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Announcements

HW # 4 (deadline pushed to 11/2)
s Will be posted by Wednesday

Milestone 1 (due 10/29)

5 Create handin/milestonel in your svn repository
-make synand make test should do something
5 | will review these after 10/29 to provide feedback
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Readings

For Wednesday:
sH&P C.1-C.2,5.1-5.2
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Exam Statistics
-E_-

Out of 16

Mean 13.8 14.6 12.3 10.5 12.3 144 /8
Median 14 16 14 11 14 16 80.5
Std. Dev 1.8 2.6 4.6 2.8 3.4 5.3 12

Course policies (from syllabus)
s You must pass both projects and exams to pass course
s Rough guide for passing (C): ~2 std.dev. under median

With assignments figured in, overall course stats:
s Mean: 83%, Median: 84%, Std. Dev: 10%

60% of your grade is still undetermined
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Memory Dataflow Techniques
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Out of Order Memory Operations

All insns are easy in out-of-order...
5 Register inputs only
5 Register renaming captures all dependences
5 Tags tell you exactly when you can execute

... except loads
5 Register and memory inputs (older stores)
5 Register renaming does not tell you all dependences
s How do loads find older in-flight stores to same address (if any)?
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Dynamic Reordering of Memory
Operations

Storing to memory irrevocably in-order state
Hence, hold stores untill retire (ROB head)

No memory WAW or WAR
Allow 000 Loads that don’t have RAW memory-dependence

What is hard about managing memory-dependence?
s memory address are much wider than reg names

s memory dependencies are not static
> a load (or store) instruction’s address can change
> addresses need to be calculated and translated first

s memory instructions take longer to execute
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Uniprocessor Load and Store Semantics

Given Store;( a, v) << Load|( a) ("<<" means precedes)

Load(a) must return v if there does not exist another Store,
such that

Store,( a, v) << Store,( a, v’ ) << Load,(a)

This can be guaranteed by observing data dependence
1 RAW Store(a, v) followed by Load( a )
sWAW  Store(a, v') followed by Store(a, v )
s WAR Load( a ) followed by Store( a, v’)

For a uniprocessor, do we need to worry about loads and stores
to different addresses? What about SMPs?
Lecture 12
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Some trivial ways to handle Loads

Allow only one load or store in Oo0 core

5 Stall other operations at dispatch — very slow
5 No need for LSQ

Load may only issue when LSQ head
5 Stall other operations at dispatch
5 Loads always get value from cache, only 1 outstanding load

More aggressive options:
5 Load to store forwarding
s Speculative load-to-store forwarding — requires rewind mechanism

Several hardware realizations

5 Unified LSQ (easier to understand, but nasty hardware)
5 Separate LQ and SQ (more complicated, but elegant)
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HW #1: Unified Load/Sw;ore Queue

Operates as a circular FIFO

- allocate on dispatch

» de-allocate on retirement

Calc address in register dataflow order

A NxN comparator matrix detects
memory address dependence (also
considers relative age of entries)

s store ops are held until
retirement

s load ops are issued when no
dependency exists & all older
store addresses known

address
calculation+
translation
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HW#2: Split Queues

DS/TLB + structures to handle in-flight loads/stores
5 Performs four functions

s In-order store retirement
> Writes stores to DS in order
» Basic, implemented by store queue (SQ)
5 Store-load forwarding
> Allows loads to read values from older un-retired stores
> Also basic, also implemented by store queue (SQ)
» Memory ordering violation detection
> Checks load speculation (more later)
» Advanced, implemented by load queue (LQ)
s Memory ordering violation avoidance
» Advanced, implemented by dependence predictors
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Simple Data Memory FU: D$/TLB + SQ

address datain data out _
load position Just like any other FU

5 2 register inputs (addr, data in)
5 1 register output (data out)
5 1 non-register input (load pos)?

Storeé Queue|(SQ)

head
Store queue (SQ)
a9e taill o In-flight store address/value
5 In program order (like ROB)
» Addresses associatively searchable
5 Size heuristic: 15-20% of ROB
D$/TLB

But what does it do?
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Data Memory FU "Pipeline”

Stores
> Dispatch (D)
> Allocate entry at SQ tail

s Execute (X)
> Write address and data into corresponding SQ slot

s Retire (R)
> Write address/data from SQ head to DS, free SQ head

Loads
5 Dispatch (D)
> Record current SQ tail as “load position”

s Execute (X)
> Where the good stuff happens
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"Out-of-Order" Load Execution

address datain data out

In parallel with DS access
load position P >

Send address to SQ
s Compare with all store addresses
5 CAM: like FAS, or RS tag match

y head ° Select all matching addresses

Age logic selects youngest store that is
tail older than load

5 Uses load position input
5 Any? load “forwards” value from SQ

l 5 None? Load gets value from DS

D$/TLB

age

\ A 4
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Conservative Load Scheduling

Why “” in “out-of-order”?
. Load can execute out-of-order with respect to (wrt) other loads
. Stores can execute out-of-order wrt other stores

- Loads must execute in-order wrt older stores
> Load execution requires knowledge of all older store addresses
. Simple
~ Restricts performance

7 Used in P6
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Opportunistic Memory Scheduling

Observe: on average, < 10% of loads forward from SQ
s Even if older store address is unknown, chances are it won’t match
-5 Let loads execute in presence of older “ambiguous stores”
. Increases performance
5 But what if ambiguous store does match?

Memory ordering violation: load executed too early
s Must detect...
5 And fix (e.g., by flushing/refetching insns starting at load)

Lecture 12
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D$/TLB + SQ + LQ

Load queue (LQ)

5 In-flight load addresses
load queue SQ - In program-order (like ROB,SQ)
(LQ) 5 Associatively searchable

s Size heuristic: 20-30% of ROB

store position flush?

head‘ head
tail tall
—
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Advanced Memory "Pipeline” (LQ Only)

Loads
5 Dispatch (D)
> Allocate entry at LQ tail

s Execute (X)
> Write address into corresponding LQ slot

Stores
5 Dispatch (D)
> Record current LQ tail as “store position”

s Execute (X)
> Where the good stuff happens
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Detecting Memory Ordering Violations

Store sends address to LQ
» Compare with all load addresses

load queue - Selecting matching addresses

(LQ) 5 Matching address?

> Load executed before store
head | violation

» Fix!

store position flush?

!

tall

Age logic selects oldest load that is
younger than store

7 Use store position
» Processor flushes and restarts

Lecture 12
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Intelligent Load Scheduling

Opportunistic scheduling better than conservative...
. Avoids many unnecessary delays

...but not significantly
_ Introduces a few flushes, but each is much costlier than a delay

Observe: loads/stores that cause violations are “stable”
s Dependences are mostly program based, program doesn’t change
5 Scheduler is deterministic

Exploit: intelligent load scheduling
5 Hybridize conservative and opportunistic
s Predict which loads, or load/store pairs will cause violations

s Use conservative scheduling for those, opportunistic for the restiecture 12
EECS 470 Slide 20
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Memory Dependence Prediction

Store-blind prediction
s Predict load only, wait for all older stores to execute
. Simple, but a little too heavy handed
s Example: Alpha 21264

Store-load pair prediction
s Predict load/store pair, wait only for one store to execute
. More complex, but minimizes delay

s Example: Store-Sets
> Load identifies the right dynamic store in two steps
> Store-Set Table: load-PC — store-PC
> Last Store Table: store-PC — SQ index of most recent instance

s Implemented in next Pentium? (guess)
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Summary

Modern dynamic scheduling must support precise state
5 A software sanity issue, not a performance issue

Strategy: Writeback — Complete (O00) + Retire (iO)

Two basic designs
5 P6: Tomasulo + re-order buffer, copy based register renaming
. Precise state is simple, but fast implementations are difficult

1 R10K: implements true register renaming
. Easier fast implementations, but precise state is more complex

Out-of-order memory operations
5 Store queue: conservative load scheduling (iO wrt older stores)

s Load queue: opportunistic load scheduling (OoO wrt older stores)
s Intelligent memory scheduling: hybrid

Lecture 12
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Store Buffer

ROB

Speculative State

Committed State

Store
Buffer

¢ Once a store enters the
l store buffer, its effect
cannot be undone
Cache & ¢ Must also be check by load
Memory System bypassing and forwarding
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Memory Ordering for
Shared Memory Multiprocessors
Uniprocessors: Never wait to write memory

—
Multiprocessors: Must wait - order matters!

St ready, 1 G Spin until ready
Spin until valid . St data, x
P - (2,

© EXTE

Much more on multiprocessor memory ordering later
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Dataflow Limit on Superscalar Micros
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Breaking Dataflow Dependence:

Prediction and Speculation
Branch prediction:

s Branch target history
s Branch direction history

Load value prediction:
s Value history for each static load

Register value prediction:
s Source or destination value history per static instruction operand

Assumes a very large transistor budget
1. Large complicated prediction logic for accuracy

2. Spare resources to spend on speculated computation
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Dynamic Pipeline Contraction

Fold away pipeline stages via speculation:
s Predict: obtain semantic outcome of instruction early
s Speculate: allow dependent instr. to execute in parallel
s Recover: Perform fix-up when mis-speculation occurs

| Branch Prediction I‘ |Va|ue Prediction I

Fetch

Fetch Fetch Fetch

Dispatch Fetch Dispatch Fetch J [Dispatch Dispatch

Execute Execute

Dispatch Dispatchj] [Execute Execute

Fetch Commit Commit

Execute

Commit Commit Execute Commit

Dispatch

Execute

Commit
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Load Value Prediction and Classification

Sample LCT) L oad PC LVPT | Sample
Load oal Store
7 | Execution

Fetch Executionj+

Disp
“““““ 1 1 | | Address/ R
LVPT Index
Ex?2 Address to pu
Actual
Value
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Source Operand Value Prediction

Classification Table (CT) Value Prediction Table (VPT)
<v> <pred history> PC of pred. instr. <v> <value history>

i
S O o S

\ N \
|
Oper. Position

Prediction Result Predicted Value Updated Value

Similar to earlier work on value prediction, but predicts source
operands:

5 Decouples execution from dependence checking
5 Don’t care where value is coming from until validation

Confidence mechanism (CT) filters out wrong predictions
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