SWAN: Mitigating Hardware Trojans with Design Ambiguity

Timothy Linscott Pete Ehrett

Valeria Bertacco Todd Austin

University of Michigan, Ann Arbor
{timlinsc, wpehrett, valeria, austin}@umich.edu

ABSTRACT

For the past decade, security experts have warned that malicious
engineers could modify hardware designs to include hardware back-
doors (trojans), which, in turn, could grant attackers full control
over a system. Proposed defenses to detect these attacks have been
outpaced by the development of increasingly small, but equally
dangerous, trojans. To thwart trojan-based attacks, we propose
a novel architecture that maps the security-critical portions of a
processor design to a one-time programmable, LUT-free fabric. The
programmable fabric is automatically generated by analyzing the
HDL of targeted modules. We present our tools to generate the
fabric and map functionally equivalent designs onto the fabric. By
having a trusted party randomly select a mapping and configure
each chip, we prevent an attacker from knowing the physical lo-
cation of targeted signals at manufacturing time. In addition, we
provide decoy options (canaries) for the mapping of security-critical
signals, such that hardware trojans hitting a decoy are thwarted
and exposed. Using this defense approach, any trojan capable of
analyzing the entire configurable fabric must employ complex logic
functions with a large silicon footprint, thus exposing it to detec-
tion by inspection. We evaluated our solution on a RISC-V BOOM
processor and demonstrated that, by providing the ability to map
each critical signal to 6 distinct locations on the chip, we can re-
duce the chance of attack success by an undetectable trojan by 99%,
incurring only a 27% area overhead.

CCS CONCEPTS

« Security and privacy — Tamper-proof and tamper-resistant
designs; Hardware security implementation;

ACM Reference Format:

Timothy Linscott, Pete Ehrett, Valeria Bertacco, and Todd Austin. 2018.
SWAN: Mitigating Hardware Trojans with Design Ambiguity . In IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD
’18), November 5-8, 2018, San Diego, CA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3240765.3240854

1 INTRODUCTION

As the number of leading-edge silicon manufacturers shrinks, more
and more hardware designers are turning to third-party manufac-
turers to fabricate their chips. However, recent work has warned
that, if unvetted third-party silicon fabs employ malicious engineers,
they could modify a chip’s layout to introduce a hardware backdoor,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD ’18, November 5-8, 2018, San Diego, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5950-4/18/11...$15.00
https://doi.org/10.1145/3240765.3240854

Design Fabrication Configuration
(trusted) (malicious) (trusted, random)
(i
%

few configs:
trojans succeed

Figure 1: SWAN protects security-critical modules by replacing them
with one-time programmable logic. As a result, an attacker cannot know
at manufacturing time the physical location of specific security resources,
minimizing their chance of success.

ak.a., a trojan. Trojans are typically small silicon modules, even as
small as one gate or less [1, 2], that monitor a system’s operation at
runtime, lying dormant until a specific sequence of events enables
them to pass control of the system’s operation (e.g., by providing
superuser rights) to an attacker.

Despite many advances in protections against hardware trojans,
a systematic and general defense approach remains elusive. Obfus-
cation defenses [3, 4] attempt to hide the role of specific signals
from the attacker. However, recent advances in obfuscation have
been matched by advances in reverse-engineering technologies, and
an attacker who can successfully reverse-engineer an obfuscated
design is likely to succeed at planting a trojan without detection.
Logic analysis [5] and physical inspection [6, 7] provide a variety
of tools to identify trojans’ trigger conditions and detect whether
the fabricated chip differs from the expected layout. However, some
recent trojan designs [1, 2] can elude either approach. On-chip
and off-chip checkers are a promising alternative to inspection
techniques, as they can detect trojan activity at runtime, when the
attack is active, but this approach is only effective if the attacker
cannot tamper with the checkers or their inputs and outputs.

In this work, we tackle these problems head-on by assuming an
exceptionally powerful attacker. Our attacker has compromised the
manufacturing house and has full knowledge of the chip and its de-
fenses. As such, the attacker can make the final modifications to the
design before manufacturing, and is completely free to add, modify,
or remove logic. To counter such an adversary, we propose a novel
defense against trojans, called SWAN (Security With Ambiguous
Netlists). SWAN ensures that designers (instead of attackers) are
always in charge of the final move in the design process, by includ-
ing a small amount of configurable logic to be finalized by a trusted
party after manufacturing. For this purpose, we use a one-time
programmable fabric as a means to hide security-critical sig-
nals from the attacker, protecting both the critical logic and
any checkers that are monitoring it. Figure 1 overviews our ap-
proach: while the original chip design is trusted, an attacker may
insert a trojan during the manufacturing process. When the chip
is assembled by a trusted party (or by the design house), the one-
time-programmable fabric portion receives a randomly selected

https://doi.org/10.1145/3240765.3240854
https://doi.org/10.1145/3240765.3240854

configuration that implements the security-sensitive logic and its
checkers. Note that designers will have developed many distinct
and functionally equivalent configurations that can all be accommo-
dated by the programmable fabric. Complex trojans can identify the
configuration, but their large silicon footprint makes them prone to
detection. In contrast, simple trojans can go undetected, but design-
ers can make their chances of success vanishingly small. Moreover,
for each configuration, we recycle unused logic as ‘canaries’, which
expose an attack attempt when the canary’s output deviates from its
expected value. Our semi-automated toolchain provides a stream-
lined flow for developers to apply these protections to their designs
at the logic-unit level, and rapidly build programmable fabrics out
of arbitrary SystemVerilog descriptions. In summary, our contribu-
tions are as follows:

o We present SWAN, an automatically generated, one-time pro-
grammable architecture that serves to hide from the attacker the
physical location of crucial design elements during manufacturing,
even if the design is completely reverse-engineered.

o We developed tools to generate i) one-time programmable fab-
rics optimized for the logic that we need to protect, and ii) the
many equivalent configurations that must be mapped to them. We
use these tools to evaluate SWAN on a RISC-V out-of-order core,
protecting five security-critical components.

o We examine the area and power overheads of SWAN and find them
to be moderate even for highly secure applications, and significantly
lower than an FPGA-based solution. For instance, by mapping each
critical signal to 6 distinct locations, we incur only 27% silicon area
and 5% power overhead. This level of protection reduces the chance
of a successful attack by an undetectable trojan by 99%.

2 THREAT MODEL

Before we present the structure of our solution, we must specify
the threat model that motivates our defense mechanism and design
choices. In our threat model, the attacker’s goal is to disrupt the
chip’s security properties. This goal could include toggling a privi-
lege bit during user-mode execution, removing access restrictions
to privileged pages in memory, or overriding the program counter
to manipulate control flow. In this work, we do not directly attempt
to protect against denial-of-service attacks or side-channel leakage
attacks, as these require different classes of defenses. In contrast,
the defender’s goal is to ensure that, with high probability, any
attempted attack will result in either the attack being detected and
thwarted, or the system halting with no violation of its security
guarantees. Fortunately, physical inspection techniques are improv-
ing, and today, they are able to detect any sufficiently large (~90um?)
modification to the layout [6, 7]. Thus, the defender’s secondary
goal is to ensure that any trojan capable of circumventing their
defense system will have such a large silicon footprint that it would
be detected by physical inspection.

Today, the design and manufacturing of a chip often occur at
different companies, limiting the amount of oversight over the
manufacturing process by the designing company. Thus, it is rea-
sonable to assume that a malicious manufacturing engineer, an at-
tacker, could make arbitrary changes to the design’s layout without
the design team’s knowledge. Given recent advances in reverse-
engineering technology, and the possibility that design files could
make their way out of the design house, we must also assume that

the attacker may have access to all of the design team’s register-
transfer level (RTL) descriptions and EDA tools. With sufficient
time and resources, an attacker could reach a perfect understanding
of the function of every transistor in the design, be fully aware of
every protection included in the design, and have acquired every
possible configuration that was developed for the one-time pro-
grammable fabric. The same attacker would also have knowledge
of the post-silicon tests planned for the chip; thus, they can select
trojan triggers that will not be exposed during testing (e.g., in [1],
the trojan could only be activated at high temperatures). In other
words, we could assume that the attacker is omniscient. But even
with these extreme assumptions, the attacker cannot know which
configuration will be selected for the fabric after manufacturing.

Fortunately, given our premises, we can trust that the products of
the design house are uncompromised: design files, post-silicon tests,
and software layers. SWAN does indeed require access to a golden,
untampered copy of the chip’s RTL description, from which it can
generate a trustworthy one-time programmable fabric and all of its
related configurations. We assume that all software layers, including
the BIOS, OS, and other privileged code, are uncompromised: if
the attacker could modify those, they would not need to invest in
devising a hardware trojan to gain control of the system.

To summarize, our defense targets an attacker who: i) is attempt-
ing to compromise hardware security guarantees, such as privilege
rings; ii) is knowledgeable of all design details, but cannot predict
which configuration will be mapped on the one-time programmable
fabric at assembly time; and iii) can make arbitrary changes to the
design after it leaves the design house. The attacker is defeated
when they cannot circumvent SWAN’s defenses without being
detected by on-chip checkers or by physical inspection.

3 SECURITY GOALS

In our threat model, we assume that the attacker is able to avoid
detection by post-silicon functional tests. Thus, there must be al-
ternate ways, after deployment, for a trojan to be detected when
it becomes active (on-chip runtime checkers, for instance). In this
context, an effective defense against hardware trojans must satisfy a
number of key properties in order to be robust against our powerful
attacker. Such a defense mechanism must:

(1) be tamper-proof. The attacker must not be able to disable the
defense without detectable side-effects.

(2) be able to accurately obverse system state. The attacker must
not be able to hide their actions from the defense.

(3) not be suppressible. When the defense identifies an attack,
its mechanisms to restore the system to a safe state must be
tamper-proof as well.

(4) be verifiable. If an attacker attempts to compromise the de-
fense, this attempt should be recognizable at the software
layer. The defense cannot be invisible to the software.

(5) be low-cost, so as to be practical and viable.

If the defense mechanism were implemented in some kind of
field-programmable logic, the final design would remain undefined
at manufacture-time, its implementation would only be selected at
assembly time, and it could vary between chips. In such a scenario,
because the fabric has yet to be configured at manufacture-time, the
attacker would not know which physical resource will implement
the attack-target design element(s), making the design of a trojan

Table 1: The RISC-V BOOM modules selected for SWAN protection.

C A % of
Module Description - onsequence reza 0
if compromised (um®) |chip area

Control stat

CSRFile OI.l rol status Privilege escalation 24,546| 2.67%
register file

DecodeUnit Instruction Execute.pr1V1}eged 1692 0.18%
decoder instructions, inject code
P. t

Frontend rogram counter ool flow attacks 3,623 0.39%
manager

PTW Page table walker |Access privileged pages |11,164| 1.21%

TLB Virtual to phy51'ca1 Access pr1v1l'eged pages, 11.400| 1.24%
address translation|expose physical addresses

Total 52,427| 5.69%

challenging, to say the least. Even if the attacker had perfect knowl-
edge of all possible configurations, they still would not know which
one was going to be selected for a given chip. Finally, a key goal of
SWAN is to provide a design and set of configurations such that, if
the attacker added a trojan sufficiently complex to be able to evalu-
ate precisely which configuration-time mapping was selected, then
the trojan would likely be so large that it would be easily noticed
by physical inspection techniques. Thus, logic implemented on this
programmable fabric can be made probabilistically tamper-proof.
Note that any online checker deployed to detect active trojan
activity must also be mapped to the same programmable logic;
otherwise, the checker could be identified by the trojan and silenced.
Moreover, such checkers are also able to accurately observe the
system state, since they can monitor the state without leaving the
protected programmable fabric. Our third point specifies that, when
the defense mechanism detects an attempted attack, it must be able
to restore the system to a safe state. Again, this goal can be only
achieved if the attack-response system is also encapsulated within
the programmable fabric, so that an attacker cannot silence it.
Finally, field-programmability provides opportunities to expose
hardware defenses to the software layer, making them verifiable
by creating side channels that would be disrupted by an attacker
modifying the fabric. If the properties of the logic can be made to
vary between configurations in a software-detectable way, then the
software can verify that the fabric has been configured correctly,
demonstrating that the attacker has not hijacked it with their own
configuration. The next section discusses how we provide the capa-
bilities above, while maintaining a low-cost profile for SWAN, by
building a custom, LUT-free, one-time programmable architecture.

4 SWAN ARCHITECTURE

There are many types of field-programmable logic, and not all are
well-suited to our goals. First, reconfigurability is expensive in terms
of area and power consumption, motivating our choice of a one-
time programmable fabric. Second, the fabric must support enough
distinct mappings of each component to prevent the attacker from
easily guessing a probable configuration. SWAN’s programmable
fabric is automatically generated based on the target security mod-
ule selected. To minimize overheads, only security-critical modules
are mapped to this fabric.

Because prior work has targeted specific parts of CPU cores with
hardware trojans [1], we examine the RISC-V BOOM out-of-order
core [8] as a case study to identify modules critical to maintaining
security. First, we want to ensure that the privilege rings cannot be
compromised, so we secure every module that accesses the privilege
bit: the control status register file, the memory management unit,

the instruction decoder, and the page table walk logic. Second, we
must protect the execution’s control flow, so we also secure the
program counter and associated front-end logic. Table 1 describes
these modules, the attacks that could be perpetrated by a trojan
gaining control over them, and their contributions to chip area. We
leave application of our proposed techniques to additional modules,
or to custom accelerator hardware, for future work.

4.1 Secure Programmable Logic

SWAN’s programmable fabric is optimized to increase the number
of possible mappings of the target modules to the fabric, in order to
thwart an attacker who wishes to identify the signals that should be
connected to a trojan that they plan to deploy. We attain this goal at
the expense of flexibility, since our fabric can only implement one
target design. The fabric comprises sets of identical fixed-function
logic blocks, instead of LUTs, connected by one-time programmable
crossbars. Each logic block can be configured by a trusted party after
manufacturing to drive a different part of the circuit, effectively
mapping one logic block from the design to any of several possible
physical blocks. This mapping is configured by setting the fuses
embedded in the crossbars. Our fabric generator creates the one-
time programmable fabric using only gates that are present in the
RTL description of the design, and then adds canary logic (Section
4.3) and the crossbars that serve as the programmable interconnect
(which dominate the fabric’s overheads).

Our automated toolchain handles the generation of the fabric,
starting from an initial description using a hardware description
language (HDL) — SystemVerilog in our evaluation - of the modules
to be protected. Figure 2 highlights the main steps of this toolchain
flow. We allow the programmer to include specific pre-processor di-
rectives in the HDL description to guide the SWAN toolchain to use
specific security extensions. Specifically, we expect the programmer
to mark security-critical signals as secure, and to include a secure
rollback system that can handle and recover from a situation where
a canary detects a potential trojan attack, using a special input
marked canary. SWAN’s pre-processor scans the HDL for these
directives and logs them for use in the main toolchain. The target
module is then synthesized, and the generated netlist is converted to
a graph. GraMi, an open-source graph analysis tool [9], mines this
graph for frequent subgraphs to identify good candidates for the
building blocks of our fabric (step 2 in Figure 2). While a standard
coarse-grained reconfigurable architecture would use large adder
and multiplier units as building blocks, our fabrics use only small
clusters of gates, because SWAN primarily targets control logic.
To select which of the mined subgraphs will become the building
blocks of our final fabric, we greedily choose those with the most
intra-block wiring. This limits the size of the inter-block crossbars
required to support the fabric’s programmability, thus containing
area costs. Once selected, each subgraph occurrence in the netlist
is replaced with a primitive logic block (an indivisible cluster of
gates) as shown in step 3 of Figure 2.

Next, the newly obtained netlist is analyzed to identify function-
ally equivalent gates and logic blocks that are in close proximity to
each other in the graph. These blocks are grouped into sets (step 4
in Figure 2), to provide opportunities for generating multiple equiv-
alent mappings. In the final manufactured fabric, all blocks in the
same set will be completely indistinguishable from the attacker’s
perspective. The toolchain further guarantees that each logic block

module foo(
input [9:0] in,
output x

) i

@secure logic w;
logic s;
always_comb

w = in[s];

1. Designer annotates

2. Synthesize & Identify
HDL frequent subgraphs in the netlist

3. Group frequent subgraphs
into complex logic blocks

TTE
R Y
o6 30

Slstsl

[~

o |

4. Group gates and
add interconnect

5. Include additional logic
as directed by designer

Figure 2: The SWAN toolchain considers (1) user-annotated HDL and generates a custom one-time programmable fabric, by (2) synthesizing it, (3) grouping
identical logic blocks, and (4) providing a flexbile interconnect to permute their roles. (5) Finally, it enhances security with camouflaging and canaries.

from the original netlist has a user-determined minimum number
of physical resources onto which it can be mapped.

At this point, every logic block in the design can be mapped to a
fixed number of locations in the physical fabric. The design’s netlist
and structure are used to generate the interconnect: each group of
blocks should be capable of selecting its inputs from all and only
from the groups of blocks that could drive it. At this stage, we add
programmable crossbars into the netlist to enable each block in
a set to serve the role of any block in its own set. Next, the tool
selects which physical resources will be used to implement the
design and determines the exact configuration needed to map all
the components onto the fabric. The finalized fabric is provided
as a netlist (also in SystemVerilog in our evaluation), and can be
used in place of the original module without any modification.
Verification of the generated fabric and each of its configurations
can be accomplished with an equivalence checker to show that the
configured netlist is equivalent to the original design. Since each
configuration is topologically identical to the original netlist, the
equivalence checker’s task reduces to simple graph-matching.

4.2 Signal Camouflaging

Programmable logic offers a number of unique opportunities to
enhance security even further: as described below, we exploited the
nature of our defense to build features in our toolchain that are both
optional and fully under the control of the designer. Specifically,
we provide a mechanism for the designer to enable certain signals
to be mapped to many locations, making attacks on those signals
more challenging for an attacker. We provide this camouflage func-
tionality by allowing the programmer to tag signals with a secure
pre-processor directive. This tag ensures that gates that output or
use a critical signal can be mapped to a large number of possible
physical locations in the final fabric. When the annotated HDL is
compiled, these gates are identified in the netlist and tagged. Finally,
during the grouping phase of the fabric generation flow (step 4 in
Figure 2), sets containing these secure gates are made larger to
ensure a higher replication of the logic blocks they include.

As an example of where camouflaging can be useful, consider the
control status register file of a processor. While all the logic in this
register file is important, the privilege register is the most desirable
target for an attacker. If a gate in the design can be mapped to
one of only a small number of locations in the physical fabric, an
attacker who knows this fact can build a stealthy trojan that picks
out its target from among those few gates. However, by tagging the

Functional) o
Logic Y . }

Canary
Checker

Canary :.— y
Driver RN s unctional
Logic

Figure 3: Canaries are identical chains of logic selected from among the
unused logic in the programmable fabric. They share a common driver, so
their outputs match if untampered, as verified by auto-generated checkers.

output of this register for camouflaging, our toolchain will grow the
interconnect so that a larger number of identical physical gates will
all able to be configured into acting as the privilege register. Note
that camouflaging should be used parsimoniously, as increased
interconnect size means higher overheads. Thus, camouflaging is
an effective knob to trade off between cost and security.

4.3 Canary Logic

While signal camouflaging prevents attackers from succeeding ev-
ery time, a truly secure system also needs a way to detect if trojans
are making repeated, brute-force attempts at attacks, so as to stop
them before they guess correctly. Thus, we provide a mechanism
to repurpose unused logic as canaries. Like their counterparts in
software security, called stack canaries [10], logic canaries are de-
signed solely to detect attacks that fall onto them. This prevents
attackers from randomly placing a malicious circuit and triggering
it on every chip until they find a configuration where their target is
mapped to the trojan’s location. Canaries guard against this brute-
force approach by detecting when an attempted attack fails—as it is
likely to do with most configurations. To incorporate canaries into
a design, the toolchain includes additional resources (logic blocks or
gates) in the fabric, allowing more physical mapping opportunities
for logic blocks from the source design. These extra gates are added
during the final step (step 5 of Figure 2) to sets of gates marked
secure (Section 4.2) or those that do not meet the user’s desired
minimum replication rate.

Figure 3 shows how canaries are deployed in SWAN. The canaries
are arranged into identical chains of unused gates, and the chains
are driven by an automatically sized linear feedback shift register
(LFSR) — a.k.a. a canary driver — built into the SWAN fabric. Thus,
every canary will have its functionality rigorously tested for all
possible inputs, and this testing can continue (and should, to detect

latent triggers) as long as the chip is active. The outputs of similar
canary chains are compared via automatically generated checking
logic within the fabric. If an attacker modifies one canary block,
its output will no longer match that of the other canaries, and the
checking logic will raise an alarm. The programmer can access
this alarm signal by including an input flagged with canary to
the SWAN portion of the design, and can then build a recovery
system to respond to the detected attack. The intermediate signals
in the canary checker logic further allow the programmer to gain
insight into which regions of the design are potentially under attack,
thereby helping to pinpoint the trojan’s location.

If an attacker attempts a brute-force attack on the fabric by
flipping random signals in hope of guessing the current mapping
of their target, they may cause unintended errors in the process by
flipping signals unrelated to their attack. However, without canaries,
these errors may not be recognized as an attack in progress on their
own. In contrast, by including canaries, we can accurately report
such errors for what they are: a trojan attack in progress.

4.4 Programmer-Defined Side-Channels

We provide two features that enable programmers to introduce
low-overhead flexibility in the fabric, allowing them to create side-
channels they can test. In order for the programmable logic to prove
it was programmed only by the trusted assembly house, it must
exhibit different behaviors on different configurations. For example,
the decoder could interpret a secret opcode as an add instruction in
one configuration and as a sub in another. Thus, an attacker who
disables the programmable nature of the fabric is detected when
the side-channel does not demonstrate its expected properties.

The first way we introduce this low-overhead flexibility is with
configuration-defined constants. These allow programmers to di-
rectly drive gates in the design from fixed logic values, resulting in
different behavior between configurations. On a larger scale, we
allow the programmer to vary the parameters of a submodule that
they want to make flexible. Then, a design is synthesized for every
possible assignment of the parameter, producing many possible
netlists. These netlists are merged into a single fabric that supports
any of the designs generated, while optimizing for cost.

5 EVALUATION

We evaluated our design along two metrics: first, SWAN’s impact
on the system’s area, power, and clock frequency; second, security.
Because different applications require different security guarantees,
we provide a designer with the flexibility to trade security for cost.

5.1 Framework

We implemented our design using a 1-wide RISC-V BOOM (out-
of-order) core as a baseline. At the time of this writing, BOOM
did not have an internal cache hierarchy. We used CACTI [11] to
estimate the overhead of including 32KB L1 instruction and data
caches and an 8-way, 256KB L2 cache, and factored their power
and area cost into the overall results. The control status register
file, decoder, front-end and PC logic, page table walker, and TLB
modules (see Table 1) were replaced with our custom-generated one-
time programmable fabric. In the baseline RISC-V BOOM core, these
modules represent about 6% of the core area, excluding caches. We
used Synopsys Design Compiler with the NanGate 45nm cell library
to synthesize our designs and determine their area, static/dynamic

48

8 88 8 3

Mappings / Gate
]

Baseline
°

o

2 3 4 5 3 i 8 9
Total system area (mm?)

Figure 4: The # of possible mappings of a gate to the fabric can be
increased by adding more canaries and interconnect, raising area cost.

power, and critical path delays, as well as the footprint of trojans
embedded in SWAN. For comparison, we also implemented the
target components on a Xilinx UltraScale+ ZU9EG FPGA.

In testing our one-time programmable fabric, we explored the
effects of two key parameters. First, we varied the number of loca-
tions to which each gate can be mapped, along with the amount of
signal camouflage used, so that gates could be mapped to anywhere
from 2 to 48 different locations on the fabric. Second, we varied the
amount of extra logic on the chip that could be used as canaries to
boost the chance of detecting an attack attempt.

As the baseline design, we use the BOOM core without SWAN,
synthesized as per Section 5.1. We substituted out the components
we wanted to protect with SWAN, testing different amounts of
signal camouflage, and recomputing the total area, power, and
critical path of the full system each time. Note that, because SWAN
changes only the implementation of the core (not its underlying
architecture), the sole determinant of SWAN’s application-level
performance impact is its critical path delay.

Figure 4 plots how the core’s area increases with the number of
distinct locations to which each secured component can be mapped.
We do not plot critical path delay or power, as these remain roughly
constant across different SWAN solution points (see Table 2).

5.2 Overheads

As a point of comparison, FPGAs could provide a natural source of
the kind of security through reconfigurability we are interested in.
But since they are designed for fine-grained flexibility instead of
security, they cannot make comparable guarantees to those SWAN
provides with signal camouflage and canary logic. Table 2 shows
how using on-chip FPGA logic (with no camouflaging) to replace
the target components would impact the area, power, and delay of
the RISC-V baseline. The table also reports results for two SWAN
implementations with 6 and 12 mappings per gate, which provide a
99% and 99.9% chance of detecting a hardware trojan, respectively.
Because of our fine granularity in defining logic primitives, SWAN
experiences a notable increase in path delay (up to 82%) over the
baseline, due to signals traversing a significant number of fused
crossbars along each path. However, power overhead is low and
roughly constant across all SWAN solutions we evaluated, because
we power-gate the programming logic and the fraction of exer-
cised logic remains constant across configurations. Moreover, the
comparison to the FPGA implementation is highly favorable: the
6-mapping SWAN solution has a 32% shorter critical path while con-
suming 31% less power and 41% less area. Note that the 12-mapping
solution has little to no more power or timing overhead than the
6-mapping solution; only area is affected.

Table 2: FPGA and SWAN trojan defense overheads.

Baseline FPGA SWAN (99% SWAN (99.9%
(16nm) detection) detection)
Power (mW) 578 889 602 604
Area (mm?) 2.63 5.70 3.35 3.93
Crit path (ns) 4.5 12.1 8.2 8.2
1:2
1.000
_10 @
8 s
@08 |
2 \
o \
708 \0:500 0500 ~0.500
o 0.500 Q? 0
o R
§ o4 "\ 0250 0250
a @
02 10125 "5 083 o.zs 0.071 0.067
o B S — e]
2 3 4 5 6 7 8 9

Total System Area (mm?)
Figure 5: Ratio of trojan success over trojan detection vs. SWAN fab-
ric area. Increasing the amount of canaries in SWAN causes the attacker’s
odds of succeeding without detection to fall rapidly. Thus, a blind guess
approach is likely to be quickly thwarted.

5.3 Security Analysis

To properly analyze the security of the system and determine an
optimal set of parameters for generating the SWAN fabric, we
assume that designers have identified all those wires within the
critical module which, if toggled by an attacker, would fail a security
assertion, and that they have flagged those signals with the secure
directive (Section 4.2). We also assume that the attacker’s goal is
to flip a number of those signals. The attacker has two possible
strategies: (i) attempt to guess the current configuration, or (ii)
analyze the configuration of the crossbars to determine the mapping
of their target gate(s). We consider here an example attack scenario
where the attacker wants to flip the privilege register bit, to escalate
the permissions of their attack software code. Since SWAN protects
both security-critical logic and its checkers together, we assume
that the attacker will also need to disable a checker to hide their
attack. Thus, the attacker must flip a total of 2 bits.

Blind Guess Attack Approach. The simplest attack against SWAN
is for an attacker to blindly guess the location of their target by plac-
ing a single copy of their trojan in one location and then activating
it to see whether they guessed correctly. While such a trojan would
be extremely light-weight, since it does not attempt to circumvent
SWAN, it risks exposure by accidentally triggering canary logic.
Thus, for such an attack to be worthwhile, the risk of detection
must be modest in comparison to the chance of success. SWAN
enables designers to control these two probabilities by adjusting
the amount of signal camouflage and the number of canaries used
in the fabric. In Figure 5, we compare a variety of possible SWAN
designs, and provide a Pareto-optimal set of parameters that mini-
mize the ratio of trojan success vs. detection, for a range of silicon
areas of the SWAN module. For instance, the solution labeled 1.000
provides 3 mappings for each gate, one of which is a canary. Thus,
a trojan has 1/3 chance of succeeding and 1/3 chance of being de-
tected. Even with a very modest area increase, the ratio becomes

=== 80um? trojan
100.0% [25%

100%

Blind guess

17%

- > “13% 8%, o,

S 100% 4% 4o

= 11.11% 2%

g

g_ 1.0% 6.25%

g 1.23%

o 01%

w

s

2 001%

® 0.02%

S

3

D 0.001%

&

=

=]

© 0.0001% 0.00%
2 3 4 5 6 7

Total System Area (mm?)
Figure 6: % of chips compromised by different trojan approaches as
the SWAN fabric area increases. Blind-guess trojans may be detected by
canaries when they are unsuccessful, while analytical trojans must limit
their analysis to maintain a low area profile: at 6 locations per secure gate,
their chance of success is below 1%.

very small, presenting a prohibitive obstacle for attackers, since
detection means a high likelihood of exposure for the malicious
entity inside an untrusted fab.

Analytical Attack Approach. Given the likelihood of detection
with a blind guess attack, an attacker could pursue an approach
that tests how fuses have been set before activating the trojan,
to make sure that the trojan does not trigger a canary. This ap-
proach would allow the trojan to go undetected at the cost of only
compromising the small fraction of manufactured chips that were
configured exactly as the attacker guessed when placing the trojan.
Even better, to attack all configurations, they could place trojans
at each potential location of their target bit and use test logic to
evaluate which configuration has been set before activating only
the correct trojan. The downside of this approach is that it requires
deploying a significant amount of logic to monitor many fuses in
multiple locations. This additional silicon makes the trojan prone to
detection by physical inspection of the manufactured chip. Multiple
related works report how relatively small regions of spurious logic
could be identified in a silicon chip: in particular, [7] demonstrated
an imaging technique that classifies individual gates in a 45nm chip,
at an accuracy of 85%, and [6] used a watermarking technique to
identify trojans smaller than 90um?, also on a 45nm chip. These
studies place an upper bound on the number of locations that an
attacker can simultaneously monitor.

Instead of placing a trojan on every possible location, the attacker
could stop placing additional trojans when the total area footprint of
the trojan exceeds 90um?. By staying below this threshold, they can
avoid physical detection. As before, once each trojan has analyzed
the relevant fuses, it determines whether to toggle the output of
the gate to which it is connected or to remain dormant. However,
as the number of locations in the fabric where a component can
be placed increases, the fraction of chips where this approach can
succeed decreases.

To evaluate the practicality of this approach, we first identified all
the locations where a block protected by signal camouflage could
be mapped. For as many of these as possible within 90um?, the
attacker would then deploy one bit-flipping trojan and a number
of monitors, in such a way as to check the fewest fuses, and still
determine whether the location under investigation hosts the bit
to be attacked.

Figure 6 explores the chance of success of the two attack ap-
proaches described. In one, the attacker uses the analytical attack
approach to flip a single bit in the fabric and a second bit to silence
a checker elsewhere in the fabric. In the other, the attacker applies
a blind guess approach to a target-signal location and a checker
location. The blind-guess approach is more likely to succeed, even
in highly protected SWAN setups, compared to the area-bound
analytical approach. However, a failure of the blind-guess approach
may correspond to an attack detection by canaries, tipping off the
design house to the presence of the trojan on the entire population
of chips. The plot shows that, for a SWAN solution with an area
of 3.93mm?, corresponding to mapping critical components to at
least 12 distinct locations, we ensure that over 99.9% of the man-
ufactured chips will not be compromised. Likewise, at 3.35mm?,
with 6 distinct mappings, an attacker will fail 99% of the time.

6 RELATED WORK

In this section, we provide an overview of other defenses proposed
in the literature and contrast them with our work. SWAN is often
composable with these defenses, as we point out in many places
within the discussion. Defenses against trojans draw from either
post-silicon detection, runtime detection, or obfuscation.

Post-silicon detection solutions look for trojans with microscope
inspection, power analysis, or logical analysis. TeSR (Temporal Self-
Referencing) [12] aids in discovering trojans via power analysis,
even when there is no golden, trojan-free reference. It does this
by executing many traces on the chip and looking for outliers
in the expected current signature. Logical analysis often employs
debugging circuitry to detect potential trojan-trigger signals. In [5],
the circuitry is activated by a secure key, and allows for automatic
exploration of possible states, with traces logged on the fly, to allow
for immediate detection. Unlike both of these, we do not assume
that testing can expose the trojan’s activation trigger, since such
triggers can be made arbitrarily complex. In contrast, the goal of
SWAN is to force the attacker to place such a large trojan that
simple physical inspection will reveal its presence.

Runtime detection includes all kinds of on-chip and off-chip
checking logic that monitors for violations of the chip’s security.
[13] proposed a method to generate such checkers directly from
the specification, ensuring high coverage of potential attack sur-
faces. [14] investigates tampering of runtime checkers. To counter
this, they introduce an element of randomness in the checker’s
inputs striving to prevent the attacker from successfully issuing a
trigger code that would disable the checker. Our work provides a
mechanism to protect checkers and guarantee observability into
the components they protect. SWAN also includes a checker of its
own, the canary logic, to monitor for attempted attacks.

Obfuscation takes a cryptographic approach to preventive de-
fense. In an obfuscated circuit, a key must be provided to correctly
implement the output function. Furthermore, it is supposed to be
intractable to reverse engineer the obfuscated circuit if the attacker
only has a black box version of the circuit. [3] implements obfusca-
tion by replacing a small portion of logic with FPGA-like LUTs. An
attacker who wants to reverse engineer or tamper with the design
would need to know the correct configuration of the LUTs, which
becomes quickly intractable with increasing numbers of LUTs. A
complete FPGA-like reconfigurable fabric has also been proposed.
In [4], the authors use an FPGA fabric to implement instruction set

randomization on a processor and protect against hardware trojans
designed for code injection. Because our attacker is assumed to be
omniscient, they can also overcome obfuscation. Replacing logic
with LUTs on a gate-by-gate basis still leaves the design exposed to
attackers who know how the LUTs will be configured, especially if
there is only one configuration that correctly implements the func-
tionality of the system. However, it is still possible to block such an
attacker obfuscating the design and providing multiple mappings to
a reconfigurable fabric. Our approach not only hides the functions
of design blocks, it also conceals their locations. Moreover, using
a complete FPGA-like fabric to implement the target components
would carry very high overheads, which SWAN seeks to avoid.

7 CONCLUSIONS

We presented SWAN, an automatically generated one-time pro-
grammable architecture, created to enhance security at modest
cost. Our toolchain provides several additional security features
to the programmer, allowing them to re-use excess resources as
checking logic, and to introduce only as much flexibility as they
deem necessary. We implemented SWAN on a RISC-V core and
analyzed its security properties. As the size of the SWAN fabric
increases, the minimum area cost of an ideal hardware trojan limits
the attacker to only targeting a few locations in the fabric. By lever-
aging this security vs. area trade-off, we can parameterize SWAN
so that an attack capable of disabling a checker would have a 99%
chance of failure. At this solution point, SWAN incurs less than 5%
total power and 27% area overhead— significantly better than an
FPGA implementation, which would at least double the area while
providing far more limited security guarantees.
Acknowledgment. This material is based on research sponsored
by the Defense Microelectronics Activity (DMEA) under agreement
number H94003-11-2-1101. The United States Government is autho-
rized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation thereon.

REFERENCES

[1] Q. Dong T. Austin K. Yang, M. Hicks and D. Sylvester. A2: Analog malicious
hardware. In S&P, 2016.

[2] C.Paar G. Becker, F. Regazzoni and W. Burleson. Stealthy dopant-level hardware

trojans. In CHES, 2013.

H. Mahmoodi K. Gaj T. Winograd, H. Salmani and H. Homayoun. Hybrid STT-

CMOS designs for reverse-engineering prevention. In DATE, 2016.

[4] B.Liu and B. Wang. Embedded reconfigurable logic for ASIC design obfuscation
against supply chain attacks. In DATE, 2014.

[5] S.Paul R.S. Chakraborty and S. Bhunia. On-demand transparency for improving
hardware trojan detectability. In HOST, 2008.

[6] B. Zhou et al. Detecting hardware trojans using backside optical imaging of
embedded watermarks. In DAC, 2015.

[7] R. Adato et al. Rapid mapping of digital integrated circuit logic gates via multi-
spectral backside imaging. arXiv:1605.09306, 2016.

[8] K. Asanovic C. Celio, D. Patterson. The Berkeley Out-of-Order Machine (BOOM):
An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor. Tech.
Rep. UCB/EECS-2015-167, EECS Department, UC Berkeley, 2015.

[9] S. Skiadopoulos M. Elseidy, E. Abdelhamid and P. Kalnis. Grami: Frequent
subgraph and pattern mining in a single large graph. PVLDB, 2014.

[10] D. Maier J. Walpole P. Bakke S. Beattie A. Grier P. Wagle Q. Zhang H. Hinton
C. Cowan, C. Pu. Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In USENIX, 1998.

[11] R.Balasubramonian N. Muralimanohar and N. Jouppi. Cacti 6.0: A tool to model
large caches. In MICRO, 2007.

[12] D.DuRS. Chakraborty S. Narasimhan, X. Wang and S. Bhunia. TeSR: A robust
temporal self-referencing approach for hardware trojan detection. In HOST, 2011.

[13] C. Irvine M. Bilzor, T. Huffmire and T. Levin. Security checkers: Detecting
processor malicious inclusions at runtime. In HOST, 2011.

[14] D. Hély J. Dubeuf and R. Karri. Run-time detection of hardware trojans: The
processor protection unit. In ETS, 2013.

[3

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 30.60 points
 Normalise (advanced option): 'original'

 32

 D:20180816092532
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 30.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

