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Abstract— As graph applications become more popular and
diverse, it is important to design efficient hardware architectures
that maintain the flexibility of high-level graph programming
frameworks. Prior works have identified the memory subsystem
of traditional chip multiprocessors (CMPs) as a key source
of inefficiency; however, these solutions do not exploit locality
that exists in the structure of many real-world graphs. In this
work, we target graphs that follow a power-law distribution,
for which there is a unique opportunity to significantly boost
the overall performance of the memory subsystem. We note
that many natural graphs, derived from web, social networks,
even biological networks, follow the power law, that is, 20%
of the vertices are linked to 80% of the edges. Based on this
observation, we propose a novel memory subsystem architecture
that leverages this structural graph locality. Our architecture is
based on a heterogeneous cache/scratchpad memory subsystem
and a lightweight compute engine, to which the cores can
offload atomic graph operations. Our architecture provides 2x
speedup, on average, over a same-sized baseline CMP running
the Ligra framework, while requiring no modification to the
Ligra programming interface.

I. INTRODUCTION

In recent years, graph-based algorithms have been widely
deployed, being the root of computation for a wide range of
applications, from web page ranking [34], to distance compu-
tation for online maps [17], to protein-to-protein interaction
[7], and human brain functional connectivity analyses [15].
Researchers have proposed several software frameworks to
address this growing family of computational needs, including
distributed computing systems [18], [21], [26] and single-node
chip multi-processor (CMP) solutions [25], [36], [38], [40],
[44], [47]. Distributed solutions are well suited for tackling
large graphs, while single-node ones are optimized for graphs
that fit within a single processing node. The root of the
performance advantage of these latter solutions lies in the
lower cost of communication, since all data is stored within
the same CMP node’s storage space. Indeed, the increasing
demands for high-performance graph processing have inspired
several solutions that specialize both the datapath and the
memory subsystem of the processing unit for graph-based
algorithms and data structures [5], [19], [33], [42]. However,
these proposals suffer from two key limitations: 1) they pro-
vide application-specific datapaths, which restrict what graph
algorithms can be executed on the architecture; 2) they do not
exploit the graph connectivity and, in turn, the locality within
a graph’s structure, thus missing the opportunity to leverage
optimizations from prior research on data locality.

In this work, we strive to overcome precisely these limita-
tions by designing an architecture that is sufficiently general
to execute any graph algorithm and, at the same time, takes
advantage of the structure of natural graphs, one of the most
common types of graphs occurring in large data collections.
As shown in Figure 1, our architecture, called Optimized
MEmory Subsystem Architecture for Natural Graph Analytics

Fig. 1. OMEGA overview. OMEGA provides a novel memory architecture to
support graph-based computation in CMPs. The architecture is implemented
by replacing a portion of each core’s cache with a scratchpad memory,
organized to store the most highly-connected vertices, and augmented with a
simple processing unit (PISC) to carry out simple vertex computations in-situ.

(OMEGA), can be deployed seamlessly in one of the CMP-
based single-node frameworks currently available, thus provid-
ing further performance benefits to the end user, without the
need to re-code the application. Our architecture can operate
on any type of graph and is designed to best leverage the
characteristics of natural graphs.

Our optimizations exploit the power-law properties of
many natural graphs. Many real-world data collections are
structured as natural graphs, that is, they follow the power-law
distribution: 80% of the edges are incident to approximately
20% of the vertices [16], [18]. Examples include web connec-
tivity graphs [34], social networks [13], biological networks
such as protein-to-protein interactions [7], and human brain
functional networks [15]. One of the key ideas in designing
our architecture was to equip it with on-chip scratchpads
that can accommodate the highly-connected vertices, thus
reducing off-chip accesses during an algorithm’s execution.
Traditional caches cannot effectively harness graph power-law
properties; the specially-managed scratchpads overcome these
limitations. Note that, generally speaking, accesses to vertex
data lack spatial locality, as these frequently accessed vertices
are unlikely to be placed adjacent to each other. In contrast,
accesses to edge data from caches are more likely to exhibit
spatial locality. To support both these needs, we support two
granularities for transfers to/from the cores of the CMP: a
conventional cache-line-size for accesses to/from caches, and
a word-size granularity to/from scratchpads (to avoid inflating
transfers with cache-line-size accesses).

In addition, we equipped OMEGA with lightweight com-
pute engines, called the Processing in Scratchpad (PISC)
units, to offload computation and to address key graph-
computation bottlenecks. PISC units are particularly useful
as many graph-based applications are bottlenecked by frequent
but simple operations (including atomic) on the graph’s data
structures. Since we have mapped the most frequently accessed
data to our on-chip scratchpads, augmenting each scratchpad
with a PISC significantly reduces latency by eliminating many
scratchpad-core transfers.
Contributions. OMEGA makes the following contributions:
• A distributed scratchpad architecture that can optimize vertex
access for natural graphs abiding by a power-law distribution.



Fig. 2. Pseudo-code for a sequential PageRank, computing the next
pagerank of a vertex based on the curr pagerank of its neighbors. This access
pattern often leads to high cache miss rates and data contention.

• A novel PISC (processing in scratchpad) engine architecture,
which provides lower energy and latency for simple compu-
tations over the data stored in its associated scratchpad.
• We evaluated OMEGA by modifying a 16-core CMP gem5
[11] setup so that half of the cache space is repurposed to
scratchpad storage, and by augmenting it with PISC engines
(whose area overhead is estimated � 1%). We found that
OMEGA provides, on average, a 2x speedup over Ligra on a
conventional CMP.

II. BACKGROUND

Power-law graphs. A power law is a functional relationship
such that the output varies with the power of the input. In the
context of graphs, power-law graphs follow the power law
in their vertex-to-edge connectivity, that is, a few vertices
are connected to the majority of the edges, with a long
tail of vertices connected to very few edges. In practical
approximations, a graph is said to follow the power law if
20% of its vertices are connected to approximately 80% of
the edges [30]. Many practical graphs follow the power law,
including web-derived graphs, electrical power grids, citation
networks, and collaboration networks of movie actors [8],
[9]; in addition to graphs arising from social networks [13],
biological networks [7], and human brain functional networks
[15]. The authors of [8], [9] argued that the reason for such
abundant occurrence of power-law distributions in graphs is
a mechanism called “preferential attachment”: a new vertex
joining a graph would most likely connect to an already
popular vertex.
Graph-based algorithmic frameworks. In recent years, it has
become more common to carry out graph-based computations
using high-level frameworks. Several distributed frameworks,
running on networks of computers, have been proposed:
PowerGraph [18], GraphChi [21], Pregel [26], etc. More
recently, solutions relying on single-node chip multiprocessor
(CMP) architectures have also gained momentum: Ligra [38],
GraphMat [40], Polymer [44], X-Stream [36], GridGraph [47],
MOSAIC [25], GraphBIG [29], etc. In this work, our focus
is on CMP solutions, as powerful, high-end servers with large
and low-cost memory have sufficient capability to run many
real-world graph algorithms in single-node machines.

The single-node frameworks proposed can be broadly
classified as either vertex-centric (Ligra, GraphMat, Poly-
mer, GraphBIG) or edge-centric (X-Stream, GridGraph). The
vertex-centric approach has gained popularity because it pro-
vides a simple programming paradigm. Particularly, Ligra and
GraphMat combine the simplicity of a vertex-centric approach
with high performance [27], [46]. In particular, Ligra’s ability
to operate on graph vertices using a sparsely- or densely-stored
active vertex list and by scattering vertex-data by outgoing or
incoming edge order makes it suitable for natural graphs as
the connectivity of their vertices is highly variable [10].
Graph-based algorithms. Figure 2 provides the pseudo-code
of a basic PageRank algorithm for a vertex-centric framework.

Fig. 3. Execution breakdown using TMAM [43] metrics. Profiling several
real-world graph workloads using vTune on an Intel Xeon E5-2630 v3
processor with a last-level-cache of 20MB shows that the performance is
mostly limited by the execution pipeline’s throughput (backend).

Each vertex of the graph represents a webpage, while edges
correspond to links between pages. In this PageRank imple-
mentation, each thread “X” iterates through all the outgoing
edges of its assigned source vertex, to find all the destination
vertices and update their page rank values. Note that updating
the page rank value may lead to major performance bottle-
necks, since i) it leads to several random memory accesses
and ii) many distinct threads may attempt to update the same
vertex at the same time.
Graph data structures. It is common to provide three data
structures to represent a graph: “vertex property” (vtxProp),
“edge list” (edgeList), and non-graph data (nGraphData).
vtxProp stores the values that must be computed for each
vertex, e.g., next pagerank from Figure 2; edgeList maintains
both sets of outgoing and incoming edges for each vertex; and
nGraphData includes all data structures that are not part of
vtxProp or edgeList. For many graph processing frameworks,
most random accesses occur within vtxProp, whereas accesses
to edgeList are frequently sequential, as each vertex has many
outgoing and/or incoming edges. Furthermore, nGraphData
data is generally small in size and entails sequential access-
patterns (e.g., loop counters).

III. MOTIVATION

Bottlenecks in natural graph analytics. To analyze where
the bottlenecks lie in graph processing, we profiled a number
of graph-based applications over Ligra, a framework optimized
for natural graphs [10], on an Intel Xeon E5-2630 processor
with a 20MB last-level cache. We used Intel’s VTune to gather
the “Top-down Microarchitecture Analysis Method” (TMAM)
metrics [43]. For this analysis, we used representative graph-
based algorithms running on real-world datasets. The results,
plotted in Figure 3, show that applications are significantly
backend bounded, that is, the main cause of performance
bottlenecks is the inability of the cores’ pipelines to efficiently
complete instructions. Furthermore, the execution time break
down of the backend portion reveals that they are mainly
bottlenecked by memory wait time (memory bounded) with
an average value of 71%. From this analysis, we can infer
that the biggest optimization opportunity lies in improving the
memory structure to enable faster access completions. Note
that other prior works have also reached similar conclusions
[5], [28]. Hence, our primary goal, in this work, is to develop
an optimized architecture for the memory system of a CMP
to boost the performance of graph processing.

Our proposed approach is unique when compared with prior
works because i) we strive to fully exploit the locality that
exists in the structure of natural graphs, and ii) we want to
maintain transparency to the user as much as possible, thus
we strive to minimize – or better, avoid – architectural mod-
ifications that require modifications to the graph-processing
framework or the graph applications running on it.



(a) Cache hit rate (b) Percentage of accesses to the top 20% most-connected vertices

Fig. 4. Cache profiling on traditional CMP architectures. Left-side: profiling several graph workloads on vTune on Intel Xeon reports hit rates below 50%
on L2 and LLC. Right-side: Over 75% of the accesses to vtxProp target the 20% most connected vertices, a locality pattern not captured by regular caches.

Inefficiencies in locality exploitation in natural graphs. We
then performed a more in-depth analysis of the bottlenecks
in the memory subsystem by monitoring last-level cache hit
rates for the same graph-based applications. Figure 4(a) shows
that all workloads experience a relatively low hit rate. We
suspect that the main culprit is the lack of locality in the
vtxProp accesses, as also suggested by [5], [29]. Moreover, in
analyzing the distribution of accesses within vtxProp, Figure
4(b) reports which fraction of the accesses targeted the 20%
of vertices with highest in-degree: this subset of the vertices
is consistently responsible for over 75% of the accesses. The
study overall suggests that, if we could accelerate the access
of this 20% of vertices in vtxProp, then we could significantly
reduce the memory access bottleneck, and, in turn, the pipeline
backend bottleneck pinpointed by the TMAM analysis.
On-chip communication and atomic instruction overheads.
We also observed that, when using conventional caches to
access the vertex data structure, each access must transfer
data at cache-line granularity, potentially leading to up to 8x
overhead in on-chip traffic, since the vertex’s vtxProp entry
most often fits in one word and a cache line is 64 bytes.
In addition, when a vertex’s data is stored on a remote L2
bank, the transfer may incur significant on-chip communi-
cation latency overhead (17 cycles with the baseline setup
of our evaluation). Finally, atomic accesses may incur the
most significant performance overhead of all those discussed:
based on the approach in [28], we estimated the overhead
entailed by the use of atomic instructions by comparing overall
performance against that of an identical PageRank application
where we replaced each atomic instruction with a regular
read/write. The result reveals an overhead of up to 50%. Note
that these on-chip communication and atomic instructions
overheads are particularly high, even for small and medium
graph datasets, which could comfortably fit in on-chip storage.
We found these kinds of datasets to be abundant in practice,
e.g., the vtxProp of over 50% of the datasets in [22] can fit
on an Intel Xeon E5-2630’s 20MB of on-chip storage. Hence,
we believe that a viable memory subsystem architecture so-
lution must holistically address atomic instructions, on-chip
communication, and off-chip communication overheads.
Limitations of graph pre-processing solutions. Prior works
have exploited the locality inherent in a graph by relying on
offline vertex-reordering algorithms. We also have deployed
some of these solutions on natural graphs, including in-degree,
out-degree, and SlashBurn-based reordering [24], but have
found limited benefits. More specifically, in-degree- and out-
degree-based reorderings provide higher last-level cache hit
rates, +12% and +2% respectively, as frequently accessed
vertices are stored together in a cache block; however, they
also create high load imbalance. For all of the reordering
algorithms, we perform load balancing by fine-tuning the
scheduling of the OpenMP implementation. We found that the

best speedup over the original ordering was 8% for in-degree,
6.3% for out-degree, and no improvement with SlashBurn.
Other works [45] have reported similar results, including a
slowdown from in-degree-based ordering. Another common
graph preprocessing technique is graph slicing/partitioning,
which provides good performance at the expense of requiring
significant changes to the graph framework [45].

IV. WORKLOAD CHARACTERIZATION

To guide the design of our proposed architecture, we gath-
ered a diverse pool of real-world datasets from various popular
sources [1], [2], [22] and report their key characteristics
in Table I. The datasets include: soc-Slashdot0811 (sd), ca-
AstroPh (ap), rMat (rMat), orkut-2007 (orkut), ljournal-2008
(lj), enwiki-2013 (wiki), indochina-2004 (ic), uk-2002 (uk),
twitter-2010 (twitter), roadNet-CA (rCA), roadNet-PA (rPA),
Western-USA (USA). Datasets collected vary in size, type of
graph (directed vs. undirected), and whether they abide by the
power law or not in their structures. Indeed, we purposely
included a few datasets that do not follow the power law to
evaluate the difference in performance impact of our solution.
The table also reports in-degree and out-degree connectivity
of the 20% most-connected vertices. The in-degree/out-degree
connectivity measures the fraction of incoming/outgoing edges
connected to the 20% most-connected vertices. Note that those
datasets following the power law have very high connectivity
values.
Graph-based algorithms. We considered several popular
graph algorithms, outlined below and discussed in more detail
in [38], [40]. PageRank (PageRank) iteratively calculates an
influence value for each vertex based on the popularity of
its neighbors, until the value converges. Breadth-First Search
(BFS) traverses the graph breadth-first, starting from an as-
signed root node, and assigning a parent to each reachable
vertex. Single-Source Shortest-Path (SSSP) traverses a graph
as BFS, while computing the shortest distance from the root
vertex to each vertex in the graph. Betweenness Central-
ity (BC) computes, for each vertex, the number of shortest
paths that go through that vertex. Radii (Radii) estimates the
maximum radius of the graph, that is, the shortest distance
between the furthest pair of vertices in the graph. Connected
Components (CC), in an undirected graph, finds all subgraphs
such that within each subgraph all vertices can reach one
another, and there are no paths between vertices belonging to
different subgraphs. Triangle Counting (TC), in an undirected
graph, computes the number of triangles i.e., the number of
vertices that have two adjacent vertices that are also adjacent
to each other. k-Core (KC), in an undirected graph, identifies
a maximal-size connected subgraph comprising only vertices
of degree ≥ k.

As shown in Table II, the size of the vtxProp entry varies
based on the algorithm, from 4 to 12 bytes per vertex. In ad-



TABLE I
GRAPH DATASET CHARACTERIZATION

Characteristic sd ap rMat orkut wiki lj ic uk twitter rPA rCA USA

#vertices (M) 0.07 0.13 2 3 4.2 5.3 7.4 18.5 41.6 1 1.9 6.2
#edges (M) 0.9 0.39 25 234 101 79 194 298 1468 3 5.5 15
type dir. undir. dir. dir. dir. dir. dir. dir. dir. undir. undir. undir.
in-degree con. 62.8 100 93 58.73 84.69 77.35 93.26 84.45 85.9 28.6 28.8 29.35
out-degree con. 78.05 100 93.8 58.73 60.97 75.56 73.37 44.05 74.9 28.6 28.8 29.35
power law yes yes yes yes yes yes yes yes yes no no no
reference [22] [22] [22] [2] [2] [2] [2] [2] [2] [22] [22] [1]

TABLE II
GRAPH-BASED ALGORITHM CHARACTERIZATION

Characteristic PageRank BFS SSSP BC Radii CC TC KC

atomic operation type fp unsigned signed min & fp signed or & unsigned signed signed
add comp. bool comp. add signed min min add add

%atomic operation high low high medium high high low low
%random access high high high high high high low low
vtxProp entry size 8 4 8 8 12 8 8 4
#vtxProp 1 1 2 1 3 2 1 1
active-list no yes yes yes yes yes no no
read src vtx’s vtxProp no no yes yes yes yes no no

dition, several algorithms, e.g., SSSP, require multiple vtxProp
structures, of variable entry size and stride. Note that the size
of vtxProp entry determines the amount of on-chip storage
required to process a given graph efficiently. Moreover, Table
II also highlights that most algorithms perform a high fraction
of random accesses and atomic operations, e.g., PageRank.
However, depending on the algorithm, the framework might
employ techniques to reduce the number of atomic operations.
For example, in the case of BFS, Ligra performs atomic
operations only after checking if a parent was not assigned
to a vertex. In this case, the algorithm performs many random
accesses, often just as expensive. Note that there are graph
frameworks that do not rely upon atomic operations, e.g.,
GraphMat. Such frameworks partition the dataset so that only
a single thread modifies vtxProp at a time, and thus the opti-
mization targets the specific operations performed on vtxProp.
Finally, note that many graph algorithms process only a subset
of the vertices per iteration, hence they maintain a list of active
vertices (active-list), which incurs a significant performance
penalty. Hence, it is crucial to differentiate algorithms by
whether they need to maintain such a list or not.

Many algorithms operating on natural graphs experience
<50% hit-rate on the last-level cache (Figure 4(a)), despite
a highly-skewed connectivity among the vertices of the graph.
Our graph workload characterization, reported in Figure 5,
reveals that a hit rate of 50% or greater can be achieved on
the randomly-accessed portion of the vertex data (vtxProp).
As shown in the Figure, for graphs that follow the power
law, up to 99% of the vtxProp requests can be served by ac-
commodating just the top 20% most-connected vertices in on-
chip storage, which is practical for many graphs encountered
in real-world applications. The per-vertex storage requirement
depends on the algorithm: for example, Ligra uses 4 bytes for
BFS, 8 bytes for PageRank, and 12 bytes for Radii (Table II).
Our analysis on storage requirements reveals that 20% of the
vertices for the graphs in Table I can be mapped to a fraction of
today’s on-chip storage sizes. Among the graphs considered,
only uk and twitter would require more than 16MB of on-chip
storage to attain that goal. uk requires up to 42MB, whereas
twitter requires 64MB. In fact, by re-purposing IBM’s total L2
+ L3 caches (132MB) to store 20% vertices, up to 164 million
vertices (1.64 billion edges, assuming R-MAT’s [12] default
edge-vertex ratio) could be allocated to on-chip storage.

Fig. 5. Accesses to the 20% most connected vertices. The heat map shows
the fraction of accesses to vtxProp that refer to the 20% most-connected
vertices. 100 indicates that all accesses are to those vertices. Data for twitter
is omitted because of its extreme profiling runtime.

V. OMEGA ARCHITECTURE

The OMEGA architecture, shown on the right side of Figure
6, employs a heterogeneous storage architecture that comprises
both conventional caches and distributed scratchpads. Each
scratchpad is augmented with a lightweight compute-engine
(PISC), which executes atomic operations offloaded from the
core. The scratchpads store the most-accessed portion of the
vtxProp data structure, which is where most of the random
accesses occur. By doing so, most accesses to vtxProp are
served from on-chip storage, and off-chip memory accesses
are minimized. In contrast, the edgeArray and nGraphData
data structures are stored in conventional caches, since they
are mostly accessed sequentially, thus benefiting from cache
optimization techniques. While the scratchpads help minimize
off-chip memory accesses, the PISC reduces overheads of
executing atomic operations on general-purpose cores. These
overheads are due to on-chip communication latency related to
frequent vtxProp access from remote scratchpads and atomic
operations causing the core’s pipeline to be on-hold until their
completion [28]. The PISCs, each colocated with a scratchpad,
minimize these overheads by providing computational capa-
bility near the relevant data location, performing the atomic
update by leveraging the two co-located units. In contrast, a
number of inefficiencies arise if a core is used, even a local
one: first, the significant performance penalty for entering and
exiting an interrupt service routine, up to 25ns [5]. Second,
since atomic operations are mostly simple ones, a simple PISC
can complete them using less energy than a full-blown CPU.

To illustrate the operation of the OMEGA architecture, we
use the sample graph on the left of Figure 6. The vertices



Fig. 6. OMEGA architecture. Left-side - Sample graph that follows power law: The vertices are reordered based on their in-degree, with lower ID indicating
a higher connectivity. Right-side - OMEGA’s heterogeneous cache/SP architecture: for each core, OMEGA adds a scratchpad and a PISC. For the sample
graph of the left-side, the vtxProp for the most-connected vertices (V0 to V3) is partitioned across all on-chip scratchpads. The rest of the vertices are stored
in regular caches. The PISCs execute atomic instructions that are offloaded from the cores.

Fig. 7. Scratchpad controller. The scratchpad controller orchestrates access
to the scratchpad. It uses a pre-configured set of address monitoring registers
to filter requests destined to the scratchpads. The partition unit determines if
a request is to a local scratchpad or a remote one. To identify the scratchpad
line of a request, the index unit is employed.

are reordered by decreasing in-degree, with V0 being first.
OMEGA partitions the vtxProp of the most-connected vertices,
in our case V0 to V3, among all on-chip scratchpads. All other
data, that is, the vtxProp for the remaining vertices (V4 to
V18), edgeArray, and nGraphData, are stored in the regular
cache hierarchy. This partitioning scheme enables OMEGA
to serve most vtxProp accesses from on-chip scratchpads, by
providing storage for just a small portion of the structure. For
graphs that follow the power law, it should be sufficient to store
just 20% of vtxProp to scratchpads, for OMEGA to serve 80%
of the accesses from there.

A. Scratchpad architecture

A high-level scratchpad architecture is shown in Figure 6.
The scratchpad is organized as a directly-mapped storage. For
each line, we store all vtxProp entries (Props) of a vertex,
thus all Props of a vertex can be retrieved with a single
access, which is beneficial for the efficient execution of atomic
operations. In addition, an extra bit is added for each vtxProp
entry to track the active-list using a dense representation [38].
The access to the scratchpad is managed by the scratchpad
controller, as discussed below.
Scratchpad controller. Figure 7 shows the scratchpad con-
troller. It includes a set of address-monitoring registers, the
monitor unit, the partition unit, and the index unit. The
scratchpad controller receives normal read and write requests,
as well as atomic-operation requests from both the local core
and other scratchpads via the interconnect. Upon receiving
them, its monitor unit determines if the request should be
routed to the regular caches or to the scratchpads. For this
purpose, the monitor unit relies on a set of address monitoring
registers. The address monitoring registers are shown on

the left-side of Figure 7. For each vtxProp, we maintain its
start addr, type size, and stride. The start addr is the same
as the base address of the vtxProp. The type size is the size of
the primitive data type stored by the vtxProp. For instance, for
PageRank, the “next pagerank” vtxProp maintains a primitive
data type of “double”, hence its type size would be 8 bytes.
The stride is usually the same as the type size except when
the vtxProp is part of a “struct” data structure. In that case, it
is determined by subtracting the first two consecutive vtxProp
addresses. All of these registers are configured by the graph
framework at the beginning of an application’s execution. If
the scratchpad controller determines that a request is for the
regular cache, it ignores it, as it will be handled by the regular
cache controller. If it is for the scratchpads, the partition unit is
used to determine whether the request is for a local scratchpad
or for a remote one. Either way, if the request is not an
atomic operation, the scratchpad controller simply forwards
the request to the scratchpad. If the request is for a remote
scratchpad, the scratchpad controller forwards the request to
it via the interconnect using a special packet. The index unit is
used to identify the line number of the request to perform the
actual scratchpad access. For an atomic operation request, the
scratchpad controller reads the required vtxProp of the request
from the scratchpad, initiates its atomic execution on the PISC
engine, and then writes the result back to the scratchpad. Note
that, while the execution of the atomic operation is in progress,
the scratchpad controller blocks all requests that are issued to
the same vertex.

B. PISC (Processing-in-Scratchpad) unit
When we deployed the on-chip scratchpads to store the

most-accessed portion of the vtxProp and, thus, bound most
of the random-access requests to on-chip storage, we found
that these requests were most often to remote scratchpads.
That is, the general-purpose cores would issue requests that,
for the most part, were served by remote scratchpads. This
effect creates bottlenecks due to the interconnect transfer
latency. Thus, to address this issue, we augmented our solution
with simple PISC engines, to offload such requests from the
processor cores. Due to their simplicity, PISCs enable lower
energy and latency for data accesses, similarly to the benefits
of Processing-in-Memory (PIM) units. Each scratchpad is aug-
mented with a PISC engine that executes the atomic operations
of the algorithm in execution, e.g., floating-point addition for
PageRank algorithm. Figure 8 illustrates how PISCs work. The
sample graph on the left is being processed by Core0 running
the PageRank algorithm: starting with the source vertex V4,
Core0 updates the next pagerank for all its outgoing edges (in



Fig. 8. Atomic operation offloading. The PISC executes atomic operations
offloaded by the cores. When Core0, executing PageRank on the sample graph,
process the V4-V1 edge, it transfers the vtxProp of V4 to Core1’s PISC, which
takes care of updating the value of V1’s next pagerank atomically.

Fig. 9. PISC architecture. A PISC includes a simple ALU engine, imple-
menting several atomic operations to support a wide range of graph workloads.
The sequencing logic controls the execution of the corresponding microcode.

this case, V1 and V3). Without a PISC, this function entails
two remote vtxProp read operations from Core1’s scratchpad,
along with a significant read latency cost. However, with a
PISC, Core0 can simply send a message to Core1’s PISC
requesting the computation of the next pagerank for V4, and
then advance to processing other vertices.
PISC architecture. A high-level architecture of a PISC unit
is shown in Figure 9. One of the main components of a PISC
is an ALU engine, which supports several operations corre-
sponding to the atomic operations of the algorithms discussed
in Section X. For instance, PageRank requires “floating point
addition”, BFS requires “unsigned integer comparison”, and
SSSP requires “signed integer min” and “Bool comparison”.
In addition, the microcode registers store the sequence of
micro-operations implementing each atomic operation. The
sequencer is responsible for interpreting the incoming atomic
operation command, reading/writing from/to the scratchpad,
and controlling the execution of the microcode.
Maintaining the active-list. As discussed earlier, several
graph-based algorithms leverage an active-list to keep track
of the set of vertices that must be processed in the next
iteration of the algorithm. As the algorithm proceeds, the
active-list is frequently updated: we offloaded this activity
from processor cores, too, to avoid a penalty in on-chip latency
due to cores waiting on PISC engines’ completion. Note that
there are two kinds of active-list data structures: dense-active-
lists and sparse-active-lists [38]. To update a dense-active-
list in our OMEGA solution, the local PISC sets a bit in
the scratchpad corresponding to the vertex entry on which the
atomic operation is operating. To update the sparse-active-list,
the PISC writes the ID of the active vertex to a list structure,
stored in memory via the L1 data cache.

C. Source vertex buffer
Many graph algorithms first read a source vertex’s vtxProp

(see Table II), apply one or more operations to it, and
then use the result (src data) to update the vtxProp of the
source’s adjacent vertices. For instance, the SSSP algorithm

(pseudo-code shown in Figure 10) reads a source vertex’s
vtxProp, in this case ShortestLen, adds the edgeLen to it, then
uses the result to update the ShortestLen of all its adjacent
vertices. When executing this sequence of operations using
the regular cache hierarchy, a single read to the source vertex
would bring the data to L1 cache, and all subsequent read
requests (up to the number of outgoing edges of the source
vertex) will be served from there. However, when using the
scratchpads, distributed across all the cores, a read access
to a vertex’s information by a remote core could incur a
significant interconnect-transfer latency (an average of 17
processor cycles in our implementation). To minimize this
latency, we introduced a new read-only small storage-structure
called the source vertex buffer. Every read request to a source
vertex’s vtxProp is first checked against the contents of this
buffer. If the request cannot be served from it, the request is
forwarded to the remote scratchpad. Upon a successful read
from a remote scratchpad, a copy of the vertex data retrieved
will be placed in the buffer to serve future requests to the same
vertex. Note that, since all buffer’s entries are invalidated at the
end of each algorithm’s iteration, and the source vertex vtxProp
is not updated until that point, there is no need to maintain
coherence between this buffer and the distributed scratchpads.
Figure 11 illustrates how the buffer works. The sample graph
on the left is being processed by Core0 running the SSSP
algorithm: starting with the source vertex V3, Core0 updates
the next ShortestLen for all its outgoing edges (in this case, V0
followed by V1). To perform the update for V0, Core0 reads
the ShortestLen of V3 from SP1, entailing a remote scratchpad
access. Upon a successful read, a copy of V3’s ShortestLen
will be stored in the buffer. Then, when Core0 attempts to
read the ShortestLen of V3 again, in this case to update V1,
the read will be satisfied from the buffer.

D. Reconfigurable scratchpad mapping
As discussed earlier, the performance of most graph al-

gorithms is limited by their random access patterns to the
vtxProp data structure. However, some algorithms also perform
a significant number of sequential accesses to the same data
structure. For the portion of the vtxProp that is mapped to the
scratchpads, OMEGA’s mapping scheme affects the efficiency
of such sequential accesses. To understand this scenario in
more detail, we include a code snippet of PageRank at the
top of Figure 12, showing a sequential access to vtxPorp.
The code copies vtxProp (next pagerank) to another temporary
data structure (curr pagerank). The vtxProp is stored on the
scratchpad while the temporary structure is stored in cache. As
shown in the bottom-side of Figure 12, given an interleaving-
based mapping with a chunk size of 1, and an OpenMP
scheduling based on assigning an equally-sized chunk for
each thread (2 for the code snippet shown in the Figure), the
activity of copying vtxProp of V1 by Core0 and vtxProp of
V2 by Core1 would involve remote scratchpad accesses. To
avoid them, the chunk size that OMEGA uses to map the
vtxProp to the scratchpads is pre-configured to match that
of the chunk size configured in the framework’s OpenMP
scheduling scheme. This setting make it so potentially remote
scratchpad accesses become local ones when performing se-
quential accesses.

E. On-chip communication
Communication granularity of scratchpad. Although a
large portion of the accesses to vtxProp are served from the
scratchpads, these accesses still lack spatial locality. Such a



Fig. 10. Pseudo-code for SSSP. The algorithm considers each pair of vertices,
“s” and “d”, adds “s” current shortest length (“ShortestLen”) to the distance
to “d” and then updates the “ShortestLen” of “d”. To keep track of visited
vertices, their corresponding Visited tag is set to 1.

Fig. 11. Source vertex buffer. In processing the graph, first V3’s vtxProp is
read from a remote scratchpad, and a copy is created locally in the “source
vertex buffer”. Subsequent reads to the same entry are then served from it.

deficiency causes most accesses from the cores to be served
from remote scratchpads. Consequently, frequent accesses to
the remote scratchpads at a cache-line granularity wastes
on-chip communication bandwidth. To address this aspect,
OMEGA accesses the scratchpads at a word-level granularity.
The actual size of the scratchpad access depends on the
vtxProp entry type, and it ranges from 1 byte (corresponding
to a “Bool” vtxProp entry) to 8 bytes (corresponding to a
“double” vtxProp entry) in the workloads that we considered
(see Table II). For communication with the remote scratchpads,
OMEGA uses custom packets with a size of up to 64-bits,
as the maximum type size of a vtxProp entry is 8 bytes.
Note that this size is smaller than the bus-width of a typical
interconnect architecture (128 bits in our evaluation), and its
size closely resembles the control messages of conventional
coherence protocols (e.g., “ack” messages). Using a word-level
granularity instead of a conventional cache-block size enables
OMEGA to reduce the on-chip traffic by a factor of up to 2x.

F. Adopting software frameworks
Lightweight source-to-source translation. High-level frame-
works such as Ligra must be slightly adapted to benefit from
OMEGA. To this end, we developed a lightweight source-to-
source translation tool. Note that source-to-source translation
implies that the resulting framework will be in the same
programming language as the original one, hence no special
compilation techniques is required. The tool performs two
main kinds of translation. First, it generates code to configure
OMEGA’s microcode and other registers. To configure the
microcode registers, it parses a pre-annotated “update” func-
tion by the framework developers (an example for SSSP is
shown in Figure 10) and generates code comprising a series
of store instructions to a set of memory-mapped registers. This
code is the microcode to be written to each PISC. Note that
the microcode contains a relatively simple set of operations,
mostly implementing the algorithm’s atomic operations. For
example, the microcode for PageRank would involve reading
the stored page-rank value from the scratchpad, followed by
performing floating-point addition and writing the result back
to the scratchpad. In addition to the microcode, the tool
generates code for configuring OMEGA, including the optype

Fig. 12. Cost of mismatched chunk sizes for scratchpad mapping and
OpenMP scheduling. Given a scratchpad mapping based on interleaving with
a chunk size of 1, and different from the OpenMP scheduling (shown with a
chunk size of 2) the mismatch in chunk size causes half of the accesses to
vtxProp to be from remote scratchpads.

Fig. 13. Code generated for SSSP with the source-to-source translation
tool. Microcode for the update function of Figure 10. The new computed
ShortestLen is written in memory-mapped register 1, and the ID of the
destination vertex is written to memory-mapped register 2.

(the atomic operation type), the start address of vtxProp, the
number of vertices, the per-vertex entry size, and its stride. The
code for all these configurations is executed at the beginning of
the application execution. In addition to configuration code, the
tool translates the annotated “update” function into equivalent
code that contains a series of store instructions to a set of
memory mapped registers. This code is executed whenever
the framework executes the “update” function offloaded to
the PISC engines. To highlight this transformation, we show
the “update” function of SSSP algorithm in Figure 10 and its
translated code in Figure 13. To verify the functionality of
the tool across multiple frameworks, we applied the tool to
GraphMat [40] in addition to Ligra [38].

VI. GRAPH PREPROCESSING

OMEGA’s benefits rely on identifying highly-connected ver-
tices of a graph dataset, and mapping their vtxProp to the on-
chip scratchpads. Broadly speaking, there are two approaches
to achieve this purpose: dynamic and static approaches. With
a dynamic approach, the highly-connected vertices can be
identified by using a hardware cache with a replacement
policy based on vertex connectivity and a word granularity
cache-block size, as suggested in other works [20], [31],
[41]. However, this solution incurs significant area and power
overheads as each vertex must store tag information, e.g.,
2x overhead for BFS assuming 32 bits per tag entry and
32 bits per vtxProp entry. To remedy the high overhead of
the dynamic approach, a static approach based on reordering
the graph using offline algorithms can be utilized. Any kind
of reordering algorithm can be used with OMEGA, as long
as it produces a monotonically decreasing/increasing ordering
of popularity of vertices. Both in-degree- and out-degree-
based reordering algorithms provide such ordering. We found
in practice that in-degree-based reordering captures a larger
portion of the natural graphs’ connectivity as shown in Table
I. Slashburn-based reordering, however, produces suboptimal
results for our solution as it strives to create community
structures instead of a monotonically reordered dataset based
on vertex connectivity. We considered three variants of in-
degree-based reordering algorithms: 1) sorting the complete
set of vertices, which has an average-case complexity of vlogv,
where v is the number of vertices; 2) sorting only the top
20% of the vertices, which has the same average-case time



complexity; and 3) using an “n-th element” algorithm that
reorders a list of vertices so that all vertices stored before
the n-th index in the list have connectivity higher than those
after (in our case, n would be the 20% index mark). This
algorithm has a linear average-case time complexity. We chose
the third option in our evaluation since it provides slightly
better performance and has a very-low reordering overhead.
However, a user might find the first option more beneficial if
the storage requirement for 20% of the vertices is significantly
larger than the available storage.

VII. SCALING SCRATCHPAD USAGE TO LARGE GRAPHS

Our prior discussion about the scratchpad architecture is
based on the assumption that OMEGA’s storage can accom-
modate a significant portion (≈20%) of the vtxProp of a graph.
In this section, we discuss several approaches to scale the
scratchpad architecture for larger graphs, where the vtxProp of
their most-connected vertices does not fit into the scratchpads.
1) Storing vtxProp for the most-connected vertices. First
of all, OMEGA’s scratchpad architecture continues to provide
significant benefits even when it provides storage for the
vtxProp of <20% of the vertices. The key reason is that
storing the most-connected vertices is the best investment
of resources compared to re-purposing the same storage for
conventional caches. However, as the size of the graph keeps
increasing, there is a point where OMEGA’s scratchpads would
become too small to store a meaningful portion of vtxProp,
and, consequently, the benefit would be negligible. Below,
we discuss two approaches that enable OMEGA to continue
providing benefits even in this scenario.
2) Graph slicing. [19], [45] proposed a technique called graph
slicing/segmentation to scale the scratchpad/cache usage of
their architecture. In this technique, a large graph is partitioned
into multiple slices, so that each single slice fits in on-chip
storage. Then, one slice is processed at a time and the result is
merged at the end. While the same technique can be employed
to scale the scratchpad usage for OMEGA, there are several
associated performance overheads: 1) processing time required
for partitioning a large graph to smaller slices; 2) combining
the results of several slices. These overheads increase with the
numbers of slices: the next approach address this challenge.
3) Graph slicing and exploiting power law. Instead of slicing
graphs so that each slice fits in the scratchpads, slicing can be
performed to fit just the vtxProp of the 20% most-connected
vertices, which is sufficient to serve most vtxProp accesses.
The approach significantly reduces the total number of graph
slices by up to 5x, along with the associated overheads.

We evaluated of OMEGA based on the first approach.
Evaluation of the other two options is left to future work.

VIII. MEMORY SEMANTICS

Cache coherence. Each vtxProp entry is mapped to and
handled by only one scratchpad, without requiring access to
the conventional caches, thus avoiding any sharing. All the
remaining vertices and other data structures are managed by
the conventional cache coherence protocol. Hence, there is
no need to manage coherence among scratchpads or between
scratchpads and conventional caches.
Virtual address translation. The local scratchpad controller
maps the virtual address of an incoming request into a vertex
ID, and it uses the ID to orchestrate scratchpad access, in-
cluding identifying which scratchpad to access, whether local
or remote. Hence, there is no need to incorporate virtual to
physical address translation into the scratchpads.

TABLE III
EXPERIMENTAL TESTBED SETUP

Common configuration
Core: 16 OoO cores, 2GHZ, 8-wide, 192-entry ROB
L1 I/D cache per core: 16KB, 4/8-way, private
cache block size: 64 bytes
Coherence protocol: MESI Two Level
memory: 4xDDR3-1600, 12GB/s per channel
interconnect topology: crossbar, 128-bits bus-width
Baseline-specific configuration
L2 cache per core: 2MB, 8-way, shared
OMEGA-specific configuration
L2 cache per core: 1MB, 8-way, shared
SP per core: 1MB, direct, lat. 3-cycles
SP access granularity: 1-8 bytes

Atomic operation. If OMEGA only employed distributed
scratchpads as on-chip storage, execution of atomic operations
would be handled by the cores. Since on-chip scratchpad
accesses happen at word-level granularity instead of cache-
line granularity, the cores lock only the required word address.
Aspects of the implementation other than access granularity re-
main the same as in a conventional cache coherence protocol.

IX. FURTHER CONSIDERATIONS WITH OMEGA
Dynamic graphs. OMEGA relies on an offline reordering
algorithm to identify the 20% most popular vertices. With
dynamic graphs, these set of vertices might vary, as new
vertices/edges are added to or removed from the graph. By
using a reordering algorithm to re-identify the popular vertices,
as long as the high-level framework supports it, OMEGA can
be adapted to continue to provide the same benefits as it does
for static graphs. However, we defer a detailed discussion of
this application of OMEGA to future work.
Locked cache vs. scratchpad. Locking cache lines allows
programmers to load a cache line and disable its replacement
policy [35]. This technique could be extended to capture the
top popular vertices by locking their corresponding cache
lines. While this technique might lower the amount of mod-
ifications to the architecture compared to OMEGA, it would
still suffer from high on-chip communication overhead be-
cause data is inefficiently accessed on a cache-line granularity
instead of word granularity.
Optimizing access to the least-connected vertices. OMEGA
achieves significant performance benefits even without accom-
modating the vtxProp of the least-connected vertices within
scratchpads. However, the access latency to this portion of
the vtxProp, mostly from off-chip memory, could potentially
be the bottleneck to further performance improvements. In
light of this observation, we note three potential directions to
extend OMEGA’s techniques to off-chip memory: 1) access
to the vtxProp of the least connected vertices at word-level
granularity; 2) offloading operations on the least-connected
vertices to off-chip memory, leading to a hybrid PISC and
PIM architecture; and 3) employing a hybrid close- and open-
page policy: close-page for the least connected vertices as they
lack spatial locality and open-page for the rest of the data
structures including the edgeList. The focus of this work is on
evaluating the benefits of on-chip storage and offloaded atomic
operations, thus we defer the exploration of these directions
to future work.

X. EXPERIMENTAL EVALUATION

Experimental setup. We modeled OMEGA on gem5 [11],
a cycle-accurate simulation infrastructure. We ported the



Fig. 14. OMEGA performance speedup. OMEGA provides 2x speedup, on average, over a baseline CMP running Ligra.

OpenMP implementation of the Ligra framework [38] to
gem5 using “m5threads” and we carried out the simulation in
“syscall” emulation mode. We compiled Ligra with gcc/g++
using the O3 optimization flag. Our simulation setup is sum-
marized in Table III. Our baseline design is a CMP with 16,
8-wide, out-of-order cores with private 32KB of L1 instruction
and data caches and shared L2 cache, with a total storage size
matching OMEGA’s hybrid scratchpad+cache architecture. For
OMEGA, we keep the same parameters for the cores and L1
caches as the baseline CMP. Each scratchpad is augmented
with a PISC engine. Communication with the caches takes
place at cache-line granularity (64 bytes), and communication
with the scratchpads occurs at word-size granularity, with entry
sizes from 1 to 8 bytes, depending on the size of the vtxProp
entry being accessed.
Workloads. We considered the workloads discussed in Section
IV. Note that TC and KC present similar results on all our
experiments, thus we report only the results for TC. CC
and TC require symmetric graphs, hence, we run them on
one of the undirected-graph datasets (ap). Because of the
long simulation times of gem5, we simulate only a single
iteration of PageRank. In addition, we simulate only the “first
pass” of BC and, for Radii, we use a “sample size” of
16. Other algorithms are run with their default settings to
their completion. Our selection of graph algorithms applied
to the large graphs, such as lj, is motivated by the limited
performance of gem5.

A. Performance evaluation
Figure 14 shows the performance benefit provided by

OMEGA compared to Ligra running on a baseline CMP.
OMEGA achieved a significant speedup, over 2x on aver-
age, across a wide range of graph algorithms (see Table II)
and datasets (see Table I). The speedup highly depends on
the graph algorithm. OMEGA achieved significantly higher
speedups for PageRank, 2.8x on average, compared to others.
The key reason behind this is that Ligra maintains various
data structures to manage the iterative steps of PageRank. In
the case of PageRank and TC, all vertices are active during
each iteration, hence, the per-iteration overhead of maintaining
these data structures is minimal. Unfortunately, TC’s speedup
remains limited because the algorithm is compute-intensive,
thus random accesses contribute only a small fraction to
execution time. In contrast, for the other algorithms, Ligra
processes only a fraction of the vertices in each iteration,
hence, maintaining the data structures discussed above neg-
atively affects the overall performance benefit. However, even
with these overheads, OMEGA managed to achieve significant
speedups: for BFS and Radii, an average of 2x, and for SSSP,
an average of 1.6x.

Fig. 15. Last-level storage hit-rate in PageRank. OMEGA’s partitioned
L2 caches and scratchpads lead to a significantly larger hit-rate, compared to
the baseline’s L2 cache of the same size.

In addition to the impact of the algorithm, the speedup
highly varies across datasets. OMEGA manages to provide
significant speedup for datasets for which at least 20% of
the vtxProp fits in the scratchpads, e.g., lj and rMat (whose
vtxProp fits completely). The key observation here is that, for
a natural graph, OMEGA’s scratchpads shall provide storage
only for 20% of the vtxProp to harness most of the benefits
provided by storing it completely in scratchpads. Despite
not following a power-law distribution, rCA and rPA achieve
significant performance gains since their vtxProp is small
enough to fit in the scratchpads. However, compared to other
datasets, they achieve a smaller speedup because their low
out-degree connectivity (see Table I) makes the access to the
edgeList more random compared to other graphs.
Cache/Scratchpad access hit-rate. In Figure 15, we compare
the hit rate achieved by the last-level cache (L2) of the baseline
design against that of OMEGA’s partitioned storage (half
scratchpad and half the L2 storage of the baseline). The plot
reveals that OMEGA provides over 75% last-level “storage”
hit-rate on average compared to a 44% hit-rate for the baseline.
The key reason for OMEGA’s higher hit rate is because most
of the vtxProp requests for the graphs that follow the power
law are served by scratchpads.
Using scratchpads as storage. To isolate the benefits of
OMEGA’s scratchpads, without the contributions of the PISC
engines, we performed an experiment running PageRank on
the lj dataset with this scratchpads-only setup. OMEGA
achieves only a 1.3x speedup, compared to the >3x speedup
when complementing the scratchpads with PISCs. The lower
boost of the scratchpads-only solution is due to the foregoing
of improvements in on-chip communication and atomic op-
eration overheads. Computing near the scratchpads using the
PISCs alleviates these overheads.
Off- and on-chip communication analysis. As noted by
prior work [10], graph workloads do not efficiently utilize
the available off-chip bandwidth. We measured our DRAM
bandwitdh utilization on a range of datasets while running
PageRank and report our findings in Figure 16. The plot
indicates that OMEGA manages to improve the utilization of



Fig. 16. DRAM bandwidth utilization of PageRank. OMEGA improves
off-chip bandwidth utilization by 2.28x, on average.

Fig. 17. On-chip traffic analysis of PageRank. OMEGA reduces on-chip
traffic by 3.2x, on average.

off-chip bandwidth by an average of 2.28x. Note that there
is a strong correlation between the bandwidth utilization and
the speedup reported in Figure 14 for PageRank. Indeed,
the bandwidth improvement can be attributed to two key
traits of OMEGA: 1) cores are freed to streamline more
memory requests because atomic instructions are offloaded
to the PISCs, and 2) since most of the random accesses
are constrained to the OMEGA’s scratchpads, the cores can
issue more sequential accesses to the edgeList data structure.
Furthermore, we found that graph workloads create lots of
on-chip communication traffic. Our analysis measuring on-
chip traffic volume, reported in Figure 17, show that OMEGA
reduces this traffic by over 4x on average. OMEGA minimizes
on-chip communication by employing word-level access to
scratchpad data and offloading operations to the PISCs.
Non-power-law graphs. Figure 18 presents a speedup com-
parison for two large graphs: one for a power-law graph (lj)
and another for a non-power-law graph (USA) on two rep-
resentative algorithms: PageRank (graph statistics algorithm
with no active-list) and BFS (graph traversal algorithm with
active-list). OMEGA’s benefit for USA is limited, providing
a maximum of 1.15x improvement. The reason is that, since
USA is a non-power-law graph, only approximately 20% of
the vtxProp accesses hit the 20% most-connected vertices,
compared to 77% for lj.
Scratchpad size sensitivity. In our analyses so far, OMEGA
is configured with scratchpad-sizes that enables it to accom-
modate around 20% or more of the vtxProp. In this section,
we present a scratchpad-size sensitivity study for PageRank
and BFS on the lj dataset, over a range of scratchpad sizes:
16MB (our experimental setup), 8MB, and 4MB. We kept
the size of the L2 cache the same as in our experimental
setup (16MB) for all configurations. The results, reported in
Figure 19, show that OMEGA managed to still provide a 1.4x
speedup for PageRank and a 1.5x speedup for BFS even when
employing only 4MB scratchpads, which accommodate only
10% of the vtxProp for PageRank and 20% of the vtxProp
for BFS. As shown in the figure, 10% of the vertices are
responsible for 60.3% of vtxProp for PR, and 20% of the
vertices are responsible for 77.2% of the vtxProp for BFS.
Note that this solution point entails significantly less storage
than the total L2 cache of our baseline.
Scalability to large datasets. This study estimates the per-
formance of OMEGA on very large datasets: uk and twitter.
Since we could not carry out an accurate simulation, due
to the limited performance of gem5, we modeled both the

Fig. 18. Comparison of power-law (lj) and non-power-law graphs (USA).
As expected, OMEGA achieves only a limited speedup of 1.15x on a large
non-power-law graph.

Fig. 19. Scratchpad sensitivity study. OMEGA provides 1.4x speedup for
PageRank and 1.5x speedup for BFS with only 4MB of scratchpad storage.

baseline and OMEGA in a high-level simulator. In the sim-
ulator, we keep the same number of cores, PISC units, and
scratchpad sizes as in Table III. In addition, we make two
key approximations. First, the number of DRAM accesses
for vtxProp is estimated based on the average LLC hit-rate
that we obtained by running each workload on the Intel Xeon
E5-2630 v3 processor and using the Intel’s VTune tool. The
number of cycles to reach DRAM is set at 100 cycles and we
also accounted for the LLC and scratchpad access latencies.
Second, the number of cycles for a remote scratchpad access
is set at 17 cycles, corresponding to the average latency of the
crossbar interconnect. For the baseline solution, we configured
the number of cycles required to complete an atomic operation
execution to match the value we measured for the PISC
engines: this is a conservative approach, as the baseline’s CMP
cores usually take more cycles than the PISC engines, being
more complex units. Figure 20 reports our findings. In the
figure, we also include the result from our gem5 evaluation for
validation purposes. We note that the high-level estimates are
within a 7% error, compared to the gem5 results. As shown
in the Figure, OMEGA achieves significant speedup for the
two very large graphs, even if they would benefit from much
larger scratchpad resources. For instance, for twitter, OMEGA
manages to provide a 1.7x speedup on PageRank even if only
providing storage for 5% of the vtxProp. Note that 5% of
the most-connected vertices are responsible for 47% of the
total vtxProp accesses. This highly-skewed connectivity is the
reason why OMEGA is able to provide a valuable speedup
even with relatively small specialized storage.

B. Area, power, and energy analysis
We used McPAT [23] to model the core and Cacti [37]

to model the scratchpads and caches. We synthesized PISC’s

TABLE IV
PEAK POWER AND AREA FOR A CMP AND OMEGA NODE

Component Baseline CMP node OMEGA node
Power (W) Area (mm2) Power (W) Area (mm2)

Core 3.11 24.08 3.11 24.08
L1 caches 0.20 0.42 0.20 0.42
Scratchpad N/A N/A 1.40 3.17
PISC N/A N/A 0.004 0.01
L2 cache 2.86 8.41 1.50 4.47
Node total 6.17 32.91 6.21 32.15



Fig. 20. Performance on large datasets. A high-level analysis reveals that
OMEGA can provide significant speedups even for very large graphs: a 1.68x
for PageRank runnning on twitter, our largest graph, when storing only 5%
of vtxProp in scratchpads; and a 1.35x for BFS, storing only 10% of vtxProp.

Fig. 21. Comparison of energy spent in memory activities for PageRank.
OMEGA requires less energy to complete the algorithm due to less DRAM
traffic and shorter execution time. The energy efficiency of OMEGA’s scratch-
pads over the caches contributes to the overall energy savings.

logic in IBM 45nm SOI technology. Note that the PISC’s area
and power is dominated by its floating-point adder. We referred
to prior works for the crossbar model [3]. We used the same
technology node, 45nm, for all of our components. We re-
purposed half of the baseline’s L2 caches space to OMEGA’s
on-chip scratchpads. Table IV shows the breakdown of area
and peak power for both the baseline CMP and OMEGA. The
OMEGA node occupies a slightly lower area (-2.31%) and
consumes slightly higher in peak power (+0.65%) compared to
the baseline CMP. The slightly lower area is due to OMEGA’s
scratchpads being directly mapped and thus not requiring
cache tag information.

Our energy analysis on PageRank running a wide-range of
datasets reveals that OMEGA provides 2.5x energy saving, on
average, compared to a CMP-only baseline. Since an OMEGA
node consumes roughly the same peak power as a baseline
CMP node, it is natural to expect that OMEGA’s performance
benefits translate to energy saving. Since OMEGA’s modifica-
tions to the baseline are limited to the memory hierarchy, in
Figure 21, we provide a breakdown of the energy consumption
only for the memory system, including the DRAM. Across the
different datasets, OMEGA provides significant energy savings
in the memory subsystem, as well as in the off-chip memory
system. As shown in the figure, OMEGA’s scratchpads con-
sume less energy compared to caches. OMEGA also uses less
DRAM energy because most of the accesses to vtxProp are
served from on-chip scratchpads.

XI. RELATED WORK

Table V compares OMEGA against prior works. OMEGA
is better than previous architectures primarily because it ex-
ploits the power-law characteristics of many natural graphs
to identify the most-accessed portions of the vtxProp and
it utilizes scratchpads for their efficient access. Furthermore,

most of the atomic operations on vtxProp are executed on
lightweight PISC engines instead of CPU cores. OMEGA
is easily deployable in new graph frameworks and applica-
tions because of it maintains the existing general-purpose
architecture, and simply provide some small and effective
additional components. We believe that OMEGA is the first
architecture to address both on- and off-chip communication
costs by exploiting the power-law characteristics of many
natural graphs, without requiring changes in the application.
Optimizations on general-purpose architectures. [10] char-
acterizes graph workloads on Intel’s Ivy Bridge server. It
showed that locality exists in many graphs, which we leverage
in our work. [14] minimizes the overhead of synchronization
operations for graph applications on a shared-memory archi-
tecture, by moving computation to dedicated threads. However,
dedicated threads for computation would provide a lower
performance/energy efficiency compared to our lightweight
PISC architecture. [45] proposes both graph reordering and
segmentation techniques for maximizing cache utilization. The
former provides limited benefits for natural graphs, and the
latter requires modifying the framework, which we strive to
avoid. [46] proposes domain-specific languages, thus trading
off application’s flexibility for higher performance benefits.
Near-memory processing and instruction offloading. [6],
[28] propose to execute all atomic operations on vtxProp in
the off-chip memory because of the irregular nature of graph
applications. However, our work shows that the locality within
the structure of many natural graphs can be exploited using on-
chip scratchpads. Scratchpads have lower latency and energy
consumption per-access, compared to off-chip memory.
Domain-specific and specialized architecture. Application-
specific and domain-specific architectures, including those
that utilize scratchpads [5], [19], [33], [39], have recently
flourished to address the increasing need of highly efficient
graph analytics solutions. However, the focus is on perfor-
mance/energy efficiency, foregoing the ability to be amenable
to modifications in frameworks and applications. In addition,
these solutions do not fully exploit the locality in the structure
of many natural graphs.
GPU and vector processing solutions. GPU and other vec-
tor processing solutions, such as [4], [32], [42], have been
increasingly adopted for graph processing, mostly in the form
of sparse matrix-vector multiplication. However, the diverse
structure of graphs limits the viability of such architectures.
Heterogeneous cache block size architecture. [20] employed
variable cache-line sizes based on the runtime behavior of
an application. Similarly, OMEGA provides variable storage
access sizes (cache-line-size for accessing caches and word-
size for accessing scratchpads) depending on the type of data
structure being accessed.

XII. CONCLUSION

In this work, we optimize the memory subsystem of a
general-purpose processor to run graph frameworks without
requiring significant additional changes from application de-
velopers. We expose the inherent locality contained in natural
graphs to our design, providing significantly more on-chip
accesses for irregularly accessed data. In addition, we augment
the on-chip distributed scratchpads with atomic operation
processing engines, providing significant performance gains.
Our solution achieves on average a 2x boost in performance
and a 2.5x energy savings, compared to a same-sized baseline
CMP running a state-of-the-art shared-memory graph frame-
work. The area and peak power needs of our solutions are



TABLE V
COMPARISON OF OMEGA AND PRIOR RELATED WORKS

CPU GPU Locality Exists [10] Graphicionado [19] Tesseract [5] GraphIt [46] GraphPIM [28] OMEGA
leveraging power law limited limited yes no no limited no yes
memory subsystem cache cache cache scratchpad cache cache cache cache & scratchpad
logic for non-atomic-operation general general general specialized general general general general
logic for atomic-operation general general general specialized general general specialized specialized
on-chip communication granularity cache-line cache-line cache-line word word cache-line word cache-line & word
offloading target for atomic operation N/A N/A N/A scratchpad off-chip memory N/A off-chip memory scratchpad
compute units for atomic operation CPU GPU CPU specialized CPU CPU specialized CPU & specialized
framework independence&modifiability yes yes yes limited yes limited yes yes
propose software-level optimizations yes yes partially no no yes no no

comparable to that of the baseline node, as we trade cache
storage for equivalently sized scratchpads.
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