© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Y

|-cache
EECS 470
Predictor y Instruction

O gyffer
L DECODE

Lecture 12

Integer Floating-pointv Media AN e<mory
.) L i 7
Memorv Speculation == == m=4 /om
y p L | v v VooV | V
L 1] | 5? Memory
Vv § Data
Y EXECUTEy Y y | Flow
3 &
Reord | [
Fa"2007 Bﬁ?frerlelrllllllllllIIIIIIIIIIII%:E E&
: oo (WA Ry
Prof. Thomas Wenisch \ /
Store e & D-cache i
. Queug *': ; f
http://www.eecs.umich.edu/courses/eecs470 N
Qﬁ%x&ﬁﬁy

Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, Shen, Smith,
Sohi, Tyson, and Vijaykumar of Carnegie Mellon University, Purdue University, University of Michigan,

Univerity of Pennsylvania, and University of Wisconsin.
Lecture 12
EECS 470 Slide 1

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Announcements

HW # 4 (deadline pushed to 11/2)
s Will be posted by Wednesday

Milestone 1 (due 10/29)

5 Create handin/milestonel in your svn repository
-make synand make test should do something
5 | will review these after 10/29 to provide feedback

Lecture 12
EECS 470 Slide 2

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Readings

For Wednesday:
sH&P C.1-C.2,5.1-5.2

Lecture 12
EECS 470 Slide 3

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Exam Statistics
-E_-

Out of 16

Mean 13.8 14.6 12.3 10.5 12.3 144 /8
Median 14 16 14 11 14 16 80.5
Std. Dev 1.8 2.6 4.6 2.8 3.4 5.3 12

Course policies (from syllabus)
s You must pass both projects and exams to pass course
s Rough guide for passing (C): ~2 std.dev. under median

With assignments figured in, overall course stats:
s Mean: 83%, Median: 84%, Std. Dev: 10%

60% of your grade is still undetermined

Lecture 12
EECS 470 Slide 4

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Memory Dataflow Techniques

és,)

| : .

%%; Predictor v Instructionﬁ

: T ”II”'””I”Buffer ;ww
DECODE ‘

g el
,@-9““ W%-«» P
~ Integer

Floating-point * Media & Me<mory

Y

v EXECUTE y e

s Buffer IIIITIITIITIJITTITTITTITT1T]
Register (ROB) Y

Data COMMIT \
Flow Store v %

QueUéIIIIIIIIIIII—%—

EECS 470

Lecture 12
Slide 5

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Out of Order Memory Operations

All insns are easy in out-of-order...
5 Register inputs only
5 Register renaming captures all dependences
5 Tags tell you exactly when you can execute

... except loads
5 Register and memory inputs (older stores)
5 Register renaming does not tell you all dependences
s How do loads find older in-flight stores to same address (if any)?

Lecture 12
EECS 470 Slide 6

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Dynamic Reordering of Memory
Operations

Storing to memory irrevocably in-order state
Hence, hold stores untill retire (ROB head)

No memory WAW or WAR
Allow 000 Loads that don’t have RAW memory-dependence

What is hard about managing memory-dependence?
s memory address are much wider than reg names

s memory dependencies are not static
> a load (or store) instruction’s address can change
> addresses need to be calculated and translated first

s memory instructions take longer to execute

Lecture 12
EECS 470 Slide 7

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Uniprocessor Load and Store Semantics

Given Store;(a, v) << Load|(a) ("<<" means precedes)

Load(a) must return v if there does not exist another Store,
such that

Store,(a, v) << Store,(a, v’) << Load,(a)

This can be guaranteed by observing data dependence
1 RAW Store(a, v) followed by Load(a)
sWAW Store(a, v') followed by Store(a, v)
s WAR Load(a) followed by Store(a, v’)

For a uniprocessor, do we need to worry about loads and stores
to different addresses? What about SMPs?
Lecture 12

EECS 470 Slide 8

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Some trivial ways to handle Loads

Allow only one load or store in Oo0 core

5 Stall other operations at dispatch — very slow
5 No need for LSQ

Load may only issue when LSQ head
5 Stall other operations at dispatch
5 Loads always get value from cache, only 1 outstanding load

More aggressive options:
5 Load to store forwarding
s Speculative load-to-store forwarding — requires rewind mechanism

Several hardware realizations

5 Unified LSQ (easier to understand, but nasty hardware)
5 Separate LQ and SQ (more complicated, but elegant)

Lecture 12

EECS 470 Slide 9

> Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

HW #1: Unified Load/Sw;ore Queue

Operates as a circular FIFO

- allocate on dispatch

» de-allocate on retirement

Calc address in register dataflow order

A NxN comparator matrix detects
memory address dependence (also
considers relative age of entries)

s store ops are held until
retirement

s load ops are issued when no
dependency exists & all older
store addresses known

address
calculation+
translation

Lecture 12
EECS 470 Slide 10

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

HW#2: Split Queues

DS/TLB + structures to handle in-flight loads/stores
5 Performs four functions

s In-order store retirement
> Writes stores to DS in order
» Basic, implemented by store queue (SQ)
5 Store-load forwarding
> Allows loads to read values from older un-retired stores
> Also basic, also implemented by store queue (SQ)
» Memory ordering violation detection
> Checks load speculation (more later)
» Advanced, implemented by load queue (LQ)
s Memory ordering violation avoidance
» Advanced, implemented by dependence predictors

Lecture 12
EECS 470 Slide 11

ch 2007 -- Portions © Austin BthIfHIIHoe,
Lp sti, Martin RthSh SmthSh Tyson, Vijaykumar

Simple Data Memory FU: D$/TLB + SQ

address datain data out _
load position Just like any other FU

5 2 register inputs (addr, data in)
5 1 register output (data out)
5 1 non-register input (load pos)?

Storeé Queue|(SQ)

head
Store queue (SQ)
a9e taill o In-flight store address/value
5 In program order (like ROB)
» Addresses associatively searchable
5 Size heuristic: 15-20% of ROB
D$/TLB

But what does it do?

Lecture 12
EECS 470 Slide 12

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Data Memory FU "Pipeline”

Stores
> Dispatch (D)
> Allocate entry at SQ tail

s Execute (X)
> Write address and data into corresponding SQ slot

s Retire (R)
> Write address/data from SQ head to DS, free SQ head

Loads
5 Dispatch (D)
> Record current SQ tail as “load position”

s Execute (X)
> Where the good stuff happens

Lecture 12
EECS 470 Slide 13

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

"Out-of-Order" Load Execution

address datain data out

In parallel with DS access
load position P >

Send address to SQ
s Compare with all store addresses
5 CAM: like FAS, or RS tag match

y head ° Select all matching addresses

Age logic selects youngest store that is
tail older than load

5 Uses load position input
5 Any? load “forwards” value from SQ

l 5 None? Load gets value from DS

D$/TLB

age

\ A 4

Lecture 12
EECS 470 Slide 14

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Conservative Load Scheduling

Why “” in “out-of-order”?
. Load can execute out-of-order with respect to (wrt) other loads
. Stores can execute out-of-order wrt other stores

- Loads must execute in-order wrt older stores
> Load execution requires knowledge of all older store addresses
. Simple
~ Restricts performance

7 Used in P6

Lecture 12
EECS 470 Slide 15

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Opportunistic Memory Scheduling

Observe: on average, < 10% of loads forward from SQ
s Even if older store address is unknown, chances are it won’t match
-5 Let loads execute in presence of older “ambiguous stores”
. Increases performance
5 But what if ambiguous store does match?

Memory ordering violation: load executed too early
s Must detect...
5 And fix (e.g., by flushing/refetching insns starting at load)

Lecture 12
EECS 470 Slide 16

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

D$/TLB + SQ + LQ

Load queue (LQ)

5 In-flight load addresses
load queue SQ - In program-order (like ROB,SQ)
(LQ) 5 Associatively searchable

s Size heuristic: 20-30% of ROB

store position flush?

head‘ head
tail tall
—

Lecture 12
EECS 470 Slide 17

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Advanced Memory "Pipeline” (LQ Only)

Loads
5 Dispatch (D)
> Allocate entry at LQ tail

s Execute (X)
> Write address into corresponding LQ slot

Stores
5 Dispatch (D)
> Record current LQ tail as “store position”

s Execute (X)
> Where the good stuff happens

Lecture 12
EECS 470 Slide 18

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Detecting Memory Ordering Violations

Store sends address to LQ
» Compare with all load addresses

load queue - Selecting matching addresses

(LQ) 5 Matching address?

> Load executed before store
head | violation

» Fix!

store position flush?

!

tall

Age logic selects oldest load that is
younger than store

7 Use store position
» Processor flushes and restarts

Lecture 12
EECS 470 Slide 19

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Intelligent Load Scheduling

Opportunistic scheduling better than conservative...
. Avoids many unnecessary delays

...but not significantly
_ Introduces a few flushes, but each is much costlier than a delay

Observe: loads/stores that cause violations are “stable”
s Dependences are mostly program based, program doesn’t change
5 Scheduler is deterministic

Exploit: intelligent load scheduling
5 Hybridize conservative and opportunistic
s Predict which loads, or load/store pairs will cause violations

s Use conservative scheduling for those, opportunistic for the restiecture 12
EECS 470 Slide 20

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Memory Dependence Prediction

Store-blind prediction
s Predict load only, wait for all older stores to execute
. Simple, but a little too heavy handed
s Example: Alpha 21264

Store-load pair prediction
s Predict load/store pair, wait only for one store to execute
. More complex, but minimizes delay

s Example: Store-Sets
> Load identifies the right dynamic store in two steps
> Store-Set Table: load-PC — store-PC
> Last Store Table: store-PC — SQ index of most recent instance

s Implemented in next Pentium? (guess)

Lecture 12
EECS 470 Slide 21

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Summary

Modern dynamic scheduling must support precise state
5 A software sanity issue, not a performance issue

Strategy: Writeback — Complete (O00) + Retire (iO)

Two basic designs
5 P6: Tomasulo + re-order buffer, copy based register renaming
. Precise state is simple, but fast implementations are difficult

1 R10K: implements true register renaming
. Easier fast implementations, but precise state is more complex

Out-of-order memory operations
5 Store queue: conservative load scheduling (iO wrt older stores)

s Load queue: opportunistic load scheduling (OoO wrt older stores)
s Intelligent memory scheduling: hybrid

Lecture 12

EECS 470 Slide 22

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Store Buffer

ROB

Speculative State

Committed State

Store
Buffer

¢ Once a store enters the
l store buffer, its effect
cannot be undone
Cache & ¢ Must also be check by load
Memory System bypassing and forwarding

Lecture 12
EECS 470 Slide 23

Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Memory Ordering for
Shared Memory Multiprocessors
Uniprocessors: Never wait to write memory

—
Multiprocessors: Must wait - order matters!

St ready, 1 G Spin until ready
Spin until valid . St data, x
P - (2,

© EXTE

Much more on multiprocessor memory ordering later

Lecture 12
EECS 470 Slide 24

© Wenisch 2007 - Portions © Austin, Brehob, Falsafi, Hill, Hoe,
ngth Sohi, Tyson, Vijaykumar

Dataflow Limit on Superscalar Micros

00 | m8l8k5|m 00 _ | ulpeg
8.0[i 8.0[
7.0[i 7.0[
6.0[i Q6.0:
O 5.0 5.0F
O 4.0 A i S 4oL —
3.0 < I 3.of < ?
2. > > 2. > >
1.0[i 1.0[
0.0 - ! 1 0.0 . ! 4
4 8 16 32 64 4 8 16 32 64
perl i
9.0 . , , 9.0
8.0[i 8.0[
7.0F 3 7.0
O 6.0L i 6.0[
5 5Of : 8 5.0f
— 4.0[A = 4.0[
2. 2. ~ ~
1.0F > > 10" > >
0.0 : : | 0.0LC . . !
4 8 16 32 64 4 8 16 32 64
Issue Width Issue Width

Cycles before dispatch: A1 €2 »3 Assume infinite functional units i 25

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Breaking Dataflow Dependence:

Prediction and Speculation
Branch prediction:

s Branch target history
s Branch direction history

Load value prediction:
s Value history for each static load

Register value prediction:
s Source or destination value history per static instruction operand

Assumes a very large transistor budget
1. Large complicated prediction logic for accuracy

2. Spare resources to spend on speculated computation

Lecture 12
EECS 470 Slide 26

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Dynamic Pipeline Contraction

Fold away pipeline stages via speculation:
s Predict: obtain semantic outcome of instruction early
s Speculate: allow dependent instr. to execute in parallel
s Recover: Perform fix-up when mis-speculation occurs

| Branch Prediction I‘ |Va|ue Prediction I

Fetch

Fetch Fetch Fetch

Dispatch Fetch Dispatch Fetch J [Dispatch Dispatch

Execute Execute

Dispatch Dispatchj] [Execute Execute

Fetch Commit Commit

Execute

Commit Commit Execute Commit

Dispatch

Execute

Commit

Lecture 12
EECS 470 Slide 27

© Wenisch 2007 -- Portions © Austin, Brehob, Falsafi, Hill, Hoe,
Lipasti, Martin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar

Load Value Prediction and Classification

Sample LCT) L oad PC LVPT | Sample
Load oal Store
7 | Execution

Fetch Executionj+

Disp
“““““ 1 1 | | Address/ R
LVPT Index
Ex?2 Address to pu
Actual
Value

‘ Lecture 12
EECS 470 Slide 28

enisch 2007 --artions ©Au§tin, Brehob, Falsafi, Hill, Hoe,

Source Operand Value Prediction

Classification Table (CT) Value Prediction Table (VPT)
<v> <pred history> PC of pred. instr. <v> <value history>

i
S O o S

\ N \
|
Oper. Position

Prediction Result Predicted Value Updated Value

Similar to earlier work on value prediction, but predicts source
operands:

5 Decouples execution from dependence checking
5 Don’t care where value is coming from until validation

Confidence mechanism (CT) filters out wrong predictions

Lecture 12
EECS 470 Slide 29

