
Collaborative Accelerators for In-Memory MapReduce on Scale-up Machines

Abraham Addisie and Valeria Bertacco
Computer Science and Engineering, University of Michigan

Email: {abrahad, valeria}@umich.edu

Abstract— Relying on efficient data analytics platforms is
increasingly becoming crucial for both small and large scale
datasets. While MapReduce implementations, such as Hadoop
and Spark, were originally proposed for petascale processing in
scale-out clusters, it has been noted that most data centers pro-
cesses today operate on gigabyte-order or smaller datasets, which
are best processed in single high-end scale-up machines. In this
context, Phoenix++ is a highly optimized MapReduce framework
available for chip-multiprocessor (CMP) scale-up machines. In
this paper we observe that Phoenix++ suffers from an inefficient
utilization of the memory subsystem, and a serialized execution
of the MapReduce stages. To overcome these inefficiencies, we
propose CASM, an architecture that equips each core in a CMP
design with a dedicated instance of a specialized hardware unit
(the CASM accelerators). These units collaborate to manage the
key-value data structure and minimize both on- and off-chip com-
munication costs. Our experimental evaluation on a 64-core de-
sign indicates that CASM provides more than a 4x speedup over
the highly optimized Phoenix++ framework, while keeping area
overhead at only 6%, and reducing energy demands by over 3.5x.

I. INTRODUCTION

Both small and large companies, research institutes, and
governmental agencies are increasingly relying on fast and ef-
ficient data analytics platforms. MapReduce [8] implemen-
tations, such as Hadoop [25] and Spark [29], are commonly
deployed for this purpose. MapReduce is a programming
paradigm that facilitates the parallel processing of large data
sets and provides programmers with a simple abstraction to
implement a wide range of data-intensive applications. While
MapReduce was initially introduced to process multi-terabyte
and petabyte data in scale-out clusters, most MapReduce work-
loads have a footprint in the GB range, as reported by [3]: in-
deed, data from analytics production clusters at Microsoft and
Yahoo indicate that their median job has a 14GB input size and
90% of jobs in Facebook are smaller than 100GB. Today, a
scale-up server enjoys substantially large memory and storage
resources, being able to potentially accommodate most jobs
in a data center and eliminating the communication overheads
of scale-out solutions. Researchers at Microsoft have shown
that a single-node scale-up optimized Hadoop framework is
superior to its scale-out counterpart for performance/Watt and
server density [3] and is competitive or better in terms of per-
formance and cost. Similar conclusions have been reached for

Fig. 1. CASM deployed in a CMP architecture. Left side - CASM adds a
local accelerator to each CMP’s core to carry out MapReduce tasks. Right
side - Each accelerator aggregates kv-pairs emitted by the local core (local
aggregation). Those kv-pairs are then transferred among the accelerators
through the CMP’s interconnect. At the home core, accelerators execute the
reduce stage, so that, in the end, there is one kv-pair per key.

the Spark framework [28]. Indeed, for future data center scal-
ability, it is crucial to design system architectures that can pro-
vide high performance with limited power and area budgets.
More and more, because of their simplicity compared to tra-
ditional models like Pthreads, developers are turning to scale-
up implementations of MapReduce, even for applications with
small to medium data inputs [22, 27, 24]. In this work, we tar-
get the most optimized scale-up MapReduce framework avail-
able, Phoenix++ [24], analyze its inefficiencies and propose a
novel accelerator architecture that overcomes those inefficien-
cies.

Phoenix++ underwent major revisions from previous re-
leases [22, 27], and has been shown to be competitive against
a hand-crafted Pthreads implementation. Phoenix++ provides
a simple programming interface for users, while it manages
internally the execution of the MapReduce tasks. At run-
time, each core involved in an execution with the Phoenix++
framework must manage its own hashtable (a single central-
ized hashtable would lead to extreme access contention). Un-
fortunately, this approach creates pressure in the memory sys-
tem causing high on- and off- chip communication. A mono-
lithic concurrent hashtable (i.e., no locks needed) as in [19]
could remedy this problem. However, such a solution would
provide limited performance benefits, as it relies on a tradi-
tional memory subsystem, which is suboptimal for CMP-based
MapReduce applications.

The goal of this work is to address the shortcomings of tra-
ditional CMP-based MapReduce implementations through
small additions to a baseline CMP architecture, so to be
transparent to the application and the MapReduce framework.



Fig. 2. MapReduce for wordcount. map emits a kv-pair for each word,
combine aggregates words emitted from a mapper, whereas reduce aggregates
emitted words from all mappers. In CASM, map is executed by the cores,
while combine and reduce are offloaded to the accelerators’ network.

Specifically, we propose to augment existing CMP architec-
tures with a network of small accelerators, in contrast with re-
cent domain-specific approaches [13], which transfer the entire
process to an accelerator. Fig.1 illustrates our proposed archi-
tecture, called CASM (Collaborative Accelerators for Stream-
lining Mapreduce). CASM comprises a network of accelera-
tors, laid out alongside the cores, capable of delivering high
computation performance locally, while collaboratively man-
aging the application’s data footprint, so as to minimize data
transfers among the cores and to off-chip memory. Each accel-
erator contains two storage structures: a home scratchpad and
a local scratchpad memory. The scratchpad memories (SPM)
share some similarity with the home and local directories in
a directory-based cache coherence protocol, but they are in-
dexed by keys instead of memory addresses. The home SPMs
collectively form a large cumulative on-chip memory to store
(in MapReduce terminology) key-value pairs (kv-pairs). Each
SPM is responsible for its own portion of the keys’ space, cap-
turing most keys of the input dataset – spilling to memory oc-
curs rarely, only when the home SPMs cannot store all the
keys. While home SPMs minimize off-chip memory access,
most kv-pairs would still traverse the interconnect, potentially
leading to performance degradation due to interconnect con-
tention: local SPMs are used to combine kv-pairs locally, so as
to slash contention on the interconnect.
Contributions. In summary, CASM’s novel contributions are:
• a novel, distributed approach to hardware acceleration,
through a network of collaborating units, leading to over 4x
performance boost for communication-intensive applications.
• a scale-up implementation of our solution that is transparent
to the MapReduce programming interface, thus preserving its
simplicity for application developers.
• MapReduce acceleration at minimal area footprint (below
6%) and great energy savings (in excess of 3.5x), as shown by
our simulation-based analysis [5], which compares CASM to
a software-only CMP-based MapReduce framework.

II. BACKGROUND AND MOTIVATION

MapReduce is a simple programming framework for data-
intensive applications. Users can write complex parallel pro-
grams by simply defining map and reduce functions, while all
the remaining parallel programming aspects, including data
partitioning and data shuffle stages, are handled by the Map-
Reduce infrastructure. In a typical scale-up MapReduce frame-

work, the application’s input data is first partitioned among the
cores in the system. Then, each core runs the user-defined map
function, which processes the input data and produces a list of
intermediate kv-pairs, followed by a combine stage, which ag-
gregates keys to partially reduce local kv-pairs, and thus con-
serves network bandwidth. Once this stage is complete, the
intermediate data is partitioned and shuffled within the net-
work, while the cores assume the role of reducers, so that all
kv-pairs with the same key are transferred to a same reducer.
In the final stage, each core executes the user-defined reduce
function to complete the aggregation of its kv-pairs. As an ex-
ample, Fig.2 provides the pseudo-code for wc (wordcount), a
classic application with a wide-range of applications. wc com-
putes the frequency of occurrence of each word in a document.
In the MapReduce framework, the map function parses the in-
put document and identifies all the words. It then emits each
word as part of a kv-pair, with the word as the key and an ini-
tial value of 1. Combine partially aggregates kv-pairs at each
core, before they are transferred to the reducer core. Finally,
the reduce function collects all kv-pairs and sums up the val-
ues for each word, generating a final list of unique words along
with their frequency.

Phoenix++: optimizations and inefficiencies. Phoenix++ is
among the most optimized scale-up MapReduce framework
for CMPs. One major optimization adopted by Phoenix++
is the interleaving of map and combine stages, which lowers
memory pressure caused by large kv-pairs. In Phoenix++,
kv-pairs are aggregated locally, immediately after they are
mapped. The left part of Fig.3 illustrates the MapReduce steps
for Phoenix++. At first, each core considers its own data seg-
ment, one input at a time, maps it into a kv-pair (orange) and
combines with its current database of kv-pairs (red). Then it
partitions aggregated kv-pairs over all the cores based on their
key (yellow). At this point the threads are synchronized so that
all cores switch from operating as local cores to home cores.
kv-pairs are then transferred through the interconnect to the
home core and reduced there (green). However, there are still
two major inefficiencies in this approach: i) map and combine
stages are executed in a sequential manner. If they were to
run concurrently, as suggested in the right part of Fig.3, exe-
cution time would be significantly reduced. ii) Moreover, each
combine function (one per map function) maintains its own kv
data structure as a hashtable, thus keys are replicated in the on-
chip caches, creating many off-chip memory accesses when
that data no longer fits in cache.

Motivating Study. To gain insights on the execution bot-
tlenecks of a real platform, we analyzed the execution of
Phoenix++ with our experimental workloads (Section VI) on
a 16-core Intel Xeon E5-2630 (2 threads per core) machine,
using a range of input data sizes. Fig.4 plots the breakdown of
execution time by MapReduce stage. Note, first of all, how
map and combine dominate the overall execution time, and
the combine stage contributes the majority of the total execu-
tion time for most benchmarks. We then analyzed in detail
the execution of the combine stage for those benchmarks using
Intel’s VTune tool and collected the Top-down Microarchitec-



Fig. 3. Execution flow of MapReduce. Left side - in a typical CMP-based
framework, the map, combine and partition stages execute on the local core.
A barrier then synchronizes the execution, kv-pairs are shuffled through the
interconnect and reduced at the home core. Right-side - When deploying
CASM, cores are only responsible for the map stage. They then transfer
kv-pairs to the local accelerator, which combines, partitions and transfers
them to the home accelerator for the reduce stage.

Fig. 4. Motivating study. Execution time breakdown for our MapReduce
workloads, running Phoenix++ on a Xeon E5-2630 V3 machine with input
datasets as in Section VI. Note how the combine stage dominates overall
execution for most applications.

ture Analysis Method (TMAM) metrics [26]. VTune reported
that most workloads were primarily back-end bounded (60%
average value ), that is, the main cause of performance bot-
tlenecks was the inability for instructions to progress through
the pipeline. Vtune could also indicate that, among the (lack
of) resources that caused back-end bottlenecks, the time over-
head in accessing memory was the primary one in our case.
Based on this analysis, we suspected that the bottleneck could
be due to the large number of data transfers occurring during
the combine stage, driven by the need to maintain multiple,
large and irregularly accessed hashtables (one per core), which
often do not fit in on-chip storage. Thus, to assess the impact of
these off-chip memory accesses, we setup a 64-core system on
the gem5/garnet infrastructure, where all kv-pairs could be ac-
commodated in on-chip storage, as it would be in an ideal case.
This last analysis showed that the total data-transfer footprint
differential between the real and the ideal system is over 9x.

III. INSIDE A CASM ACCELERATOR

Each CASM’s accelerator (see Fig.5) comprises a scratch-
pad memory (SPM), organized into two partitions, one to
serve kv-pairs incoming from the local processor core (local
SPM), and one to serve kv-pairs incoming from the intercon-
nect (home SPM). Each SPM is complemented by a small
“victim SPM”, similar to a victim cache, which stores data
recently evicted from the main SPM. The accelerator also in-
cludes dedicated hardware to compute a range of reduce func-
tions, used both to aggregate data in the local SPM and in the
home one. Logic to compute hash functions, both for indexing

the SPMs and for partitioning kv-pairs over home accelerators,
completes the design. Note that both local and home SPMs
have fixed sizes, thus it may not be always possible to store all
the kv-pairs that they receive. When a local SPM cannot fit all
the kv-pairs, it defers their aggregation to the reduce stage, by
transferring them to the home accelerator. When a home SPM
encounters this problem, it transfers its kv-pairs to the local
cache, and then lets the home core carry out the last few final
steps of the reduce function.

When an accelerator receives a kv-pair from either its asso-
ciated core or the network, it first processes the key through
its key hash unit and through the partition stage unit. The pur-
pose of the former is to generate a hash to use in indexing the
SPM. The latter determines which home accelerator is respon-
sible for reducing this kv-pair: if the local accelerator is also
the home accelerator (accel is home signal), then we send the
kv-pair to the home SPM, along with the hash value and an en-
able signal, otherwise we send it to the local SPM. Note that all
kv-pairs incoming from the network will be aggregated at the
home SPM. Pairs incoming from the local core will be aggre-
gated at the home SPM only if the local core is also the home
one. Each SPM is organized as a 2-way cache augmented with
a small victim cache. Associated with each SPM is an aggre-
gate unit, responsible for deploying the specified reduce func-
tion to combine two kv-pairs with the same key. Each SPM is
also equipped with a dedicated unit, called frequency/collision
update unit, to keep up to date the replacement policy infor-
mation. Finally, note that, when a kv-pair is spilled from a
SPM, it is transferred out through the interconnect, either to a
home accelerator or to local cache. Spilling occurs because of
eviction from the victim SPM, or because of losing in colliding
with another entry in the SPM.
Hash Function Units. Our accelerator includes two hash com-
puting units: the key hash unit and the partition stage unit. The
former is used to compute the index value to access the SPM,
which is organized as a 2-way associative cache. The latter
uses a hash function to create a unique mapping from keys to
an accelerator ID (accel ID), so that kv-pairs from each core
can be distributed among the home accelerators for the final
reduce stage, and each home accelerator is responsible for the
reduce stage of all the keys hashed to its ID. We used an XOR-
rotate hash for both units. We considered several alternatives
for the key hash unit and found that XOR-rotate [16] is both
the most compute efficient and has a low collision rate.
SPM (Scratchpad Memory). The accelerators’ SPM is a
fixed-size storage organized as a 2-way associative cache,
where the set is determined by the key hash unit. Each entry
in the SPMs stores the following fields: valid bit, key, the cor-
responding value to that key, frequency and collision values.
When a kv-pair accessing the SPM “hits”, that is, the keys of
the SPM entry and the kv-pair are a match, we aggregate the
two values by sending them to the aggregate unit, and then up-
date the entry in the SPM. When a kv-pair “conflicts” in the
SPM, that is, both stored keys are different, then we leverage
our replacement solution to determine which kv-pair (the in-
coming one or one of those already stored) should be removed



Fig. 5. CASM’s accelerator architecture. Each accelerator includes two SPMs, organized as 2-way associative caches with small victim SPMs, indexed by a
hash function, which aggregates kv-pairs incoming from the local core or the interconnect. The aggregate units aggregate values for kv-pairs stored in the
SPMs. The frequency/collision update units enforce our kv-pair replacement policy. Finally, each accelerator includes a key hash unit to compute the hash of
incoming keys, and a partition stage unit, responsible for deriving the ID of the home core in charge of reducing each unique key. kv-pairs evicted from the
SPMs are transferred to their home core (from local SPM) or the local cache (from home SPM).

from the SPM and evicted to the victim SPM as discussed be-
low. Of course, if there is an empty entry in the SPM corre-
sponding to the current hash index, the incoming kv-pair will
be stored there. We maintain separate local and home SPMs,
one to store kv-pairs undergoing local aggregation, the other
for kv-pairs in their final reduce stage. We keep them sepa-
rate because, particularly for applications with a large num-
ber of unique keys, the home SPMs avoid key duplication and
provide the equivalent of a large unified on-chip storage, min-
imizing kv-pair spills to memory. Local SPMs, on the other
hand, are beneficial in avoiding network congestion. We also
considered an alternative direct-mapped SPM organization, but
dismissed it due to much higher collision rates.
kv-pair Replacement Policy. Since the SPMs are of limited
size, it is possible for two distinct keys to be mapped to the
same SPM entry and collide. Our replacement policy deter-
mines if a previously-stored key must be evicted and replaced
with an incoming kv-pair. Upon storing a new entry in the
SPM, its collision is initialized to 0 and its frequency to 1.
Each time a new kv-pair is aggregated with a current entry,
its frequency value is incremented, while the collision value
remains unmodified. Each time there is a key conflict, that is,
the incoming kv-pair has a different key than those stored in
the SPM set, the collision is incremented for both kv-pairs in
the set. Whenever an incoming kv-pair conflicts in the SPM,
we analyze the two entries already in the SPM set to determine
if one should be replaced. If, for either entry, the frequency is
greater than the collision, then the entries are frequent ones and
we simply update their collision values, but no replacement oc-
curs. In this case, we send the new kv-pair to its destination
(either its home accelerator or spilled into memory through the
local cache). If, instead, collision exceeds frequency for one
of the entries, then that entry is deemed infrequent, and it is re-
placed by the incoming kv-pair. If both entries are infrequent,
we evict the one with the lowest frequency. Upon replacement,
the new entry’s frequency and collision values are reset.
Victim SPM . Depending on the sequence of keys accessing
the SPMs, it is possible to incur thrashing, where a small set
of keys keeps overwriting each other in the SPM. To limit the
impact of this issue, we augment each SPM with a small, fully-
associative “victim SPM”: kv-pairs are stored in the victim

SPM when they don’t gain entry, or are evicted from the main
SPM. All kv-pairs that are either evicted or rejected by the vic-
tim SPM are transferred to the home accelerator (from a local
SPM), or to local cache (from a home SPM).
Aggregate Unit. The accelerator’s aggregate unit implements
the MapReduce reduce function. Our accelerator design sup-
ports several reduce operators, which cover a wide range of
common MapReduce applications: we support addition, com-
puting the maximum value, the minimum value, the average,
and more. The average operation is implemented by separat-
ing it into two addition operations that are stored into the two
halves of the data field: the first maintains the sum of values,
and the second counts the total number of values. As a general
rule, CASM requires that the reduce function be both commu-
tative and associative, since the accelerators process kv-pairs
independently from each other, and thus no ordering can be
enforced on the kv-pair processing in the combine stage. Note
that many practical applications satisfy this requirement and
employ straightforward and common operators, as those we
provide [7]. It is also possible to replace the aggregate unit
with a reconfigurable logic block to provide further flexibility.

IV. SYSTEM INTEGRATION

Fig.6 illustrates the interactions among all systems compo-
nents during execution. At the start of an application, each core
sends the type of aggregate operation and the pre-allocated
memory region that the accelerator shall use for reduced kv-
pairs at the end of the execution, and for potential spilled pairs.
The core then begins sending mapped kv-pairs to its acceler-
ator, completing this transfer with a map completion signal.
Whenever an accelerator receives this signal from its local
core, it sends all kv-pairs from its local SPM to their home
SPMs, and then sends out a completion signal to all other
accelerators in the system. After an accelerator has received
completion signals from all other accelerators, it flushes out
the contents of its home SPM to the local cache, and signals
to its core that the processing has completed. At this point,
the corresponding core retrieves the final, reduced, kv-pairs
from memory and carries out a final reduce step, if any kv-pair
was spilled during the execution. All communication from a



Fig. 6. System integration showing the sequence of CASM execution steps.

core to its local accelerator is through store instructions to a set
of memory-mapped registers, while accelerators communicate
with the core via interrupts and shared memory. Each accel-
erator is also directly connected to the on-chip network inter-
face to send/receive kv-pairs and synchronization commands
to/from other accelerators and memory.
Cache Coherence. SPM storage is for exclusive access by its
accelerator, and it is not shared with other units. Communica-
tion among the accelerators also happens via custom packets,
instead of the CMP’s coherence protocol’s messages. Thus,
CASM’s read/write operations from/to the SPMs are transpar-
ent and oblivious to the CMP’s coherence protocol. To handle
spilling of kv-pairs to L1 cache, each accelerator, on behalf of
its local core, writes the spilled kv-pair to the cache, handled
by the CMP’s coherence protocol. Note that, for each kv-pair,
spilling is handled by only one home accelerator.
Virtual Memory. In accessing memory storage set up by
the local core, each accelerator uses the same virtual memory
space as its core, thus addresses are translated with the same
page table and TLB as the process initiating the MapReduce
application. Once the physical address is obtained, the access
occurs by read/write to memory through the local cache.
Context Switching. During context switching of a process,
the content of the local SPMs is flushed into their respective
home SPMs, then the kv-pairs in the home SPMs are spilled to
memory. Once context switching is complete, the accelerators
stop issuing further requests to memory, so to avoid accessing
stale data in page-tables and TLBs. Note that, when the context
is restored, spilled kv-pairs do not have to be re-loaded to the
SPMs, as their aggregation can be handled during the reduce
step together, with other spilled kv-pairs.

V. COMPOSITE MAPREDUCE APPLICATIONS

Many MapReduce applications map to a single MapReduce
task, for instance those considered in our evaluation (see Sec-
tion VI). However, MapReduce has also been adopted for ap-
plications that involve multiple MapReduce tasks organized in
a pipeline, as for collaborative filtering [30]. Other complex
applications are those that compute their results iteratively, e.g.
k-means [24]. Both execution flow structures are completely
compatible with CASM, since CASM is embedded in the high-
level framework, and final kv-pairs are copied from CASM’s

Fig. 7. CASM performance speedup over a baseline CMP execution of
MapReduce. SPMs are 16KB for CASM, and infinite for the ideal variant.

SPMs to the CMP’s memory at the end of each MapReduce
task. We leave further investigation of this family of applica-
tions for future work.

VI. EXPERIMENTAL EVALUATION

In order to perform a detailed micro-architectural evaluation
of a CASM-augmented, large-scale CMP architecture, we im-
plemented our design with gem5 + Garnet [5], a cycle accurate
simulation infrastructure. We ported the Phoenix++ frame-
work [24] to gem5 using “m5threads” and carried out the sim-
ulations using the “syscall” mode. We modeled the baseline
scale-up CMP solution as a 64-core CMP in a 8x8 mesh topol-
ogy, with 4 DDR3 memory nodes at the corners of the mesh.
Cores are OoO, 8-wide, equipped with a 16KB private L1 I/D
cache, and shared 128KB L2. The interconnect uses 5-stage
routers. CASM’s SPMs are also 16KB, and use 8-entry victim
SPMs. Each entry in the SPMs contains 64-bit key and value
fields, along with an 8-bit field to implement our replacement
policy. For ‘average’ reduce operations, the value field is par-
titioned into two 32-bit fields.
Workloads and Datasets. We considered several workloads
in our evaluation: wc (wordcount, 68K-257K keys), h-img
(histogram image, 768 keys) and lr (linear regression, 5 keys)
are gathered from the Phoenix++ framework; while sc (counts
frequency of 3-word sequences, 3.5M keys) h-rt (histogram
ratings of movies, 5 keys) and h-mv (movies by histogram rat-
ing, 20K keys) are adopted from the PUMA benchmarks [2].
Finally, we developed pvc (page view count, 10K keys), mm
(min-max), and avg, from scratch using the API of Phoenix++.
The datasets come from the same framework as the workloads,
except for avg and mm (we used a list of 28K cities and corre-
sponding temperature logs) and pvc, which we generated. We
used two families of datasets. In running the cycle-accurate
gem5 simulations, we used datasets of 1GB for h-rt and h-mv,
and 100MB for all others. The dataset footprint was driven by
the limited performance of the gem5 simulator (e.g., 15 days
of simulation time for a 1GB input file). Moreover, datasets
of similar size have been used to evaluate prominent scale-up
MapReduce frameworks [22, 27, 24]. Hence, we determined
that analyzing such datasets provided indeed useful and prac-
tical insights. To further evaluate the scalability of CASM to
large-scale datasets, we carried out a study with dataset sizes
of 30GB from [12] for wc and sc, 100GB from [2] for h-mv
and h-rt, and 1.5GB from [24] for h-img. For other workloads,
we generated 100GB datasets with the same number of keys.
Performance Evaluation. Fig.7 reports the speedup of CASM
compared to the baseline CMP running Phoenix++. We re-
port both the speedup that we could achieve with infinitely



Fig. 8. Performance insights. The plot reports a breakdown of MapReduce
by stage for a baseline CMP framework. The table shows performance
improvements provided by i) map stage concurrency alone, and ii) hardware
acceleration alone.

large local and home SPMs (i.e., no kv-pair collision occurs
in either of the SPMs) and that of the actual setup (i.e., 16KB
SPMs). Note that most applications reach fairly close to their
ideal speedup. From the figure, the ideal speedup ranges from
1.1x to 26x, while the speedups we observed with our imple-
mentation settings peak at 12x and average at 4x. Note that
wc, mm, and avg have many unique keys; yet, CASM achieves
an almost ideal speedup. wc, in particular, is an important
kernel in MapReduce applications. h-img, h-rt, and lr have
relatively few unique keys, which can comfortably fit in the
baseline CMP’s caches, reducing our room for improvement.
The speedup of lr is relatively better because its map stage
is less memory-intensive than that of h-img and h-rt (CASM
executes concurrently with the map stage). h-mv’s speedup
is limited despite its many unique keys, as its input data lay-
out provides a cache-friendly access pattern, which benefits
the baseline CMP. pvc entails fairly heavy parsing during map-
ping, thus limiting the speedup potential of CASM. Finally, it
is clear that sc’s speedup is limited by the SPM size, because of
its vast number of distinct keys, over 3 million. Yet, CASM’s
16KB SPMs were able to deliver a 2x speedup.
Speedup Breakdown. To gain insights on the source of per-
formance gains that CASM attains, we analyzed the execu-
tion stage breakdown of our testbed applications running on
a Phoenix++/ CMP system. To gather the analysis data, this
experiment leveraged our gem5-Garnet infrastructure. Fig.8
reports how execution time is partitioned among map, com-
bine, partition and reduce stages. Moreover, we dissected the
combine stage into i) hash function computation, ii) hash-key
lookup, which entails memory accesses to walk the hashtable,
and iii) data aggregation. Note that for most applications, the
dominant time drain is the hash-key lookup. pvc presents a
dominating map stage because of the extensive parsing of web
addresses, while lr is dominated by data aggregation because
it only uses five distinct keys, which can be easily mapped into
registers. It can be noted that just optimizing the hash key
lookup execution via a specialized hardware structure would
provide significant overall performance benefits. The table in
Fig.8 specifies the contribution of each source of performance
improvement. As discussed in Fig.3, the map stage in CASM
executes concurrently with the other MapReduce stages. The
first row of the table reports the speedup we would obtain if this
concurrency was the only source of performance improvement.

Fig. 9. Speedup breakdown by home or local SPM. CASM with local
SPMs alone shows significant speedup on applications with few unique keys
(no spilling to the home SPM). Home SPMs contribute to overall speedup
mostly for applications with many keys and low key-access locality.

The second row of the table reports the speedup we would ob-
tain if the map stage was serialized with the other stages, but
combine, partition and reduce were all accelerated by CASM.
Data Transfers Analysis. To further explain sources of
speedups, we tracked off-chip memory accesses for our base-
line CMP, the CASM solution and an ideal solution. For the
latter, we assumed that all unique keys could be accommodated
in the SPMs, with no off-chip memory access for key-lookups.
CASM reduces this traffic by 4.22x on average, while the ideal
solution achieves a 9x traffic reduction. Such traffic reduction
is possible because CASM’s home SPMs experience minimal
kv-pair spills (<4%), except for sc, which amount to 75% be-
cause of its large number of unique keys. CASM’s ability to
aggressively reduce off-chip memory accesses is the root of the
vast performance benefits it provides, since most of our work-
loads spend most of their time performing key-lookups, which
entail accesses to caches and memory. Furthermore, we found
that CASM reduces interconnect latency by 7% on average,
peaking at 15% for workloads such as wc.
SPM (scratchpad memory) Architecture Analysis. In our
previous analysis, we evaluated the contribution to overall
speedup by home and local SPMs. Fig. 9 provides the re-
sults of a comparative analysis when using only home SPMs,
or only local SPMs – note that each SPM is still 16KB in size.
When CASM uses only local SPMs, the benefits of local ag-
gregation stand, and we still obtain acceptable speedups, al-
though to a lower extent: local SPMs contribute to 2.75x of the
speedup, on average. In particular, for applications with a mod-
erate number of keys, such that they can all fit in the local SPM,
local SPMs provide the majority of the overall performance
benefit of CASM. For other applications, with many distinct
keys, performance becomes more challenging using only local
SPMs, because of the high rate of spilling to the home SPM.
On the other hand, we found that having only home SPMs pro-
vides on average a 2.26x speedup. The performance boost here
is extremely variable: applications with a large number of keys
do best (e.g., wc). Note that, in a few cases, the use of home
SPMs alone leads to a slowdown, as much as -7x (lr), because
of the high interconnect traffic generated in transferring all kv-
pairs directly to the home SPMs, with no local aggregation.
Cache Size Sensitivity. Since CASM entails additional stor-
age (32KB per accelerator in our experimental setup) over the
L1 data caches, one might wonder if it were possible to achieve
the same performance improvement by simply increasing the
capacity of the cores’ caches. To this end, we performed a
cache-size sensitivity study by tracking the execution time of
each application over a range of cache sizes. Fig.10 provides



Fig. 10. L1 cache sensitivity study. Performance speedup over the baseline
CMP, for varied L1 cache sizes. The performance improves by no more than
26% at L1=64KB.

Fig. 11. L2 cache sensitivity study. Performance speedup over the baseline
CMP, when sweeping the L2 cache size. The performance improves at most
by 32% at L2=512KB.

a plot obtained by running our MapReduce applications on the
baseline CMP, while sweeping the L1 data cache size from
16KB (the original baseline size) to 64KB. The plot shows
that the largest performance gain is only 26%, corresponding
to the largest L1 data cache considered, while running the pvc
benchmark. Note that this solution point entails more storage
than the total of our baseline L1 cache and the two SPMs em-
bedded in the CASM accelerator. In contrast, with the addi-
tion of CASM, we can achieve an average of 4x speedup with
less storage. Finally, we carried out a similar analysis for L2
caches. In this case, we swept the size of the total shared L2
cache from 8MB (128KB per core) to 32MB (512KB per core)
and found that the largest performance gain was only 32% at
32MB when running wc, as reported in Figure 11.
Sensitivity to the Number of Cores. We evaluated the scala-
bility of CASM over a range of cores in the underlying CMP,
while always keeping the same 1:1 ratio between cores and ac-
celerators. Figure 12 reports our findings for running wc on
CMP+CASM systems from 8 to 64 cores. It can be noted
that the speedup scales monotonically with the number of
cores/accelerators. And with more accelerators, CASM ap-
proaches its ideal speedup. The reason behind this trend is the
larger collective home scratchpad (the union of all the home
scratchpads) that reduces the number of kv-pair spills.

Fig. 12. Sensitivity to the number of cores. Performance speedup increases
monotonically with the number of cores/accelerators in the system. The
corresponding increase in global home-scratchpad storage (16KB per core)
leads to a closer approximation of ideal speedups with more cores.

TABLE I
COLLISION RATES OVER A RANGE OF DATASET AND SPM SIZES

dataset size/ wc mm/avg pvc sc
SPM size local home local home local home local home

0.1-1GB / 16KB 24.14 3.51 46.35 1.92 3.99 0.00 91.44 75.31
30-100GB / 16KB 30.00 5.28 47.03 1.63 5.24 0.00 94.98 74.51
30-100GB / 32KB 24.16 3.96 45.83 0.43 1.04 0.00 93.47 69.57
30-100GB / 64KB 18.71 3.01 41.25 0.10 0.63 0.00 91.19 65.17

Scalability to Large Datasets. This study estimates the per-
formance of CASM on the large datasets discussed earlier in
this Section, ranging from 30 to 100GB. Since we could not
carry out an accurate simulation, due to the limited perfor-
mance of gem5, we used the collision rate on the local and
home SPMs as a proxy for performance. Indeed, kv-pair colli-
sions in local or home SPMs are the lead cause for contention
in the interconnect; in addition, collisions in the home SPMs
cause spilling to off-chip memory. As discussed above, off-
chip memory accesses are the main source of performance
benefits provided by CASM. In contrast, if an application gen-
erated no collisions, CASM’s execution would almost com-
pletely overlap that of the map stage. Table I reports the col-
lision rates for our applications, on all datasets we considered
for them, both medium (0.1-1GB) and large (30-100GB). We
compute a collision rate as the average number of kv-pairs col-
lisions at the local/home SPM, divided by the total number kv-
pairs. We only report four applications, because all others have
a collision rate of 0%, irrespective of dataset size. The first row
of the table reports the collision rate of the medium dataset –
the one simulated in gem5 and reported in Fig.7. The other
rows report the collision rate for the large datasets, over a range
of SPM sizes. For the large datasets, we report in bold the
SPM sizes that lead to a collision rate below that of our origi-
nal setup with the medium dataset. Assuming that the baseline
CMP maps large datasets as efficiently as medium datasets –
a highly conservative assumption – CASM should achieve the
same or better performance speedup as reported in Fig.7, when
the collision rates at both SPMs fall below that of the medium
datasets. Note that all workloads reach this low collision rate
with 64KB SPMs. Note also that our analysis is based on a
very conservative assumption that the baseline CMP would be
able to provide the same performance for medium and large
datasets, which is unlikely, as large datasets create further pres-
sure on the baseline-CMP’s memory subsystem, providing ad-
ditional benefits for CASM.
Area, Power and Energy. We synthesized CASM’s logic in
IBM 45nm technology. We then setup Cacti with the same
technology node to model the SPMs. We used McPAT to com-
pute the same metrics for the other CMP node’s components:
cores, caches and interconnect. Our findings indicate that
CASM accounts for approximately 6% of a CMP node’s area
and 1% of its peak power consumption. We derived energy
consumption from average dynamic and leakage power and to-
tal execution time, using the tools detailed earlier and perfor-
mance stats from gem5/Garnet. The performance speedup of
CASM provides energy savings ranging from 1.17x to 11.8x,
with an average of 3.5x. Since the power overhead of CASM



is minimal (1%), it is natural to expect that high performance
benefits translate into high energy savings.

VII. RELATED WORK

Many MapReduce solutions targeting CMPs, GPUs and
vector platforms have recently been proposed [22, 6, 24, 27,
18, 9, 10, 14]. CPU solutions rely on a traditional memory
subsystem, which we found to be inefficient for most applica-
tions. Other architectures are optimized for compute-intensive
applications, whereas, most MapReduce applications require
large and irregularly accessed data structures, generating high
off- and on-chip traffic. Several other works accelerate Map-
Reduce using FPGA platforms: [23, 15], but their architecture
does not allow for scaling to large CMP systems. Some re-
cent works share some traits with CASM. For instance, [17]
improves hash-key lookups, and [13] optimizes off-chip trans-
fers, but do not tackle the other MapReduce bottlenecks. Other
proposals, even if they had different goals, have proposed some
architectural features that share some similarity with CASM:
the software-defined caches of [4] partially resemble home
scratchpads, [20] proposes a set of fine-grained accelerators,
[11] provides a near-data processing architecture, [1] offers
computation in cache, and [21] designs a novel reconfigurable
architecture that is more flexible than domain-specific archi-
tectures. All of these solutions, while include valuable contri-
butions, do not offers the full range of optimized design aspecs
of CASM, and many have a different set of goals all together.

VIII. CONCLUSIONS

CASM is a novel collaborative hardware accelerator solu-
tion, capable of offloading the computation and communica-
tion portions of a scale-up implementation of MapReduce ap-
plications from the cores of a CMP to their local accelera-
tors. The system is highly scalable with the number of cores,
and provides over a 4x speedup on average over a CMP-based
software solution, as we evaluated over a wide range of input
dataset, up to 100GB in size. At the same time, it also provides
energy savings of 3.5x. The cost of CASM is 6% in silicon area
and 1% in peak power.

ACKNOWLEDGMENTS

This work was supported by the Applications Driving Archi-
tectures (ADA) Research Center, a JUMP Center co-sponsored
by SRC and DARPA.

REFERENCES

[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das.
Compute caches. In International Symposium on High Performance Computer Ar-
chitecture (HPCA), 2017.

[2] F. Ahmad et al. Puma: Purdue mapreduce benchmarks suite. 2012.
[3] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Rowstron. Scale-

up vs scale-out for hadoop: Time to rethink? In Proc. SOCC, 2013.
[4] N. Beckmann and D. Sanchez. Jigsaw: Scalable software-defined caches. In Pro-

ceedings of the 22nd international conference on Parallel architectures and compi-
lation techniques, 2013.

[5] N. Binkert et al. The gem5 simulator. ACM SIGARCH Computer Architecture
News, 2011.

[6] C.-T. Chu et al. Map-reduce for machine learning on multicore. In Advances in
neural information processing systems, 2007.

[7] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea. Camdoop: Exploiting in-
network aggregation for big data applications. In Proc. NSDI, 2012.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clus-
ters. In Proc. OSDI, 2004.

[9] K. Duraisamy et al. Energy efficient MapReduce with VFI-enabled multicore plat-
forms. In Proc. DAC, 2015.

[10] W. Fang, B. He, Q. Luo, and N. Govindaraju. Mars: Accelerating MapReduce with
graphics processors. TPDS, 2011.

[11] M. Gao, G. Ayers, and C. Kozyrakis. Practical near-data processing for in-memory
analytics frameworks. In International Conference on Parallel Architecture and
Compilation (PACT), 2015.

[12] P. Gutenberg. Accessed: 2017-11-05.
[13] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphicionado:

A high-performance and energy-efficient accelerator for graph analytics. In Proc.
MICRO, 2016.

[14] T. Hayes et al. Future vector microprocessor extensions for data aggregations. In
Proc. ISCA, 2016.

[15] C. Kachris, G. Sirakoulis, and D. Soudris. A reconfigurable MapReduce accelerator
for multi-core all-programmable socs. In Proc. ISSOC, 2014.

[16] A. Klein. Stream ciphers. Springer, 2013.
[17] O. Kocberber et al. Meet the walkers: Accelerating index traversals for in-memory

databases. In Proc. MICRO, 2013.
[18] M. Lu, Y. Liang, H. P. Huynh, Z. Ong, B. He, and R. Goh. MrPhi: An optimized

MapReduce framework on Intel Xeon Phi coprocessors. Parallel and Distributed
Systems, IEEE Transactions on, 26(11), 2015.

[19] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. Cphash: A cache-partitioned hash
table. In Proc. ACM SIGPLAN, 2012.

[20] A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and D. Marr. Fine-grained
accelerators for sparse machine learning workloads. In Proc. ASP-DAC, 2017.

[21] T. Nowatzki et al. Stream-dataflow acceleration. In Proc. ISCA, 2017.
[22] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating

mapreduce for multi-core and multiprocessor systems. In Proc. HPCA, 2007.
[23] Y. Shan et al. FPMR: MapReduce framework on FPGA. In Proc. FPGA, 2010.
[24] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modular MapReduce for

shared-memory systems. In Proc. MapReduce, 2011.
[25] T. White. Hadoop: The definitive guide. 2012.
[26] A. Yasin. A top-down method for performance analysis and counters architecture.

In Proc. ISPASS,, 2014.
[27] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix rebirth: Scalable MapReduce

on a large-scale shared-memory system. In Proc. IISWC, 2009.
[28] T. Yoo, M. Yim, I. Jeong, Y. Lee, and S.-T. Chun. Performance evaluation of in-

memory computing on scale-up and scale-out cluster. In Proc. ICUFN, 2016.
[29] M. Zaharia et al. Spark: Cluster computing with working sets. HotCloud, 2010.
[30] Z.-L. Zhao, C.-D. Wang, Y.-Y. Wan, Z.-W. Huang, and J.-H. Lai. Pipeline item-

based collaborative filtering based on mapreduce. In Proc. BDCloud, 2015.


