connection flags are used to build the up-tree and
the down-tree, respectively (Section 4.1). Note that
we use a single wire to forward these two types of
connection flags in a time-multiplexed fashion and

2)

3)

each broadcast is bound to reach all connected nodes
within 2*N cycles. Therefore, we allocate a fixed 2*N
cycle time window for broadcast by each node. Uni-
directional links towards a node that is closer to the
current root are up links, while links towards a node
that is farther from the root are down links. Naturally,
the outgoing link corresponding to the port that
receives the to connection flag, is tagged up (Fig. 9).
Similarly, the outgoing link corresponding to the
port that forwards the from connection flag is tagged
down. Ties between nodes at equal distance from the
root are broken arbitrarily, as discussed in Section 4.
Routing table update. During a broadcast by any node
(including root), the broadcasting node informs the
other nodes how it can be reached. The purpose of
the non-root nodes’ broadcast in each epoch is that
of updating the routing table. A to connection flag
reception at a port implies that the reverse path of
flag broadcast can be followed to reach the broad-
casting node, and hence the port of reception is
recorded in the node’s routing table. Since two-way
connectivity is a must, both to and from flag recep-
tions (up-tree and down-tree) are required at a node
during root node broadcast for it to record the routes
to any other node. Moreover, broadcasts should
spread only through working links and enabled
turns. This means that a to connection flag is for-
warded only if there is a working unidirectional link
in the reverse direction of forwarding, whereas a
from connection flag is forwarded only if there is
working unidirectional link in the direction of for-
warding. Also, each node during connection flag for-
warding only forwards flags through enabled turns.
A connectivity counter (CC), maintained locally at
each node, is incremented upon discovery of a route
to a new node. It is used to evaluate the number of
nodes connected by each choice of root.

Flag forwarding. Each node initiates the broadcast by
forwarding the to connection flag, followed by for-
warding the from connection flag in the next cycle.
The nodes receiving the flags, forward them on sub-
sequent cycles, only via port(s) that did not receive a
flag earlier. Both connection flags are forwarded on a

LEGEND: to & from conn flags received? ((Ono @yes

notification flag: (@] disconnected node:

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

disconnected link: ==$

S(=0) cycle#1 k) cycle#2 root pEm a0y, end of root broadcast
o e notification 2 ’)“o &S] N 5@/@ cycle#12 Q\o
Qp 2ty from conn %, RT[RO]— S N ¢
B89 0 flag fg W, 12 0., £ I
= 8 L = | c 3 = 4 ’\2 : :
9Z 1 o2 o3 ot St
3 S 9 -==| 38 ®©3) Dy o
9l 9 ° s 8F Eoy)
o | © oL 34
< N 0, ¢ '
o > X = US4 s
© | -1 y‘ -
\ -7 %,
[RO]=N isolated node - Wy
RT[RZ] =SE No. of nodes: 6
k<1 k<] ~ k) AN Broadcast: 2*6 cycles
3 g <) - cycle#13 y o gl CYCle#25 R o 0/0 cycle#27 4 Epoch: 2*6*6 cycles
3 -8 Olq,o RT[R1]:SW',' -~ H Oh//) broadcaste;v' -~ Oh//) broadcaster.®” 4 H Disabled Turn: R0—R2—R1
8 < €7 S Lo H : c M N R H : c ¥ J Lo H + | Routing Tables:
o= a= 0 a2 1V O = v 1 | Node RO: Node R1:
o9 Sogo) S5 0 e) HN ode RO: Rede R
o| o hohad) ° N v | 7O s ¢ |R1—> South — Noi
5| ¢ Q7 = % ' Q7 = ' Q7 &= + v |R2 - South East R2 — North
5 NN SN SN
g < o - 4 ! 4 1 s MY | Node R2: Node R3,R4,R5:
4 4 4 RO — South West
R1 — South West disconnected
broadcaster RT[R2]=N
Broadcaster = R1; BCAST2: cycle 13-24gu Broadcaster = R2; BCAST3: cycle 25-36 Epoch end (72 cycles)

Fig. 9. Reconfiguration example showing (a) root broadcast: R0, (b) non-root node broadcast: R1, R2; and routing table at end of epoch.

single wire and thus, each forwarding event is com-
pleted in two cycles. All nodes decipher the type of
flag received (to or from), based on whether the cur-
rent cycle number is odd or even. Additionally, flags
are forwarded only through enabled turns: toconnec-
tion flags received from ports with outgoing link
marked as up (up ports) are not forwarded to other
up ports, because this would enable a down — up
path in the reverse direction. Each node forwards
the to and from flags only after receiving them both
during the root broadcast. This is to enforce the con-
straint of growing the up and down spanning tree in
lockstep, as discussed in Section 4.1.

5.2.4 Orchestration of Epochs

At the end of an epoch, each node performs a series of checks
and status updates to orchestrate the reconfiguration. Each
node pro-actively tries to initiate a new epoch (with itself as
root) after the end of the current epoch, if the node has not
been tried as root before. A node temporarily stops attempt-
ing to be root if it receives a notification flag indicating that
some other node has already initiated an epoch. All nodes, if
connected, resume normal operation at the end of the selec-
tion epoch. A connected network can be easily detected by
checking the contents of the routing table. As our resilient
routing algorithm only provides two-way connectivity,
either all nodes have full routing tables or all nodes have
incomplete routing tables. This implies that all nodes in the
network are connected only if the connectivity counter is
equal to the number of nodes in the network (CC = N), at the
end of a selection epoch. Remember that the connectivity
counter counts the number of connected nodes for each
choice of root in the network. Otherwise, if the routing tables
are incomplete (CC # N), the value of CC is compared to the
maximum CC achieved during all previous selection epochs
(different roots). If the current CC value is greater than the
maximum CC value from previous trials, then the corre-
sponding < ROOT, CC > value pair is stored locally at each
node in-place of the previous maximum <ROOT, CC >
pair. The routes discovered during the selection epoch are
erased from the routing tables. A separate counter, named
the epoch counter (EC) is maintained to count the number of

completed epochs. The construction phase is automatically
initiated when all root trials are completed (EC = N).

5.25 Timing

We are able to use low-cost single bit flags for reconfigura-
tion by relying on atomic broadcasts based on cycle numbers.
Each node is assigned interleaved time windows of 2*N
cycles (bound on one broadcast) each, during which the
remaining nodes are prevented from broadcasting. Note that
broadcasts by a single node are guaranteed to be completed
in 2*N cycles. Therefore, the broadcasting node’s ID can be
inferred by the cycle number at which the broadcasted flag
is received. The time slots of all nodes in the network are
interleaved to provide equal opportunity to all nodes to initi-
ate a broadcast. In this way, each node waits for its slot to
broadcast, thus avoiding overlap. We could also improve the
timing of the reconfiguration by making global broadcast
slots programmable and reducing their number and dura-
tion as nodes are lost. That being said, permanent faults,
even when up to tens or hundreds, are not frequent enough
for reconfiguration to affect overall performance.

The worst case reconfiguration time in hardware-based
reconfiguration translates to only 1ms overhead for 1 GHz
64-node NoC. Our current implementation is based on the
assumption of a synchronous clock domain across the com-
munication infrastructure. In case of asynchronous clock
domains, node IDs will have to be piggybacked with the
broadcasted flags and a token-based arbitration mechanism
can be used to prevent overlapping of broadcasts.

5.2.6 Reconfiguration Example

Fig. 9 shows the activity during one selection epoch in a six-
node network. For this epoch, R0 is the root and each broad-
cast takes 12 cycles to complete (2*6-nodes). During root
broadcast (Fig. 9a), both notification and connection flags
are forwarded. Also, link directions are tagged and routes
to the root are updated at each node. Finally, the link tags
determined during the root broadcast are used to disable
deadlock-causing turns. For instance, during cycle#1, the
notification flag is forwarded to nodes R1 and R2, and the to
connection flag is forwarded to node RI. At the same time,
link R1—R0 is marked as up and the routing table at node
R1 is updated. During cycle#2, the notification flag is further

PARIKH AND BERTACCO: RESOURCE CONSCIOUS DIAGNOSIS AND RECONFIGURATION FOR NOC PERMANENT FAULTS 9

LEGEND: — wire [Jstate []control

notification 5 — '7 r notification
flag (in) 2 ;|| forward flag [7 l, flag (out)

orchestration p s received flags
freezeJ)i eline|
a

ort tag:
logic 5|N|E[S W to froﬂx:i
invalidate RT N .

state 0 R "
0 v = connection
| forward flag | ., “flag (out)

= reachability counter
oot and winner root

Fig. 10. Hardware additions at each router for the implementation of
uDIREC’s hardware-based reconfiguration. Notification and connec-
tion wires are snooped by orchestration logic and routing table update
logic at each router. Further, broadcasted flags are forwarded to neigh-
boring routers. The reconfiguration status registers (SR, ESR, EC) are
updated based on received flags, while ports are tagged and routing
table is filled in accordance to the MOUNT routing algorithm. Finally, the
orchestration logic computes the winner root by comparing the connec-
tivity counter values.

connection
flag (in)

forwarded to all remaining nodes irrespective of the broken
connections and the from connection flag is forwarded to
nodes R1 and R2 (the corresponding links marked down). At
the end of the root node broadcast (cycle#12), only nodes
RO, R1 and R2 are connected and the turn RO—R2—R1 is
disabled to avoid deadlock. Node R3 (R4) is disconnected
as it is unreachable by the down-tree (up-tree).

During the broadcasts by other nodes (Fig. 9b), only the
connection flags are forwarded. At cycle#13 node RI is
broadcasting, and it forwards the fo connection flag to nodes
RO and R2, which update their routing tables. In a similar
manner, node R2 broadcasts during cycle#25-36 and
lets other nodes find routes to itself. At the end of the epoch
(6-broadcasts*2*6-nodes cycles), routing tables at each node
store valid routes to the other connected nodes.

5.2.7 Hardware Additions

uDIREC-specific hardware is lightweight and it has only
minimal connections to the router pipeline. Fig. 10 shows
the schematic of uDIREC’s hardware additions. The hard-
ware additions at each router node can be classified into:

Wires: 2 1-bit wires per port per router are required for con-
nection and notification flags. These wires replicate the
baseline topology, i.e., a mesh in our case.

State elements: A 2-bit status register (SR) records the opera-
tional state (“selection”, “construction” or “normal”) and a
1-bit epoch-status register records the end of a selection or
construction epoch. To implement MOUNT, we require one
1-bit register per port to store the port’s direction (up or
down) and a 2-bit register per node to keep track of the type
of connection flags received during root broadcast (fo and
from). In addition, two logo N bit counters, epoch counter
and connectivity counter, are required to keep track of
the reconfiguration process. Finally, the maximum value of
CC and corresponding root node is stored in two separate
loga N bit registers.

Control logic: Notification and connection flags are treated
differently, and hence separate logic is required to imple-
ment the operations that are performed upon receiving each
flag. The logic corresponding to notification flags imple-
ments: status register update, epoch-status register update
and flag forwarding. Upon reception of the connection flags,

logic is required to tag link directions, to fill the routing
tables and to forward flags across enabled links/turns.
Finally, EC, CC and ESR updates are performed at the end
of each epoch to orchestrate the selection phase. The details
of the tasks performed are provided in Section 5.2.1 and
illustrated schematically in Fig. 8.

6 HARDWARE VS. SOFTWARE IMPLEMENTATION

We proposed two versions of our reconfiguration algo-
rithm: i) a distributed hardware-based implementation, and
ii) a software-based implementation. The hardware imple-
mentation is truly-distributed in the sense that all network
nodes execute the same state machine, and therefore, no
one node is preferred over others and there is no single-
point-of-failure. In contrast, the software-based reconfigura-
tion collects the topology information at a central node, and
executes the reconfiguration algorithm in software. As our
diagnosis scheme is also implemented in software, the soft-
ware implementation can be tightly integrated with our
diagnosis scheme, as was discussed earlier in Section 5.1.
Naturally, the software implementation has a lower com-
plexity and is more easily extensible to sophisticated root
search algorithms. However, the hardware implementation
leads to a faster reconfiguration (~1 million NoC cycles for
a 64 node CMP in the worst case), which could be important
for highly critical or fault-prone systems. In contrast, the
software-based solution could take up to a few seconds
complete. In the rest of this section, we discuss important
reconfiguration parameters, and how the choice of hard-
ware vs. software implementation affects them.

Distributed Implementation. Our hardware solution is
fully-distributed as all nodes run the same state-machine.
Nodes rely on timed broadcasts for synchronization during
the reconfiguration operation. As a result of the distributed
implementation, there is no single point of failure. In con-
trast, the software-based implementation collects the topol-
ogy information at a centralized location, therefore, it is not
truly distributed. It also means that, in certain situations,
the software-based scheme can have a single point of fail-
ure, for instance, if a fault leads to the isolation of the
“supervising” node. Therefore, the software-based imple-
mentation requires duplication of the centralized orchestra-
tion entity to provide greater robustness.

On the flip side, the hardware additions themselves can
possibly fail. However, all robustness schemes are vulnera-
ble when the reliability hardware itself malfunctions. There-
fore, uDIREC’s hardware was designed to minimize such
events: i) dedicated wires are used for reconfiguration, elim-
inating the chance of wearout-induced permanent failures
during normal operation, and ii) a small silicon footprint
allows uDIREC’s hardware to be protected using triple
modular redundancy without increasing the total over-
heads significantly. Finally, uDIREC protects itself against
faults by inferring them as faults in the corresponding
network links. In other words, if a reconfiguration wire
between two state machines at adjacent routers is broken,
then the corresponding link between these routers will be
tagged faulty by both state machines. The reconfiguration
will proceed exactly as if the network link is faulty, which
might lead to dropped nodes.

10

Complexity and Integration. Even though the software-
based implementation is slower and provides a single-
point-of-failure under rare scenarios, it is easier to imple-
ment and modify. Particularly, it can be fully integrated
with our software-based diagnosis scheme, leading to a low
overhead implementation as discussed in Section 5.1. In
addition, the software-based reconfiguration implementa-
tion is extensible to more sophisticated root search algo-
rithms. In contrast, the hardware-based reconfiguration
implementation involves intricate operations such as timed
broadcasts and synchronization among nodes, which are
adopted to keep the area overhead of implementation at a
minimum at the cost of considerable additional complexity.

Reconfiguration Duration. As discussed earlier, the hard-
ware-based reconfiguration is faster compared to the soft-
ware-based reconfiguration. Therefore, for highly critical
and fault-prone systems, the hardware-based reconfigura-
tion is recommended. In either implementation, we perform
an exhaustive search of the optimal root, which could be
further optimized for performance. However, in our solu-
tion we traded reconfiguration time for simplicity of the
algorithm. This is particularly important for the hardware
implementation, which is not extensible to sophisticated
search algorithms. Even in the software-based reconfigura-
tion, the exhaustive search leads to a negligible overall per-
formance overhead for most systems. This is because
permanent faults (even when up to tens or hundreds) are
not frequent enough for reconfiguration duration to affect
overall performance. Tree-based routing algorithms can be
efficiently implemented in software, and typically take only
hundreds of milliseconds to complete (~170 ms [38]). Even
though we run multiple iterations of the tree-based
MOUNT routing algorithm, we expect the reconfiguration
overhead to be within a few seconds at worst. Assuming an
aggressive life-span of two years for high-end servers and
consumer electronics, and 150 NoC faults (Section 1) in the
worst case, a NoC would suffer one fault every five days.
Therefore, an overhead of a few seconds per fault manifes-
tation is negligible.

Reconfiguration-Induced Deadlock. Either version of our
reconfiguration algorithm can cause routing deadlocks even
if both the initial (before fault manifestation) and final (after
reconfiguration) routing functions are independently dead-
lock-free [45], [46]. We avoid such deadlocks by identifying
the packets that request an illegal turn according to the
updated (after reconfiguration) routing function. These
packets are then ejected to the network interface of the
router in which they are buffered at the time of reconfigura-
tion. After reconfiguration, these packets are re-injected into
the network upon buffer availability. Other state-of-the-art
reconfiguration techniques [7], [8] utilize a similar technique
to overcome reconfiguration-induced deadlocks.

Early Diagnosis. Few faults in a routers’ datapath can be cor-
rected by the end-to-end ECC embedded in our diagnostic
method. This presents the opportunity to keep using the net-
work (for some time) even after the fault has been diagnosed,
as the initial few faults in the router datapath are within the
correction capacity of the ECC. This pre-emptive approach
enables us to salvage the processor and memory state of the
about-to-be-disconnected nodes while the network is still

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

connected. The operating system will then intervene to
restart the process from a correct state, such that no tasks are
assigned to disconnected nodes. Traditionally, computer
architects have relied on checkpointing support [47] for sal-
vaging processor and memory state, while a recent research
proposal [48] adds emergency links to this end. Using our
technique, it is possible to greatly simplify this additional
reliability-specific hardware. uDIREC does not guarantee
the integrity of packets that are traversing the network after
the fault manifestation and before fault detection, but it relies
instead on orthogonal recovery schemes [17], [49], [50] for
that. However, the property of early diagnosis can greatly
reduce the likelihood of fatal data corruptions and reduce
the reliance on such recovery schemes.

Optimal Root and Tree. The choice of root node also affects
the network latency and throughput characteristics [51]. In
addition, tree-based routing algorithms” performance is sen-
sitive to the way trees are grown (breadth-first versus depth-
first), and the order in which nodes are numbered [51].
Further, the surviving set of on-chip functionalities may also
differ with different root selection and tree growth schemes.
However, the corresponding analysis is beyond the scope of
this work and we do not consider these metrics in our root
selection or tree-building process. uDIREC chooses the opti-
mal node solely on the basis of number of connected nodes,
breaking ties by comparing statically-assigned node IDs,
while the trees are built in a breadth-first fashion.

7 EXPERIMENTAL RESULTS

We evaluated uDIREC by modeling a NoC system in a
cycle-accurate C++ simulator [52]. The baseline system is an
8x8 mesh network with generic four-stage pipelined
(including link traversal) routers and with two message
classes, one VC per message class. Each input channel is 64-
bits wide and each VC buffer is 8-entry deep. In addition,
the NoC is augmented with uDIREC reconfiguration capa-
bilities. For comparison, we also implemented Ariadne [7],
which outperformed all previous on-chip reconfiguration
solutions, including the state-of-the-art Vicis [6] and Immu-
net [8]. Ariadne [7] reports 40 percent latency improvement
over Immunet, which falls back to a high-latency ring to
provide connectivity, and 140 percent improvement over
Vicis, which occasionally deadlocks. Since both Ariadne
and Immunet guarantee connectivity if routes (using only
bidirectional links) between pairs of nodes survive, they
show identical packet delivery rates. They also deliver a
higher fraction of packets compared to Vicis, especially at
high number of faults when Vicis tends to deadlock. Our
results demonstrate uDIREC’s substantial improvements
over Ariadne, and thus uDIREC’s improvements over Vicis
and Immunet are expected to be even more impressive.
Note that Ariadne assumed a perfect diagnosis mechanism,
and therefore, for fair comparison, we have paired it with
the diagnosis scheme of [43] in our implementation.

Our framework is analyzed with two types of workloads
(Table 2a): synthetic uniform random traffic, as well as
applications from the PARSEC suite [53]. PARSEC traces
are obtained from the Wisconsin Multifacet GEMS simula-
tor [54] modeling a fault-free network and configured
as detailed in Table 2b. After fault injections, we ignore

PARIKH AND BERTACCO: RESOURCE CONSCIOUS DIAGNOSIS AND RECONFIGURATION FOR NOC PERMANENT FAULTS 11

TABLE 2
(a) Simulation Inputs (b) GEMS configuration

(a) (b)

traffic uniform processor in-order SPARC
PARSEC coherence MOESI
1flit (control) Private: 32KB/node
packet Sflits (data) L1 cache ways:2 latency:3
simulation IM cycles L2 cache Shared: IMB/node
warm-up 10K cycles ways:16 latency:15

messages originating from and destined to the disconnected
nodes: this could lead to some evaluation inaccuracies for
parallel collaborating benchmarks running on a partitioned
multi-core. However, the traces are intended to subject the
faulty NoC to the realistic burstiness of application traffic,
and provide a simple and intuitive comparison. The metrics
provide valuable insights considering that a particular fault
manifestation in uDIREC and prior work(s) could lead to
vastly different configurations in terms of number/loca-
tion/functionality of working cores/IPs.

Algorithmic complexity. Our diagnosis scheme is based
on analyzing routing information of faulty packets. There-
fore, its complexity is proportional to the number of routes,
i.e, O(N?) in a N-node network. In MOUNT routing algo-
rithm, each node explores the routes to all the other nodes,
and therefore its complexity is again O(N?). Finally, our
reconfiguration algorithm invokes the routing algorithm
one time for each choice of root node, leading to a timing
complexity of O(N?).

uDIREC Variants. We implemented three uDIREC var-
iants: i) uDIREC_sw, the software-based reconfiguration
algorithm from Section 5.1, ii) uDIREC_hw, the hardware-
based reconfiguration solution from Section 5.2 and iii)
uDIREC _nv, a naive variant of the hardware-based solu-
tion. uDIREC_hw utilizes dedicated notification flags to
notify all nodes of recovery initiation, and a separate root
selection phase to find the optimal-root. uDIREC nv pro-
vides a simpler design alternative that has no support for
discovering the largest sub-network and simply fixes the
node detecting the fault to be the root. uDIREC_nv provides
faster reconfiguration because of the absence of the selection
phase), and lower area and power as it does not require
notification flags. However, uDIREC nv leads to sub-
optimal reconfiguration in certain scenarios.

Area and power results. uDIREC_sw incurs the least
area and power overhead of all the uDIREC variants. uDIR-
EC_sw introduces only 0.34 percent wiring area overhead
and a negligible logic overhead due to the routing table dis-
tribution network. All other aspects of uDIREC sw are
implemented in software, and therefore, they do not incur
any area overhead. We implemented uDIREC_hw and
uDIREC nv in Verilog and synthesized the designs using
Synopsys’ Design Compiler targeting the Artisan 45 nm
library. uDIREC_hw’s logic costs only 1.88 percent over the
baseline router (area = 44,800 um?), whereas uDIREC nv’s
logic overhead is only 1.35 percent. In addition, uDIR-
EC_hw introduces a wiring area overhead of 1.36 percent,
while uDIREC_nv incurs a wiring cost of only 0.68 percent.
All the wire lengths in our analysis are calculated assuming
the chip and tile dimensions from Intel’s 45 nm SCC chip

[55]. The low-area overhead of our hardware-based
schemes can be attributed to two factors: i) our schemes
introduce only 1-2 additional wires per router port, com-
pared to the already existing 64 wires for data transmission,
and ii) the area of on-chip networks is dominated by packet
buffers, which are not required in our schemes as received
flags are forwarded immediately without storage. The area
overhead of uDIREC_hw is only slightly more than Ariadne
(1.1 percent overhead) and Vicis (0.83 percent overhead),
while it is considerably less than Immunet, which reserves a
separate virtual network with large input buffers for
deadlock freedom. uDIREC’s reconfiguration components
(optionally power-gated during normal operation) intro-
duce negligible power overhead. For power analysis, we
modeled uDIREC as a 2-bit wide mesh network at 45 nm in
Orion2.0 [56] and assuming an activity factor of 0.3. uDIR-
EC_hw consumes 6.2 mW power on average (6.8 mW
peak), which is only 2.2 percent of the full router power of
280 mW (320 mW peak). Wiring with 62 percent contribu-
tion dominates uDIREC’s power consumption.

Fault injection. Our architectural-level fault injection
technique randomly injects gate-level faults in network
components with a uniform spatial distribution over their
silicon area. Each fault location is then analyzed for map-
ping to one or more links, modeling the fault diagnosis
scheme proposed in [43]. The links that are marked as
affected by the fault are bypassed using the route-reconfigu-
ration schemes we evaluate. Further, our baseline NoC is
not equipped with any reliability feature beside uDIREC. In
our experiments, we injected a varying number of perma-
nent faults (0-60 transistor failures) into the NoC infrastruc-
ture, and analyzed uDIREC’s reliability and performance
impact. For each number of transistor failures, the experi-
ment was repeated 1,000 times with different fault spatial
locations, selected based on a uniformly random function.

Scope of experiments. We restricted the scope of our
experiments by injecting faults only in the NoC infrastruc-
ture because the system-level performance and reliability
depend on a vast number of factors: fault location, fault tim-
ing, memory organization, programming model, processor
and memory reliability schemes, and architecture specific
characteristics. As a result, the surviving system functional-
ity might not be directly comparable. Hence, we have pro-
vided a generalized evaluation across a wide range of faults,
consisting of insightful performance (latency, throughput)
and reliability (number of dropped nodes, packet delivery
rate) metrics for fault-tolerant NoCs.

7.1 Reliability Evaluation

As faults accumulate, networks may become disconnected.
Performance of parallel workloads running on a multi-core
chip with a faulty network directly depends on the number
of connected processing elements and other on-chip func-
tionality, e.g., memory controllers, caches. Thus, the ability
of an algorithm to maximize the connectivity of a faulty net-
work is critical since, if no routes are available between two
nodes, they cannot work collaboratively. In this section, we
study: a) the average number of dropped nodes, i.e., the
nodes that are not part of the largest connected sub-net-
work, and b) the packet delivery rate for uniform traffic, as

I
o

=o-Ariadne
=/~ uDIREC_nv
==UDIREC

tolerant systems
(upto 10 dropped nodes)

w
o

avg. no. of dropped nodes
= S

o

0 10

20 30 40 50 60
number of faults affecting the NoC

Fig. 11. Average number of dropped nodes. Compared to Ariadne,
uDIREC drops 3x fewer nodes and approximately doubles the number
of faults tolerated before the same number of nodes are dropped. uDIR-
EC_nv drops significantly fewer nodes compared to Ariadne at the same
number of faults, but more than uDIREC.

faults accumulate in the NoC. The number of dropped
nodes indicate the loss of on-chip processing elements and
vital functionality, while the packet delivery rate captures
the number of packets delivered over the number of packets
generated. Both reflect the reliability of the network: a more
reliable network will drop fewer nodes and will deliver a
higher percentage of packets.

Both uDIREC sw and uDIREC_hw leverage the same
underlying diagnosis, routing and reconfiguration algo-
rithms. As a result, the healthy network instances produced
after the application of uDIREC_sw and uDIREC hw to
faulty networks are indistinguishable. Our reliability met-
rics assess the quantity of the resources kept functional after
reconfiguration, and therefore both schemes lead to the
same evaluation. Hence, we present the reliability results
for both schemes under one tag, i.e., uDIREC.

It can be noted in Fig. 11 that Ariadne consistently drops
over three times more nodes than uDIREC. Even with just a
few faults (5-20), uDIREC shows substantial improvement
over Ariadne, dropping one node against Ariadne’s 3 at 20
faults, as shown in the zoomed section of Fig. 11. This show-
cases uDIREC’s advantage across a wide range of reliability
requirements. For highly intolerant systems, where the
average of one node loss is considered fatal, uDIREC can
tolerate an average of 20 faults, as compared to Ariadne’s 10
faults, as shown in the zoomed section of Fig. 11. Fig. 12
shows the probability of a completely connected network
(when network connectivity is equivalent to a fault-free sys-
tem) with a varying number of transistor faults. As can be
noted from the figure, uDIREC consistently leads to more
than 3x completely connected networks between 25 and 50
faults, when compared to Ariadne, beyond which the prob-
ability of still having a fully connected network is near-zero.
Also, both uDIREC and uDIREC_nv show an almost similar
probability of a completely connected network (overlapped
lines in Fig. 12). For more tolerant systems, for instance,
those that can operate with an average loss of up to 10
nodes, uDIREC can keep the system functional even when
experiencing up to 60 faults on average, as compared to 35
faults in Ariadne’s case. uDIREC nv, a naive variant of
uDIREC, drops more nodes than uDIREC but still shows
substantial improvement over Ariadne. With lower com-
plexity and shorter reconfiguration, uDIREC nv is a good
trade-off for commodity systems.

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

[y
(=]
]

uniform random traffic —Ariadne
«a-uDIREC_nv

=>=uDIREC

o]
o

D
o

N
o

o

% fully-connected configurations
B
o

o

0 20 30 40 50 60
number of faults affecting the NoC

Fig. 12. Probability of completely connected configurations
decreases rapidly with increasing faults. uDIREC provides fully con-
nected networks with a higher probability.

A partitioned network is unable to deliver packets origi-
nating in a sub-network different from the destination sub-
network. Analyzing Fig. 13, both uDIREC and Ariadne
deliver the majority (or all) of the packets up to 10 faults.
Beyond 15 faults, Ariadne starts partitioning into multiple
sub-networks, and hence its delivery rate drops substan-
tially below that of uDIREC. At 25 faults, uDIREC delivers 7
percent more packets than Ariadne, and the gain goes up to
~3x at 60 faults. uDIREC’s ability to deliver a large fraction
of packets even at a high number of faults makes it an excel-
lent solution for fault-ridden NoCs. Again, uDIREC nv
delivers fewer packets than uDIREC, but considerably more
packets than Ariadne. The number of dropped nodes in
Immunet and its packet delivery rate, are both identical to
Ariadne [7], whereas Vicis delivers a lower fraction of pack-
ets at higher number of faults.

7.2 Reconfiguration Timing

As mentioned earlier, uDIREC_hw has a separate selection
and construction phase, while uDIREC_nv and Ariadne fix
the node detecting the fault as the root, and proceed
directly to construct the network. Thus, both uDIREC_nv
and Ariadne complete in a fixed time window of one
epoch (Section 5.2), while uDIREC_hw takes longer. Note
that, one uDIREC_hw and uDIREC_nv epoch is 2N? (~8K
for 8x8 network) cycles, whereas one Ariadne epoch is
N? (~4K for 8x8 network) cycles long. Fig. 14 plots the
average number of cycles needed to reconfigure the net-
work upon a fault occurrence. For uDIREC_hw, the
reconfiguration time increases almost linearly up to 30
faults (~450K cycles), after which the rate of increase
drops. This behavior can be explained by analyzing
Fig. 12, showing that the probability of obtaining a fully-
connected network decreases rapidly up to ~30 faults.
Recall from Section 5.2.1 that reconfiguration terminates
early when a root can connect all nodes (CC = N). There-
fore, the reconfiguration time increases due to the initial
rapid decrease in the number of fully-connected net-
works. Beyond 30 faults, the increase in reconfiguration
time is primarily due to segregation of the network into
separate sub-networks. As each sub-network requires one
epoch during the construction phase, this increase is pro-
portional to the increase in the number of sub-networks.
Even though the reconfiguration duration is much higher
compared to Ariadne, the upper bound of ~1M cycles is
a massive improvement over the software-based imple-
mentation, uDIREC_sw, which could take up to a few sec-
onds for each reconfiguration event.

PARIKH AND BERTACCO: RESOURCE CONSCIOUS DIAGNOSIS AND RECONFIGURATION FOR NOC PERMANENT FAULTS

[

O Ariadne B uDIREC_nv OJ uDIREC]

© o o
5 o ®
{ {
]]
]]
] [
]]

packet delivery rate
o
o

o

0 5 10 15 20 25 30 35 40 45 50 55 60
number of faults affecting the NoC

Fig. 13. Packet delivery rate. Higher network partitioning in Ariadne
causes a steep decrease in delivery rate beyond 10 faults. In contrast,
both uDIREC and uDIREC_nv degrade gracefully.

7.3 Performance After Reconfiguration

After reconfiguration, the NoC should keep functioning
adequately experiencing only a graceful performance deg-
radation. In our evaluation we report two performance met-
rics: average network latency and saturation throughput,
after the network is affected by transistor faults. Latency
and throughput measures are reported for the largest con-
nected sub-network, assuming nodes disconnected from
each other cannot work collaboratively. First, we report the
average zero-load network latency, that is, the steady-state
latency of a lightly loaded network (0.03 flits injected per
cycle per node). It reflects the average delivery time of a net-
work without congestion, and hence, in a sense, it indicates
the average length of routes between NoC nodes. A recon-
figuration technique that provides greater path diversity
will have a lower zero-load latency.

uDIREC_sw and uDIREC_hw utilize the same diagnosis
mechanism, and leverage the same underlying routing and
reconfiguration algorithms. Therefore the performance
parameters, such as latency and throughput, that are mea-
sured on network instances post reconfiguration, present no
difference between uDIREC_sw and uDIREC_hw. Thus, we
present the performance results for both variants together
under the uDIREC label.

Analyzing Fig. 15, both uDIREC and Ariadne initially
show an increase in latency because the number of paths
affected increases with the number of faults, while very
few nodes are disconnected from the network. Beyond
approximately 30 faults, Ariadne’s latency starts falling.
This effect is easily understood by analyzing Fig. 11 beyond
the 30-faults mark: a substantial number of nodes are
dropped by Ariadne. As a result, packets now travel shorter
routes to their destinations, and thus the average network

latency is reduced.

=+ uDIREC_nv
—o-Ariadne

600K

500K

400K

300K

200K

reconfiguration
duration (cycles)

100K

oK

0 10 20 30 40 50 60
injected faults

Fig. 14. Reconfiguration duration with uDIREC’s hardware imple-
mentations. Both uDIREC_nv and Ariadne reconfigure in constant
time, while uDIREC_hw’s reconfiguration time increases with the num-
ber of faults, saturating beyond 40 faults.

—_

3

= 40 - —
4 connecting more node <
© with better avg. latency g
Ty {
i’ 36 b0
@ ==F =~ !
£ ==E=" Beeas 1 &
=>' 32 ~ .'9.
Ss, 08 @
® 28 0.6 >
o
x - 04 2
g 24 | ——Ariadne T %
Fou i - 0.2
E Bl -/~ uDIREC_nv Ariadne'is highl <
- [<5~uDIREC artitioned S
w 20 Y————— ‘ T o g
s 0 60 o

10 20 30 40 50
number of faults affecting the NoC

Fig. 15. Zero-load latency. Initially, latency degrades more gracefully
for uDIREC as it provides more path diversity. Beyond 40 faults, Ariadne
becomes highly partitioned and hence latency drops steeply. The packet
delivery rate is much lower for Ariadne, confirming its excessive parti-
tioning. uDIREC_nv offers lower latency compared to uDIREC, but it
shows greater partitioning.

uDIREC exhibits better latency characteristics when com-
pared to Ariadne. Initially, uDIREC degrades gracefully as
it is resource-conscious and provides greater path diversity.
For example, at 30 faults, uDIREC on average has 7 percent
lower latency than Ariadne. However, as more faults accu-
mulate, Ariadne drops nodes more quickly than uDIREC
(Section 7.1), and because of shorter routes in partitioned
networks, Ariadne’s latency shows a greater decrease. The
crossover between the two latency graphs is at ~40 faults,
and as noted from the packet delivery rate chart copied
over in Fig. 15, the difference between the delivery rate of
the two techniques is large (35 percent more in uDIREC)
and grows rapidly beyond that point. uDIREC would show
even bigger latency improvements over Immunet and Vicis,
as they show 40 and 140 percent worse latency than Ari-
adne, respectively [7]. Finally, uDIREC_nv exhibits lower
latency compared to uDIREC throughout the fault range,
but it also suffers from greater partitioning. Still, the NoC
partitioning with uDIREC_nv is not as severe as in the case
of Ariadne.

Similar trends are observed in simulations using PAR-
SEC benchmark traces, as plotted in Fig. 16. uDIREC’s abil-
ity to provide path diversity leads to lower latencies at few
faults (Fig. 16a). At 30 faults, uDIREC shows 5.7 percent
lower latency when compared to Ariadne, while delivering
8.8 percent higher cumulative throughput. At even higher
faults, uDIREC loses nodes gracefully, and hence its latency
decrease is not as rapid as Ariadne (Fig. 16b). Note that at
60 faults, Ariadne’s cumulative throughput is only 34 per-
cent of uDIREC.

In addition to latency, we also measured saturation
throughput of the largest surviving sub-network. Saturation
throughput is the measure of maximum sustained band-
width provided by the network and it is measured in flits
received at each cycle. Fig. 17 plots the packet throughput
delivered by the network. uDIREC consistently delivers
more packets per cycle as it uses additional unidirectional
links to connect more nodes and to enable more routes.
uDIREC delivers 25 percent more packets per cycle than Ari-
adne at 15 faults. This advantage further increases to 39 per-
cent at 60 faults. While not performing as well as uDIREC,
uDIREC_nv still has 11 percent higher throughput compared
to Ariadne at 15 faults. Again, both Immunet and Vicis

14

38 . .

6% lower latency & 9% higher throughput:
ey 36 D & better path diversity and connectivity
c
7]

5 o} R o 0
ag 34 —IN 0]
Z n o o " mn o
S 32 n
%’ 30 O Ariadne Al " n

W uDIREC

A uDIREC_nv

28 T T T
blksc dedup bodytr ferret freqm stream swapt vips x264
(a) Low number (30) of faults.

36 blksc dedup bodytr ferret fregm stream swapt vips x264
? ' f : ' '] i]]
832 !
= A A A A b
£ | o 0 o
224 Q d\: Q Q (*p o
7] 1 H
€ 20 - Ariadne provides lower latency as . 2
w0 it is highly partitioned; cumulative H O Ariadne
© 16 - throughput only 34% w.r.t uDIREC 1 A uDIREC_nv

i ; i : : {| BuDIREC

12 - - -
(b) High number (60) of faults.

Fig. 16. Average network latency with PARSEC benchmark traces.
The figure also shows cumulative throughput delivered by Ariadne (normal-
ized against uDIREC). At few faults, uDIREC latency is lower compared to
Ariadne as it provides additional path diversity, even though Ariadne deliv-
ers 8 percent fewer packets. At high number of faults, uDIREC connects
significantly more nodes compared to Ariadne, with Ariadne delivering only
30 percent of uDIREC’s throughput. Therefore, packet latency with
uDIREC is larger (packets traverse longer routes to destinations).

can sustain a considerably lower maximum throughput
compared to Ariadne [7], and hence their performance is
even worse against uDIREC.

Performance, Energy and Fault-Tolerance (PEF) Metric
[10]. Traditional NoC metrics, such as energy-delay product
(EDP), do not capture the importance of reliability and its
relation to both performance and power. To this end, [10]
proposed a composite metric which unifies all three compo-
nents: latency, energy, and fault-tolerance. They defined PEF
as shown in Equation (1). In a fault-free network Packet Deliv-
ery Rate = 1; thus, PEF becomes equal to EDP. We assume
total network energy to be proportional to the number of
active routers in the network, as we use identical routers in
our setup. Therefore, we estimate Energy Per Packet as in
Equation (2). Fig. 18 shows PEF values for uDIREC variants
normalized against PEF values for Ariadne. Note that a lower
value of PEF is better. The relative difference in the PEF val-
ues between uDIREC variants and Ariadne monotonically
increases with an increasing number of faults. At 15 faults,
uDIREC (uDIREC_nv) has 24 percent (17 percent) lower PEF

< 9.0

[}

S a0 uniform random traffic [——Ariadne

§ ’ == uDIREC_nv

)

= 7.0 =0~uDIREC

5 6.0

£

@ 5.0

3

e

£ 40

£

c

530

¢=]

g 2.0 '
s 0 10 20 30 40 50 60
"

number of faults affecting the NoC

Fig. 17. Saturation throughput. uDIREC consistently delivers more
packets per cycle as it uses additional unidirectional links to connect
more nodes and enable more routes.

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

Ariad

R W uDIREC_nv
LOWER is better O UDIREC

[N

o
S

o
o

o
N

o

0 5 10 15

20 25
number of faults affecting the NoC

30 35 40 45 50 55 60

normalized performance energy
fault-tolerance (PEF) metric
o
=

Fig. 18. Performance-energy-fault tolerance metric [10]. uDIREC
monotonically improves with increasing faults. uDIREC (uDIREC_nv)
shows 2x (1.6x) improvement at 60 faults.

than Ariadne, while showing more than 2x (1.6x) improve-
ment at 60 faults. The reported PEF values confirm the bene-
fits of using uDIREC across a wide range of fault rates.
At few faults, the additional paths provided by uDIREC lead
to reduced latency, while with more faults, uDIREC delivers
a greater fraction of the packets to their intended destinations

(Average Latency) x (Energy per Packet)
Packet Delivery Rate

PEF = (@))

Number of Active Routers
Packet Throughput

Energy Per Packet o (2)

8 CONCLUSIONS

We have presented uDIREC, a solution for the reliable opera-
tion of NoCs providing graceful performance degradation
even with a large number of faults. uDIREC leverages
MOUNT, a novel deadlock-free routing algorithm to maxi-
mally utilize all the working links in the NoC. Moreover,
uDIREC incorporates a novel fault diagnosis and reconfigu-
ration algorithm that places no restriction on topology,
router architecture or the number and location of faults. Sim-
ulations show that for a 64-node NoC at 15 faults, uDIREC
drops 68 percent fewer nodes and provides 25 percent higher
bandwidth over state-of-the-art reliability solutions (diagno-
sis - Vicis [6]; reconfiguration - Ariadne [7]). A combined per-
formance, energy and fault-tolerance metric, that integrates
the energy-delay product with the packet delivery rate, indi-
cates 24 percent improvement at 15 NoC faults, an improve-
ment that more than doubles beyond 50 NoC faults, showing
that uDIREC is beneficial over a wide range of fault rates.

ACKNOWLEDGMENTS

This work was supported by STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA.

REFERENCES

[1] E. Nightingale, J. Douceur, and V. Orgovan, “Cycles, cells and
platters: An empirical analysis of hardware failures on a million
consumer PCs,” in Proc. EUROSYS 6th Conf. Comput. Syst., 2011,
pp. 343-356.

[2]]. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The impact of tech-
nology scaling on lifetime reliability,” in Proc. Int. Conf. Dependable
Syst. Netw., 2004, pp. 177-186.

[3] S. Borkar, “Designing reliable systems from unreliable compo-
nents: The challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10-16, Nov./Dec. 2005.

PARIKH AND BERTACCO: RESOURCE CONSCIOUS DIAGNOSIS AND RECONFIGURATION FOR NOC PERMANENT FAULTS 15

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Pellegrini, J. Greathouse, and V. Bertacco, “Viper: Virtual pipe-
lines for enhanced reliability,” in Proc. 39th Annu. Int. Symp. Com-
put. Archit., 2012, pp. 344-355.

S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The
StageNet fabric for constructing resilient multicore systems,”
in Proc. 41st IEEE/ACM Int. Symp. Microarchit., 2008, pp. 141-
151.

D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D.
Sylvester, “Vicis: A reliable network for unreliable silicon,” in
Proc. 46th ACM/IEEE Des. Autom. Conf., 2009, pp. 812-817.

K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “ARIADNE:
Agnostic reconfiguration in a disconnected network environ-
ment,” in Proc. Int. Conf. Parallel Archit. Compilation Techn., 2011,
pp- 298-309.

V. Puente, J. Gregorio, F. Vallejo, and R. Beivide, “Immunet: A
cheap and robust fault-tolerant packet routing mechanism,” in
Proc. 31st Annu. Int. Symp. Comput. Archit., 2004, pp. 198-209.

K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S.
Mahlke, T. Austin, and M. Orshansky, “BulletProof: A defect-toler-
ant CMP switch architecture,” in Proc. 12th Int. Symp. High-Perform.
Comput. Archit., 2006, pp. 5-16.

J. Kim, C. Nicopoulos, D. Park, V. Narayanan, M. Yousif, and C.
Das, “A gracefully degrading and energy-efficient modular router
architecture for on-chip networks,” in Proc. 33rd Annu. Int. Symp.
Comput. Archit., 2006, pp. 4-15.

M. Koibuchi, H. Matsutani, H. Amano, and T. Pinkston, “A light-
weight fault-tolerant mechanism for network-on-chip,” in Proc.
2nd ACM/IEEE Int. Symp. Netw.-on-Chip, 2008, pp. 13-22.

F. Chaix, D. Avresky, N.-E. Zergainoh, and M. Nicolaidis,
“A fault-tolerant deadlock-free adaptive routing for on chip
interconnects,” in Proc. Des. Autom. Test Eur. Conf. Exhib., 2011,
pp- 1-4.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C.
Ramey, M. Mattina, C.-C. Miao, J. Brown, and A. Agarwal, “On-
chip interconnection architecture of the tile processor,” IEEE
Micro, vol. 27, no. 5, pp. 15-31, Sep. 2007.

S. Vangal, . Howard, G. Ruhl, S. Dighe, H. Wilson,]J. Tschanz, D.
Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hos-
kote, N. Borkar, and S. Borkar, “An 80-tile sub-100-w teraFLOPS
processor in 65-nm CMOS,” IEEE]. Solid-State Circuits, vol. 43,
no. 1, pp. 2941, Jan. 2008.

R. Parikh and V. Bertacco, “uDIREC: Unified diagnosis and recon-
figuration for frugal bypass of NoC faults,” in Proc. 46th Annu.
IEEE/ACM Int. Symp. Microarchit., 2013, pp. 148-159.

D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das,
“Exploring fault-tolerant network-on-chip architectures,” in Proc.
Int. Conf. Dependable Syst. Netw., 2006, pp. 93-104.

S. Murali, T. Theocharides, N. Vijaykrishnan, M. Irwin, L. Benini,
and G. De Micheli, “Analysis of error recovery schemes for net-
works on chips,” IEEE Des. Test Comput.,, vol. 22, no. 5,
pp. 434-442, Sep./Oct. 2005.

D. Bertozzi, L. Benini, and G. De Micheli, “Low power error resil-
ient encoding for on-chip data buses,” in Proc. Des. Autom. Test
Eur. Conf. Exhib., 2002, pp. 102-109.

A. Ghofrani, R. Parikh, A. Shamshiri, A. DeOrio, K.-T. Cheng, and
V. Bertacco, “Comprehensive online defect diagnosis in on-chip
networks,” in Proc. IEEE 30th VLSI Test Symp., 2012, pp. 44-49.

J. Raik, R. Ubar, and V. Govind, “Test configurations for diagnos-
ing faulty links in NoC switches,” in Proc. 12th IEEE Eur. Test
Symp., 2007, pp. 29-34.

E. Cota, F. Kastensmidt, M. Cassel, M. Herve, P. Almeida, P. Meir-
elles, A. Amory, and M. Lubaszewski, “A high-fault-coverage
approach for the test of data, control and handshake interconnects
in mesh networks-on-chip,” IEEE Trans. Comput., vol. 57, no. 9,
pp- 1202-1215, Sep. 2008.

A. Kohler and M. Radetzki, “Fault-tolerant architecture and
deflection routing for degradable NoC switches,” in Proc. 3rd
ACM/IEEE Int. Symp. Netw.-on-Chip, 2009, pp. 22-31.

S. Shamshiri, A. Ghofrani, and K.-T. Cheng, “End-to-end error
correction and online diagnosis for on-chip networks,” in Proc.
IEEE Int. Test Conf., 2011, pp. 1-10.

T. Pinkston, “Flexible and efficient routing based on progressive
deadlock recovery,” IEEE Trans. Comput.,, vol. 48, no. 7,
pp- 649-669, Jul. 1999.

M. Al Faruque, T. Ebi, and J. Henkel, “Configurable links for run-
time adaptive on-chip communication,” in Proc. Des. Autom. Test
Eur. Conf. Exhib., 2009, pp. 256-261.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

M. Palesi, S. Kumar, and V. Catania, “Leveraging partially faulty
links usage for enhancing yield and performance in networks-on-
chip,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 29,
no. 3, pp. 426-440, Mar. 2010.

M. Gomez, et al., “An efficient fault-tolerant routing methodology
for meshes and tori,” Comput. Archit. Lett., vol. 3, no. 1, p. 3, 2004.
C.-C. Su and K. Shin, “Adaptive fault-tolerant deadlock-free rout-
ing in meshes and hypercubes,” IEEE Trans. Comput., vol. 45,
no. 6, pp. 666-683, Jun. 1996.

C.-T. Ho and L. Stockmeyer, “A new approach to fault-tolerant
wormbhole routing for mesh-connected parallel computers,” IEEE
Trans. Comput., vol. 53, no. 4, pp. 427-438, Apr. 2004.

M. Ebrahimiand M. Daneshtalab, “A light-weight fault-tolerant
routing algorithm tolerating faulty links and routers,” Computing,
vol. 97, no. 6, pp. 631-648, 2015.

M. Pirretti, G. Link, R. Brooks, N. Vijaykrishnan, M. Kandemir,
and M. Irwin, “Fault tolerant algorithms for network-on-chip
interconnect,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2004,
pp- 46-51.

P. Bogdan, T. Dumitras, and R. Marculescu, “Stochastic communi-
cation: A new paradigm for fault-tolerant networks-on-chip,”
VLSI Des., vol. 2007, 2007, Article ID 95348, doi:10.1155/2007/
95348.

C. J. Glass and L. M. Ni, “Fault-tolerant wormhole routing in
meshes without virtual channels,” IEEE Trans. Parallel Distrib
Syst., vol. 7, no. 6, pp. 620-636, Jun. 1996.

S. Chalasani and R. Boppana, “Communication in multicom-
puters with nonconvex faults,” IEEE Trans. Comput., vol. 46, no. 5,
pp. 616-622, May 1997.

Y. Fukushima, M. Fukushi, and S. Horiguchi, “Fault-tolerant rout-
ing algorithm for network on chip without virtual channels,” in
Proc. 24th IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., 2009,
pp- 313-321.

Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing
algorithm for a fault-tolerant 2D-mesh network-on-chip,” in Proc.
45th Acm/IEEE Des. Autom. Conf., 2008, pp. 441-446.

J. Flich, A. Mejia, P. Lopez, and J. Duato, “Region-based routing;:
An efficient routing mechanism to tackle unreliable hardware in
network on chips,” in Proc. Ist Int. Symp. Netw.-on-Chip, 2007,
pp- 183-194.

M. Schroeder, A. D. Birreli, M. Burrows, H. Murray, R. M. Need-
ham, T. L. Rodeheffer, E. H. Satterthwaite, and C. P. Thacker,
“Autonet: A high-speed, self-configuring local area network using
point-to-point links,” IEEE]. Sel. Areas Commun., vol. 9, no. §,
pp- 1318-1335, Oct. 1991.

A. Mejia,]. Flich, J. Duato, S.-A. Reinemo, and T. Skeie, “Segment-
based routing: An efficient fault-tolerant routing algorithm for
meshes and tori,” in Proc. 20th Int. Parallel Distrib. Process. Symp.,
2006, p. 105.

J. C. Sancho, A. Robles, and]. Duato, “A flexible routing scheme
for networks of workstations,” in Proc. 3rd Int. Symp. High Perform.
Comput., 2000, pp. 260-267.

A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu,
and G. Chen, “A reliable routing architecture and algorithm for
NoCs,” IEEE Trans. Comput.-Aided Des. ICs Syst., vol. 31, no. 5,
pPp- 726739, May 2012.

A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides,
“NoCAlert: An on-line and real-time fault detection mechanism
for network-on-chip architectures,” in Proc. 45th Annu. IEEEJACM
Int. Symp. Microarchit., 2012, pp. 60-71.

R. Parikh, A. Ghofrani, V. Bertacco, and K.-T. Cheng,
“Comprehensive online defect diagnosis in on-chip networks,” in
Workshop Resilient Archit., 2011, http:/ /web.eecs.umich.edu/~par-
ikh/documents/wrall.pdf

G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE
Trans. Parallel Distrib. Syst., vol. 11, no. 7, pp. 729-738, Jul. 2000.

O. Lysne,]J. Montanana, J. Flich, J. Duato, T. Pinkston, and T.
Skeie, “An efficient and deadlock-free network reconfiguration
protocol,” IEEE Trans. Comput., vol. 57, no. 6, pp. 762-779, Jun.
2008.

T. Pinkston, R. Pang, and J. Duato, “Deadlock-free dynamic recon-
figuration schemes for increased network dependability,” IEEE
Trans. Parallel Distrib. Syst., vol. 14, no. 8, pp. 780-794, Aug. 2003.
M. Prvulovic, Z. Zhang, and]. Torrellas, “ReVive: Cost-effective
architectural support for rollback recovery in shared-memory
multiprocessors,” in Proc. 29th Annu. Int. Symp. Comput. Archit.,
2002, pp. 111-122.

16

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

A. DeOrio, K. Aisopos, V. Bertacco, and L.-S. Peh, “DRAIN: Dis-
tributed recovery architecture for inaccessible nodes in multi-core
chips,” in Proc. 48th ACM/EDAC/IEEE Des. Autom. Conf., 2011,
pp. 912-917.

K. Aisopos and L.-S. Peh, “A systematic methodology to develop
resilient cache coherence protocols,” in Proc. 44th Annu. IEEE/
ACM Int. Symp. Microarchit., 2011, pp. 47-58.

R. Parikh and V. Bertacco, “Formally enhanced verification at run-
time to ensure NoC functional correctness,” in Proc. 44th Annu.
IEEE/ACM Int. Symp. Microarchit., 2011, pp. 410-419.

J. Sancho, A. Robles, and]. Duato, “An effective methodology to
improve the performance of the up*/down* routing algorithm,”
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 8, pp. 740-754, Aug.
2004.

N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J. Kim, W. J. Dally, “A detailed and flexible cycle-accu-
rate network-on-chip simulator,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw., 2013, pp. 86-96.

C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. 17th
Int. Conf. Parallel Archit. Compilation Techn., Oct. 2008, pp. 72-81.

M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A.
Alameldeen, K. Moore, M. Hill, andD. Wood,“Multifacet’s gen-
eral execution-driven multiprocessor simulator (GEMS) toolset,”
ACM SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92-99,
2005.

J. Howard, et al., “A 48-core IA-32 message-passing processor
with DVFS in 45nm CMOS,” in Proc. IEEE Int. Solid-State Circuits
Conf. Dig. Techn. Papers, 2010, pp. 108-109.

A.Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A fast and
accurate NoC power and area model for early-stage design space
exploration,” in Proc. Des. Autom. Test Eur. Conf. Exhib., 2009,
pp- 423-428.

C. Glass and L. Ni, “The turn model for adaptive routing,” in Proc.
19th Annu. Int. Symp. Comput. Archit., 1992, pp. 278-287.

W. Dally and C. Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” IEEE Trans. Comput.,
vol. C-36, no. 5, pp. 547-553, May 1987.

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.X, XXXXX 2016

Ritesh Parikh (S'09-M’14) received the BTech
and MTech degrees in electronics engineering
from the IIT Kharagpur, India, in 2008 and 2009,
respectively, and the PhD degree in computer
engineering from the University of Michigan, Ann
Arbor, MI, in 2014. He was a postdoctoral
research fellow at the University of Michigan, Ann
Arbor. He is currently a performance architect
with Intel's server engineering division. His
research interests are in networks-on-chip, het-
erogeneous computer architecture, and in ensur-

ing the correctness of multicore computer designs, including verification
and reliable system design.

W

Valeria Bertacco (S’95-M'03-SM’10) received
the Laurea degree in computer engineering from
the University of Padova, ltaly, and the MS and
PhD degrees in electrical engineering from Stan-
ford University in 2003. She was at Synopsys,
Mountain View, CA, for four years. She is cur-
rently a professor of electrical engineering and
computer science with the University of Michigan,
Ann Arbor, MI. Her current research interests
include complete design validation, digital system
reliability, and hardware-security assurance. She

received the IEEE CEDA Early Career Award and served on the pro-
gram committees of DAC, DATE, and MICRO.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

